Search results for: energy and production data analysis
49496 The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus
Authors: Mustafa Dagbasi, Olusola Bamisile, Adii Chinedum
Abstract:
The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity.Keywords: solar power, photovoltaic plant, parabolic trough plant, techno-economic analysis
Procedia PDF Downloads 28349495 Corn Production in the Visayas: An Industry Study from 2002-2019
Authors: Julie Ann L. Gadin, Andrearose C. Igano, Carl Joseph S. Ignacio, Christopher C. Bacungan
Abstract:
Corn production has become an important and pervasive industry in the Visayas for many years. Its role as a substitute commodity to rice heightens demand for health-particular consumers. Unfortunately, the corn industry is confronted with several challenges, such as weak institutions. Considering these issues, the paper examined the factors that influence corn production in the three administrative regions in the Visayas, namely, Western Visayas, Central Visayas, and Eastern Visayas. The data used was retrieved from a variety of publicly available data sources such as the Philippine Statistics Authority, the Department of Agriculture, the Philippine Crop Insurance Corporation, and the International Disaster Database. Utilizing a dataset from 2002 to 2019, the indicators were tested using three multiple linear regression (MLR) models. Results showed that the land area harvested (p=0.02), and the value of corn production (p=0.00) are statistically significant variables that influence corn production in the Visayas. Given these findings, it is suggested that the policy of forest conversion and sustainable land management should be effective in enabling farmworkers to obtain land to grow corn crops, especially in rural regions. Furthermore, the Biofuels Act of 2006, the Livestock Industry Restructuring and Rationalization Act, and supported policy, Senate Bill No. 225, or an Act Establishing the Philippine Corn Research Institute and Appropriating Funds, should be enforced inclusively in order to improve the demand for the corn-allied industries which may lead to an increase in the value and volume of corn production in the Visayas.Keywords: corn, industry, production, MLR, Visayas
Procedia PDF Downloads 21149494 In vitro Method to Evaluate the Effect of Steam-Flaking on the Quality of Common Cereal Grains
Authors: Wanbao Chen, Qianqian Yao, Zhenming Zhou
Abstract:
Whole grains with intact pericarp are largely resistant to digestion by ruminants because entire kernels are not conducive to bacterial attachment. But processing methods makes the starch more accessible to microbes, and increases the rate and extent of starch degradation in the rumen. To estimate the feasibility of applying a steam-flaking as the processing technique of grains for ruminants, cereal grains (maize, wheat, barley and sorghum) were processed by steam-flaking (steam temperature 105°C, heating time, 45 min). And chemical analysis, in vitro gas production, volatile fatty acid concentrations, and energetic values were adopted to evaluate the effects of steam-flaking. In vitro cultivation was conducted for 48h with the rumen fluid collected from steers fed a total mixed ration consisted of 40% hay and 60% concentrates. The results showed that steam-flaking processing had a significant effect on the contents of neutral detergent fiber and acid detergent fiber (P < 0.01). The concentration of starch gelatinization degree in all grains was also great improved in steam-flaking grains, as steam-flaking processing disintegrates the crystal structure of cereal starch, which may subsequently facilitate absorption of moisture and swelling. Theoretical maximum gas production after steam-flaking processing showed no great difference. However, compared with intact grains, total gas production at 48 h and the rate of gas production were significantly (P < 0.01) increased in all types of grain. Furthermore, there was no effect of steam-flaking processing on total volatile fatty acid, but a decrease in the ratio between acetate and propionate was observed in the current in vitro fermentation. The present study also found that steam-flaking processing increased (P < 0.05) organic matter digestibility and energy concentration of the grains. The collective findings of the present study suggest that steam-flaking processing of grains could improve their rumen fermentation and energy utilization by ruminants. In conclusion, the utilization of steam-flaking would be practical to improve the quality of common cereal grains.Keywords: cereal grains, gas production, in vitro rumen fermentation, steam-flaking processing
Procedia PDF Downloads 27049493 Microbial Fuel Cells in Waste Water Treatment and Electricity Generation
Authors: Rajalaxmi N., Padma Bhat, Pooja Garag, Pooja N. M., V. S. Hombalimath
Abstract:
Microbial fuel cell (MFC) is the advancement of science that aims at utilizing the oxidizing potential of bacteria for wastewater treatment and production of bio-hydrogen and bio-electricity. Salt-bridge is the economic alternative to highly priced proton-exchange membrane in the construction of a microbial fuel cell. This paper studies the electricity generating capacity of E.coli and Clostridium sporogenes in microbial fuel cells (MFCs). Unlike most of MFC research, this targets the long term goals of renewable energy production and wastewater treatment. In present study the feasibility and potential of bioelectricity production from different wastewater was observed. Different wastewater was primarily treated which were confirmed by the COD tests which showed reduction of COD. We observe that the electricity production of MFCs decreases almost linearly after 120 hrs. The sewage wastewater containing Clostridium sporogenes showed bioelectricity production up to 188mV with COD removal of 60.52%. Sewage wastewater efficiently produces bioelectricity and this also helpful to reduce wastewater pollution load.Keywords: microbial fuel cell, bioelectricity, wastewater, salt bridge, COD
Procedia PDF Downloads 53749492 Complex Analysis of Annual Plats Utilization for Particleboard Production
Authors: Petra Gajdačová
Abstract:
The presented research deals with a complex evaluation of after-harvest remnants utilization for particleboard production. Agricultural crops that are in the Czech Republic widely grown are in the scope of interest. Researches dealing with composites from agricultural rests solved mostly physical and mechanical properties of produced materials. For the commercialization of these results, however, one another step is essential. It is needed to evaluate the composites production from agricultural rests more comprehensive, take into account all aspects that affect their production, not only material characteristics of produced composites. In this study, descriptive, comparative and synthesis methods were used. Results of this research include a supply stability forecast, technical and technological differences of production of particleboards from agricultural rests and quantification of an economical potential of the agricultural rests.Keywords: agricultural crops, annual plant, composite material, particleboard
Procedia PDF Downloads 19649491 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle
Authors: Jaroslav Frantík, Jan Najser
Abstract:
This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.Keywords: biomass, efficiency, gasification, ORC system
Procedia PDF Downloads 21749490 Dry-Extrusion of Asian Carp, a Sustainable Source of Natural Methionine for Organic Poultry Production
Authors: I. Upadhyaya, K. Arsi, A. M. Donoghue, C. N. Coon, M. Schlumbohm, M. N. Riaz, M. B. Farnell, A. Upadhyay, A. J. Davis, D. J. Donoghue
Abstract:
Methionine, a sulfur containing amino acid, is essential for healthy poultry production. Synthetic methionine is commonly used as a supplement in conventional poultry. However, for organic poultry, a natural, cost effective source of methionine that can replace synthetic methionine is unavailable. Invasive Asian carp (AC) are a potential natural methionine source; however, there is no proven technology to utilize this fish methionine. Commercially available rendering is environmentally challenging due to the offensive smell produced during production. We explored extrusion technology as a potential cost effective alternative to fish rendering. We also determined the amino acid composition, digestible amino acids and total metabolizable energy (TMEn) for the extruded AC fish meal. Dry extrusion of AC was carried out by mixing the fish with soybean meal (SBM) in a 1:1 proportion to reduce high moisture in the fishmeal using an Insta Pro Jr. dry extruder followed by drying and grinding of the product. To determine the digestible amino acids and TMEn of the extruded product, a colony of cecectomized Bovans White Roosters was used. Adult roosters (48 weeks of age) were fasted for 30 h and tube fed 35 grams of 3 treatments: (1) extruded AC fish meal, (2) SBM and (3) corn. Excreta from each individual bird was collected for the next 48 h. An additional 10 unfed roosters served as endogenous controls. The gross energy and protein content of the feces from the treatments were determined to calculate the TMEn. Fecal samples and treatment feeds were analyzed for amino acid content and percent digestible amino acid. Results from the analysis suggested that addition of Asian carp increased the methionine content of SBM from 0.63 to 0.83%. Also, the digestibility of amino acid and the TMEn values were greater for the AC meal with SBM than SBM alone. The dry extruded AC meal analysis is indicative that the product can replace SBM alone and enhance natural methionine in a standard poultry ration. The results from feed formulation using different concentrations of the AC fish meal depict a potential diet which can supplement the required methionine content in organic poultry production.Keywords: Asian carp, extrusion, natural methionine, organic poultry
Procedia PDF Downloads 21749489 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 3249488 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology
Authors: Shashank. S. Bagane, H. N. Rajendra Prasad
Abstract:
Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.Keywords: building information modeling, energy impact, spatial geometry, vastu
Procedia PDF Downloads 16149487 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House
Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal
Abstract:
In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction
Procedia PDF Downloads 19949486 Kebbi State University of Science and Technology, Aliero, Kebbi State
Authors: Ugbajah Maryjane
Abstract:
The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers.Keywords: socio-economic factors, profitability, awareness, toxic chemicals, credits
Procedia PDF Downloads 41549485 Matlab/Simulink Simulation of Solar Energy Storage System
Authors: Mustafa A. Al-Refai
Abstract:
This paper investigates the energy storage technologies that can potentially enhance the use of solar energy. Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Starting from the analysis of the models of the system components, a complete simulation model was realized in the Matlab-Simulink environment. Results of the numerical simulations are provided. The operation of electrolysis and photovoltaic array combination is verified at various insulation levels. It is pointed out that solar cell arrays and electrolysers are producing the expected results with solar energy inputs that are continuously varying.Keywords: electrolyzer, simulink, solar energy, storage system
Procedia PDF Downloads 43549484 Feasibility of Battery Electric Vehicles in Saudi Arabia: Cost and Sensitivity Analysis
Authors: Tawfiq Albishri, Abdulmajeed Alqahtani
Abstract:
Battery electric vehicles (BEVs) are increasingly seen as a sustainable alternative to internal combustion engine (ICE) vehicles, primarily due to their environmental and economic benefits. Saudi Arabia's interest in investing in renewable energy and reducing greenhouse gas emissions presents significant potential for the widespread adoption of BEVs in the country. However, several factors have hindered the adoption of BEVs in Saudi Arabia, with high ownership costs being the most prominent barrier. This cost discrepancy is primarily due to the lack of localized production of BEVs and their components, leading to increased import costs, as well as the high initial cost of BEVs compared to ICE vehicles. This paper aims to evaluate the feasibility of BEVs compared to ICE vehicles in Saudi Arabia by conducting a cost of ownership analysis. Furthermore, a sensitivity analysis will be conducted to determine the most significant contributor to the ownership costs of BEVs that, if changed, could expedite their adoption in Saudi Arabia.Keywords: battery electric vehicles, internal combustion engine, renewable energy, greenhouse gas emissions, total cost of ownership
Procedia PDF Downloads 8549483 Analyzing Energy Consumption Behavior of Migrated Population in Turkey Using Bayesian Belief Approach
Authors: Ebru Acuner, Gulgun Kayakutlu, M. Ozgur Kayalica, Sermin Onaygil
Abstract:
In Turkey, emigration, especially from Syria, has been continuously increasing together with rapid urbanization. In parallel to this, total energy consumption has been growing, rapidly. Unfortunately, domestic energy sources could not meet this energy demand. Hence, there is a need for reliable predictions. For this reason, before making a survey study for the migrated people, an informative questionnaire was prepared to take the opinions of the experts on the main drivers that shape the energy consumption behavior of the migrated people. Totally, 17 experts were answered, and they were analyzed by means of Netica program considering Bayesian belief analysis method. In the analysis, factors affecting energy consumption behaviors as well as strategies, institutions, tools and financing methods to change these behaviors towards efficient consumption were investigated. On the basis of the results, it can be concluded that changing the energy consumption behavior of the migrated people is crucial. In order to be successful, electricity and natural gas prices and tariffs in the market should be arranged considering energy efficiency. In addition, support mechanisms by not only the government but also municipalities should be taken into account while preparing related policies. Also, electric appliance producers should develop and implement strategies and action in favor of the usage of more efficient appliances. Last but not least, non-governmental organizations should support the migrated people to improve their awareness on the efficient consumption for the sustainable future.Keywords: Bayesian belief, behavior, energy consumption, energy efficiency, migrated people
Procedia PDF Downloads 11149482 Nigeria Energy Security: The Role of Solar Batteries
Authors: Ihugba Okezie A., Oguzie Emeka E.
Abstract:
Nigeria's renewable energy market is expanding due to increased environmental awareness, supportive government policies, and the need for energy diversification. This paper examines the role of solar batteries in enhancing Nigeria's energy security. With growing energy demands and frequent power outages, integrating solar batteries presents a viable solution to stabilize the energy supply. The study investigates the current state of solar battery technology in Nigeria, its economic and environmental benefits, and the challenges to implementation. Through a literature review, case studies, and stakeholder interviews, the paper provides a comprehensive analysis of solar batteries' contribution to a resilient energy future. Key players include Engie SA, TotalEnergies SE, Starsight Energy, Enel SpA, and North-South Power Co. Ltd. Challenges include high upfront costs, inadequate policies, weak infrastructure, and security risks. The paper recommends that the government should strengthen policies and incentives to encourage investments through tax breaks, subsidies, and financial incentives.Keywords: renewable energy, solar batteries, energy security, Nigeria’s electricity generation, job creation
Procedia PDF Downloads 4049481 Energy Consumption and Economic Growth Nexus: a Sustainability Understanding from the BRICS Economies
Authors: Smart E. Amanfo
Abstract:
Although the exact functional relationship between energy consumption and economic growth and development remains a complex social science, there is a sustained growing of agreement among energy economists and the likes on direct or indirect role of energy use in the development process, and as sustenance for many of societal achieved socio-economic and environmental developments in any economy. According to OECD, the world economy will double by 2050 in which the two members of BRICS (Brazil, Russia, India, China and South Africa) countries: China and India lead. There is a global apprehension that if countries constituting the epicenter of the present and future economic growth follow the same trajectory as during and after Industrial Revolution, involving higher energy throughputs, especially fossil fuels, the already known and models predicted threats of climate change and global warming could be exacerbated, especially in the developing economies. The international community’s challenge is how to address the trilemma of economic growth, social development, poverty eradication and stability of the ecological systems. This paper aims at providing the estimates of economic growth, energy consumption, and carbon dioxide emissions using BRICS members’ panel data from 1980 to 2017. The preliminary results based on fixed effect econometric model show positive significant relationship between energy consumption and economic growth. The paper further identified a strong relationship between economic growth and CO2 emissions which suggests that the global agenda of low-carbon-led growth and development is not a straight forward achievable The study therefore highlights the need for BRICS member states to intensify low-emissions-based production and consumption policies, increase renewables in order to avoid further deterioration of climate change impacts.Keywords: BRICS, sustainability, sustainable development, energy consumption, economic growth
Procedia PDF Downloads 9549480 Life Cycle Assesment (LCA) Study of Shrimp Fishery in the South East Coast of Arabian Sea
Authors: Leela Edwin, Rithin Joseph, P. H. Dhiju Das, K. A. Sayana, P. S. Muhammed Sherief
Abstract:
The shrimp trawl fishery is considered one of the more valuable fisheries from the South east Coast of Arabian Sea. Inventory data for the shrimp were collected over 1 year period and used to carry out a life cycle assessment (LCA). LCA was performed to assess and compare the environmental impacts associated with the fishing operations related to shrimp fishery. This analysis included the operation of the vessels, together with major inputs related to the production of diesel, trawl nets, or anti-fouling paints. Data regarding vessel operation was obtained from the detailed questionnaires filled out by 180 trawlers. The analysis on environmental impacts linked to shrimp extraction on a temporal scale, showed that varying landings enhanced the environmental burdens mainly associated with activities related to diesel production, transport and consumption of the fishing vessels. Discard rates for trawlers were also identified as a major environmental impact in this fishery.Keywords: shrimp trawling, life cycle assesment (LCA), Arabian sea, environmental impacts
Procedia PDF Downloads 32349479 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.Keywords: classification, achine learning, predictive quality, feature selection
Procedia PDF Downloads 16249478 Lithium Ion Supported on TiO2 Mixed Metal Oxides as a Heterogeneous Catalyst for Biodiesel Production from Canola Oil
Authors: Mariam Alsharifi, Hussein Znad, Ming Ang
Abstract:
Considering the environmental issues and the shortage in the conventional fossil fuel sources, biodiesel has gained a promising solution to shift away from fossil based fuel as one of the sustainable and renewable energy. It is synthesized by transesterification of vegetable oils or animal fats with alcohol (methanol or ethanol) in the presence of a catalyst. This study focuses on synthesizing a high efficient Li/TiO2 heterogeneous catalyst for biodiesel production from canola oil. In this work, lithium immobilized onto TiO2 by the simple impregnation method. The catalyst was evaluated by transesterification reaction in a batch reactor under moderate reaction conditions. To study the effect of Li concentrations, a series of LiNO3 concentrations (20, 30, 40 wt. %) at different calcination temperatures (450, 600, 750 ºC) were evaluated. The Li/TiO2 catalysts are characterized by several spectroscopic and analytical techniques such as XRD, FT-IR, BET, TG-DSC and FESEM. The optimum values of impregnated Lithium nitrate on TiO2 and calcination temperature are 30 wt. % and 600 ºC, respectively, along with a high conversion to be 98 %. The XRD study revealed that the insertion of Li improved the catalyst efficiency without any alteration in structure of TiO2 The best performance of the catalyst was achieved when using a methanol to oil ratio of 24:1, 5 wt. % of catalyst loading, at 65◦C reaction temperature for 3 hours of reaction time. Moreover, the experimental kinetic data were compatible with the pseudo-first order model and the activation energy was (39.366) kJ/mol. The synthesized catalyst Li/TiO2 was applied to trans- esterify used cooking oil and exhibited a 91.73% conversion. The prepared catalyst has shown a high catalytic activity to produce biodiesel from fresh and used oil within mild reaction conditions.Keywords: biodiesel, canola oil, environment, heterogeneous catalyst, impregnation method, renewable energy, transesterification
Procedia PDF Downloads 17649477 Evaluation of a 50MW Two-Axis Tracking Photovoltaic Power Plant for Al-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis
Authors: Yasser Aldali, Farag Ahwide
Abstract:
This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years.Keywords: large PV power plant, solar energy, environmental impact, dual-axis tracking system
Procedia PDF Downloads 39849476 Shale Gas and Oil Resource Assessment in Middle and Lower Indus Basin of Pakistan
Authors: Amjad Ali Khan, Muhammad Ishaq Saqi, Kashif Ali
Abstract:
The focus of hydrocarbon exploration in Pakistan has been primarily on conventional hydrocarbon resources. Directorate General Petroleum Concessions (DGPC) has taken the lead on the assessment of indigenous unconventional oil and gas resources, which has resulted in a ‘Shale Oil/Gas Resource Assessment Study’ conducted with the help of USAID. This was critically required in the energy-starved Pakistan, where the gap between indigenous oil & gas production and demand continues to widen for a long time. Exploration & exploitation of indigenous unconventional resources of Pakistan have become vital to meet our energy demand and reduction of oil and gas import bill of the country. This study has attempted to bridge a critical gap in geological information about the potential of shale gas & oil in Pakistan in the four formations, i.e., Sembar, Lower Goru, Ranikot and Ghazij in the Middle and Lower Indus Basins, which were selected for the study as for resource assessment for shale gas & oil. The primary objective of the study was to estimate and establish shale oil/gas resource assessment of the study area by carrying out extensive geological analysis of exploration, appraisal and development wells drilled in the Middle and Lower Indus Basins, along with identification of fairway(s) and sweet spots in the study area. The Study covers the Lower parts of the Middle Indus basins located in Sindh, southern Punjab & eastern parts of the Baluchistan provinces, with a total sedimentary area of 271,795 km2. Initially, 1611 wells were reviewed, including 1324 wells drilled through different shale formations. Based on the availability of required technical data, a detailed petrophysical analysis of 124 wells (21 Confidential & 103 in the public domain) has been conducted for the shale gas/oil potential of the above-referred formations. The core & cuttings samples of 32 wells and 33 geochemical reports of prospective Shale Formations were available, which were analyzed to calibrate the results of petrophysical analysis with petrographic/ laboratory analyses to increase the credibility of the Shale Gas Resource assessment. This study has identified the most prospective intervals, mainly in Sembar and Lower Goru Formations, for shale gas/oil exploration in the Middle and Lower Indus Basins of Pakistan. The study recommends seven (07) sweet spots for undertaking pilot projects, which will enable to evaluate of the actual production capability and production sustainability of shale oil/gas reservoirs of Pakistan for formulating future strategies to explore and exploit shale/oil resources of Pakistan including fiscal incentives required for developing shale oil/gas resources of Pakistan. Some E&P Companies are being persuaded to make a consortium for undertaking pilot projects that have shown their willingness to participate in the pilot project at appropriate times. The location for undertaking the pilot project has been finalized as a result of a series of technical sessions by geoscientists of the potential consortium members after the review and evaluation of available studies.Keywords: conventional resources, petrographic analysis, petrophysical analysis, unconventional resources, shale gas & oil, sweet spots
Procedia PDF Downloads 4849475 Urban Energy Demand Modelling: Spatial Analysis Approach
Authors: Hung-Chu Chen, Han Qi, Bauke de Vries
Abstract:
Energy consumption in the urban environment has attracted numerous researches in recent decades. However, it is comparatively rare to find literary works which investigated 3D spatial analysis of urban energy demand modelling. In order to analyze the spatial correlation between urban morphology and energy demand comprehensively, this paper investigates their relation by using the spatial regression tool. In addition, the spatial regression tool which is applied in this paper is ordinary least squares regression (OLS) and geographically weighted regression (GWR) model. Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and building volume are explainers of urban morphology, which act as independent variables of Energy-land use (E-L) model. NDBI and NDVI are used as the index to describe five types of land use: urban area (U), open space (O), artificial green area (G), natural green area (V), and water body (W). Accordingly, annual electricity, gas demand and energy demand are dependent variables of the E-L model. Based on the analytical result of E-L model relation, it revealed that energy demand and urban morphology are closely connected and the possible causes and practical use are discussed. Besides, the spatial analysis methods of OLS and GWR are compared.Keywords: energy demand model, geographically weighted regression, normalized difference built-up index, normalized difference vegetation index, spatial statistics
Procedia PDF Downloads 14849474 Workflow Based Inspection of Geometrical Adaptability from 3D CAD Models Considering Production Requirements
Authors: Tobias Huwer, Thomas Bobek, Gunter Spöcker
Abstract:
Driving forces for enhancements in production are trends like digitalization and individualized production. Currently, such developments are restricted to assembly parts. Thus, complex freeform surfaces are not addressed in this context. The need for efficient use of resources and near-net-shape production will require individualized production of complex shaped workpieces. Due to variations between nominal model and actual geometry, this can lead to changes in operations in Computer-aided process planning (CAPP) to make CAPP manageable for an adaptive serial production. In this context, 3D CAD data can be a key to realizing that objective. Along with developments in the geometrical adaptation, a preceding inspection method based on CAD data is required to support the process planner by finding objective criteria to make decisions about the adaptive manufacturability of workpieces. Nowadays, this kind of decisions is depending on the experience-based knowledge of humans (e.g. process planners) and results in subjective decisions – leading to a variability of workpiece quality and potential failure in production. In this paper, we present an automatic part inspection method, based on design and measurement data, which evaluates actual geometries of single workpiece preforms. The aim is to automatically determine the suitability of the current shape for further machining, and to provide a basis for an objective decision about subsequent adaptive manufacturability. The proposed method is realized by a workflow-based approach, keeping in mind the requirements of industrial applications. Workflows are a well-known design method of standardized processes. Especially in applications like aerospace industry standardization and certification of processes are an important aspect. Function blocks, providing a standardized, event-driven abstraction to algorithms and data exchange, will be used for modeling and execution of inspection workflows. Each analysis step of the inspection, such as positioning of measurement data or checking of geometrical criteria, will be carried out by function blocks. One advantage of this approach is its flexibility to design workflows and to adapt algorithms specific to the application domain. In general, within the specified tolerance range it will be checked if a geometrical adaption is possible. The development of particular function blocks is predicated on workpiece specific information e.g. design data. Furthermore, for different product lifecycle phases, appropriate logics and decision criteria have to be considered. For example, tolerances for geometric deviations are different in type and size for new-part production compared to repair processes. In addition to function blocks, appropriate referencing systems are important. They need to support exact determination of position and orientation of the actual geometries to provide a basis for precise analysis. The presented approach provides an inspection methodology for adaptive and part-individual process chains. The analysis of each workpiece results in an inspection protocol and an objective decision about further manufacturability. A representative application domain is the product lifecycle of turbine blades containing a new-part production and a maintenance process. In both cases, a geometrical adaptation is required to calculate individual production data. In contrast to existing approaches, the proposed initial inspection method provides information to decide between different potential adaptive machining processes.Keywords: adaptive, CAx, function blocks, turbomachinery
Procedia PDF Downloads 29749473 Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification
Authors: Volker Wannack
Abstract:
The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green."Keywords: hydrogen, blockchain, sustainability, structural change
Procedia PDF Downloads 6449472 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis
Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens
Abstract:
The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol
Procedia PDF Downloads 47549471 Integrated Vegetable Production Planning Considering Crop Rotation Rules Using a Mathematical Mixed Integer Programming Model
Authors: Mohammadali Abedini Sanigy, Jiangang Fei
Abstract:
In this paper, a mathematical optimization model was developed to maximize the profit in a vegetable production planning problem. It serves as a decision support system that assists farmers in land allocation to crops and harvest scheduling decisions. The developed model can handle different rotation rules in two consecutive cycles of production, which is a common practice in organic production system. Moreover, different production methods of the same crop were considered in the model formulation. The main strength of the model is that it is not restricted to predetermined production periods, which makes the planning more flexible. The model is classified as a mixed integer programming (MIP) model and formulated in PYOMO -a Python package to formulate optimization models- and solved via Gurobi and CPLEX optimizer packages. The model was tested with secondary data from 'Australian vegetable growing farms', and the results were obtained and discussed with the computational test runs. The results show that the model can successfully provide reliable solutions for real size problems.Keywords: crop rotation, harvesting, mathematical model formulation, vegetable production
Procedia PDF Downloads 18949470 Indoor Environment Quality and Occupant Resilience Toward Climate Change: A Case Study from Gold Coast, Australia
Authors: Soheil Roumi, Fan Zhang, Rodney Stewart
Abstract:
Indoor environmental quality (IEQ) indexes represented the suitability of a place to study, work, and live. Many indexes have been introduced based on the physical measurement or occupant surveys in commercial buildings. The earlier studies did not elaborate on the relationship between energy consumption and IEQ in office buildings. Such a relationship can provide a comprehensive overview of the building's performance. Also, it would find the potential of already constructed buildings under the upcoming climate change. A commercial building in southeast Queensland, Australia, was evaluated in this study. Physical measurements of IEQ and Energy areconducted, and their relationship will be determined using statistical analysis. The case study building is modelled in TRNSys software, and it will be validatedusingthe actual building's BMS data. Then, the modelled buildingwill be simulated by predicted weather data developed by the commonwealth scientific and industrial research organisation of Australia to investigate the occupant resilience and energy consumption. Finally, recommendations will be presented to consume less energy while providinga proper indoor environment for office occupants.Keywords: IEQ, office buildings, thermal comfort, occupant resilience
Procedia PDF Downloads 11249469 Network Governance and Renewable Energy Transition in Sub-Saharan Africa: Contextual Evidence from Ghana
Authors: Kyere Francis, Sun Dongying, Asante Dennis, Nkrumah Nana Kwame Edmund, Naana Yaa Gyamea Kumah
Abstract:
With a focus on renewable energy to achieve low-carbon transition objectives, there is a greater demand for effective collaborative strategies for planning, strategic decision mechanisms, and long-term policy designs to steer the transitions. Government agencies, NGOs, the private sector, and individual citizens play an important role in sustainable energy production. In Ghana, however, such collaboration is fragile in the fight against climate change. This current study seeks to re-examine the position or potential of network governance in Ghana's renewable energy transition. The study adopted a qualitative approach and employed semi-structured interviews for data gathering. To explore network governance and low carbon transitions in Ghana, we examine key themes such as political environment and impact, actor cooperation and stakeholder interactions, financing and the transition, market design and renewable energy integration, existing regulation and policy gaps for renewable energy transition, clean cooking accessibility, and affordability. The findings reveal the following; Lack of comprehensive consultations with relevant stakeholders leads to lower acceptance of the policy model and sometimes lack of policy awareness. Again, the unavailability and affordability of renewable energy technologies and access to credit facilities is a significant hurdle to long-term renewable transition. Ghana's renewable energy transitions require strong networking and interaction among the public, private, and non-governmental organizations. The study participants believe that the involvement of relevant energy experts and stakeholders devoid of any political biases is instrumental in accelerating renewable energy transitions, as emphasized in the proposed framework. The study recommends that the national renewable energy transition plan be evident to all stakeholders and political administrators. Such policy may encourage renewable energy investment through stable and fixed lending rates by the financial institutions and build a network with international organizations and corporations. These findings could serve as valuable information for the transition-based energy process, primarily aiming to govern sustainability changes through network governance.Keywords: actors, development, sustainable energy, network governance, renewable energy transition
Procedia PDF Downloads 8949468 Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran
Authors: M.Goodarzi, M.Mohammadi, M. Rezaee
Abstract:
The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping.Keywords: technical feasibility, solar energy, photovoltaic systems, photovoltaic water pumping system
Procedia PDF Downloads 63149467 The Potential of Renewable Energy in Tunisia and Its Impact on Economic Growth
Authors: Assaad Ghazouani
Abstract:
Tunisia is ranked among the countries with low energy diversification, but this configuration makes the country too dependent on fossil fuel exporting countries and therefore extremely sensitive to any oil crises, many measures to diversify electricity production must be taken in making use of other forms of renewable and nuclear energy. One of the solutions required to escape this dependence is the liberalization of the electricity industry which can lead to an improvement of supply, energy diversification, and reducing some of the negative effects of the trade balance. This paper examines the issue of renewable electricity and economic growth in Tunisia consumption. The main objective is to study and analyze the causal link between renewable energy consumption and economic growth in Tunisia over the period 1980-2010. To examine the relationship in the short and in the long terms, we used a multidimensional approach to cointegration based on recent advances in time series econometrics (test Zivot - Andrews, Test of Cointegration Johannsen, Granger causality test, error correction model (ECM)).Keywords: renewable electricity, economic growth, VECM, cointegration, Tunisia
Procedia PDF Downloads 543