Search results for: electrochemical property
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2232

Search results for: electrochemical property

1542 An Investigation Enhancing E-Voting Application Performance

Authors: Aditya Verma

Abstract:

E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.

Keywords: blockchain, parallel bft, consensus algorithms, performance

Procedia PDF Downloads 156
1541 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent

Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 298
1540 Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system.

Keywords: organic electronics, thermoelectrics, uniaxial alignment, ion exchange doping

Procedia PDF Downloads 56
1539 Chromia-Carbon Nanocomposite Materials for Energy Storage Devices

Authors: Muhammad A. Nadeem, Shaheed Ullah

Abstract:

The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis.

Keywords: nanocomposites, transmission electron microscopy, non-faradic process

Procedia PDF Downloads 423
1538 A Nonlinear Approach for System Identification of a Li-Ion Battery Based on a Non-Linear Autoregressive Exogenous Model

Authors: Meriem Mossaddek, El Mehdi Laadissi, El Mehdi Loualid, Chouaib Ennawaoui, Sohaib Bouzaid, Abdelowahed Hajjaji

Abstract:

An electrochemical system is a subset of mechatronic systems that includes a wide variety of batteries and nickel-cadmium, lead-acid batteries, and lithium-ion. Those structures have several non-linear behaviors and uncertainties in their running range. This paper studies an effective technique for modeling Lithium-Ion (Li-Ion) batteries using a Nonlinear Auto-Regressive model with exogenous input (NARX). The Artificial Neural Network (ANN) is trained to employ the data collected from the battery testing process. The proposed model is implemented on a Li-Ion battery cell. Simulation of this model in MATLAB shows good accuracy of the proposed model.

Keywords: lithium-ion battery, neural network, energy storage, battery model, nonlinear models

Procedia PDF Downloads 94
1537 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation

Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes

Abstract:

Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.

Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor

Procedia PDF Downloads 118
1536 Managing Human-Wildlife Conflicts Compensation Claims Data Collection and Payments Using a Scheme Administrator

Authors: Eric Mwenda, Shadrack Ngene

Abstract:

Human-wildlife conflicts (HWCs) are the main threat to conservation in Africa. This is because wildlife needs overlap with those of humans. In Kenya, about 70% of wildlife occurs outside protected areas. As a result, wildlife and human range overlap, causing HWCs. The HWCs in Kenya occur in the drylands adjacent to protected areas. The top five counties with the highest incidences of HWC are Taita Taveta, Narok, Lamu, Kajiado, and Laikipia. The common wildlife species responsible for HWCs are elephants, buffaloes, hyenas, hippos, leopards, baboons, monkeys, snakes, and crocodiles. To ensure individuals affected by the conflicts are compensated, Kenya has developed a model of HWC compensation claims data collection and payment. We collected data on HWC from all eight Kenya Wildlife Service (KWS) Conservation Areas from 2009 to 2019. Additional data was collected from stakeholders' consultative workshops held in the Conservation Areas and a literature review regarding payment of injuries and ongoing insurance schemes being practiced in areas. This was followed by the description of the claims administration process and calculation of the pricing of the compensation claims. We further developed a digital platform for data capture and processing of all reported conflict cases and payments. Our product recognized four categories of HWC (i.e., human death and injury, property damage, crop destruction, and livestock predation). Personal bodily injury and human death were provided based on the Continental Scale of Benefits. We proposed a maximum of Kenya Shillings (KES) 3,000,000 for death. Medical, pharmaceutical, and hospital expenses were capped at a maximum of KES 150,000, as well as funeral costs at KES 50,000. Pain and suffering were proposed to be paid for 12 months at the rate of KES 13,500 per month. Crop damage was to be based on farm input costs at a maximum of KES 150,000 per claim. Livestock predation leading to death was based on Tropical Livestock Unit (TLU), which is equivalent to KES 30,000, whick includes Cattle (1 TLU = KES 30,000), Camel (1.4 TLU = KES 42,000), Goat (0.15 TLU = 4,500), Sheep (0.15 TLU = 4,500), and Donkey (0.5 TLU = KES 15,000). Property destruction (buildings, outside structures and harvested crops) was capped at KES 150,000 per any one claim. We conclude that it is possible to use an administrator to collect data on HWC compensation claims and make payments using technology. The success of the new approach will depend on a piloting program. We recommended that a pilot scheme be initiated for eight months in Taita Taveta, Kajiado, Baringo, Laikipia, Narok, and Meru Counties. This will test the claims administration process as well as harmonize data collection methods. The results of this pilot will be crucial in adjusting the scheme before country-wide roll out.

Keywords: human-wildlife conflicts, compensation, human death and injury, crop destruction, predation, property destruction

Procedia PDF Downloads 44
1535 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 417
1534 Poly(Butadiene-co-Acrylonitrile)-Polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] Blends for Corrosion Inhibition of Carbon Steel

Authors: Kok-Chong Yong

Abstract:

Poly(butadiene-co-acrylonitrile)-polyaniline Dodecylbenzenesulfonate [NBR-PAni.DBSA] blends with useful electrical conductivity (up to 0.1 S/cm) were prepared and their corrosion inhibiting behaviours for carbon steel were successfully assessed for the first time. The level of compatibility between NBR and PAni.DBSA was enhanced through the introduction of 1.0 wt % hydroquinone. As found from both total immersion and electrochemical corrosion tests, NBR-PAni.DBSA blends with 10.0-30.0 wt% of PAni.DBSA content exhibited the best corrosion inhibiting behaviour for carbon steel, either in acid or artificial brine environment. On the other hand, blends consisting of very low and very high PAni.DBSA contents (i.e. ≤ 5.0 wt % and ≥ 40.0 wt %) showed significantly poorer corrosion inhibiting behaviour for carbon steel.

Keywords: conductive rubber, nitrile rubber, polyaniline, carbon steel, corrosion inhibition

Procedia PDF Downloads 444
1533 3d Property Modelling of the Lower Acacus Reservoir, Ghadames Basin, Libya

Authors: Aimen Saleh

Abstract:

The Silurian Lower Acacus sandstone is one of the main reservoirs in North West Libya. Our aim in this study is to grasp a robust understanding of the hydrocarbon potential and distribution in the area. To date, the depositional environment of the Lower Acacus reservoir still open to discussion and contradiction. Henceforth, building three dimensional (3D) property modelling is one way to support the analysis and description of the reservoir, its properties and characterizations, so this will be of great value in this project. The 3D model integrates different data set, these incorporates well logs data, petrophysical reservoir properties and seismic data as well. The finalized depositional environment model of the Lower Acacus concludes that the area is located in a deltaic transitional depositional setting, which ranges from a wave dominated delta into tide dominated delta type. This interpretation carried out through a series of steps of model generation, core description and Formation Microresistivity Image tool (FMI) interpretation. After the analysis of the core data, the Lower Acacus layers shows a strong effect of tidal energy. Whereas these traces found imprinted in different types of sedimentary structures, for examples; presence of some crossbedding, such as herringbones structures, wavy and flaser cross beddings. In spite of recognition of some minor marine transgression events in the area, on the contrary, the coarsening upward cycles of sand and shale layers in the Lower Acacus demonstrate presence of a major regressive phase of the sea level. However, consequently, we produced a final package of this model in a complemented set of facies distribution, porosity and oil presence. And also it shows the record of the petroleum system, and the procedure of Hydrocarbon migration and accumulation. Finally, this model suggests that the area can be outlined into three main segments of hydrocarbon potential, which can be a textbook guide for future exploration and production strategies in the area.

Keywords: Acacus, Ghadames , Libya, Silurian

Procedia PDF Downloads 131
1532 Perovskite-Type La1−xCaxAlO3 (x=0, 0.2, 0.4, 0.6) as Active Anode Materials for Methanol Oxidation in Alkaline Solutions

Authors: M. Diafi, M. Omari, B. Gasmi

Abstract:

Perovskite-type La1−xCaxAlO3 were synthesized at 1000◦C by a co- precipitation method. The synthesized oxide powders were characterized by X-ray diffraction (XRD) and the oxide powders were produced in the form of films on pretreated Ni-supports by an oxide-slurry painting technique their electrocatalytic activities towards methanol oxidation in alkaline solutions at 25°C using cyclic voltammetry, chronoamperometry, and anodic Tafel polarization techniques. The oxide catalysts followed the rhombohedral hexagonal crystal geometry. The rate of electro-oxidation of methanol was found to increase with increasing substitution of La by Ca in the oxide matrix. The reaction indicated a Tafel slope of ~2.303RT/F, The electrochemical apparent activation energy (〖∆H〗_el^(°#)) was observed to decrease on increasing Ca content. The results point out the optimum electrode activity and stability of the Ca is x=0.6 of composition.

Keywords: electrocatalysis, oxygen evolution, perovskite-type La1−x Cax AlO3, methanol oxidation

Procedia PDF Downloads 426
1531 Current Issues of Cross-Border Enforcement

Authors: Gábor Kocsmárik

Abstract:

The topic of this is coercive measures against assets in which the factor of the procedure contains a foreign element. We speak of cross-border enforcement if the debtor or the property requesting enforcement or subject to enforcement is not located in the bordering country. Given that the jurisdiction of a country cannot extend beyond its borders, the cooperation of nations and the mutual recognition of their decisions are necessary to eliminate this. In addition, it is essential to create framework rules that are binding and enforceable for each country participating in the convention. During the study, some conventions between countries that are still in force will be presented, which can serve as a starting point for dealing with existing problems.

Keywords: law, execution, civil procedure law, international

Procedia PDF Downloads 21
1530 Using Contingency Valuation Approaches to Assess Community Benefits through the Use of Great Zimbabwe World Heritage Site as a Tourism Attraction

Authors: Nyasha Agnes Gurira, Patrick Ngulube

Abstract:

Heritage as an asset can be used to achieve cultural and socio-economic development through its careful use as a tourist attraction. Cultural heritage sites, especially those listed as World Heritage sites generate a lot of revenue through their use as tourist attractions. According to article 5(a) of the World Heritage Convention, World Heritage Sites (WHS) must serve a function in the life of the communities. This is further stressed by the International Council on Monuments and Sites (ICOMOS) charter on cultural heritage tourism which recognizes the positive effects of tourism on cultural heritage and underlines that domestic and international tourism is among the foremost vehicles for cultural exchange, conservation should thus provide for responsible and well-managed opportunities for local communities. The inclusion of communities in the world heritage agenda identifies them as the owners of the heritage and partners in the management planning process. This reiterates the need to empower communities and enable them to participate in the decisions which relate to the use of their heritage divorcing from the ideals of viewing communities as beneficiaries from the heritage resource. It recognizes community ownership rights to cultural heritage an element enshrined in Zimbabwe’ national constitution. Through the use of contingency valuation approaches, by assessing the Willingness to pay for visitors at the site the research determined the tourism use value of Great Zimbabwe (WHS). It assessed the extent to which the communities at Great Zimbabwe (WHS) have been developed through the tourism use of the WHS. Findings show that the current management mechanism in place regards communities as stakeholders in the management of the WHS, their ownership and property rights are not fully recognized. They receive indirect benefits from the tourism use of the WHS. This paper calls for a shift in management approach where community ownership rights are fully recognized and more inclusive approaches are adopted to ensure that the goal of sustainable development is achieved. Pro-poor benefits of tourism are key to enhancing the livelihoods of communities and can only be achieved if their rights are recognized and respected.

Keywords: communities, cultural heritage tourism, development, property ownership rights, pro-poor benefits, sustainability, world heritage site

Procedia PDF Downloads 249
1529 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.

Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling

Procedia PDF Downloads 30
1528 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 113
1527 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 257
1526 Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries

Authors: S. Merazga, F. Boudeffar, A. Bouaoua, A. Cheriet, M. Berouaken, M. Mebarki, K. Ayouz, N. Gabouze

Abstract:

Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries.

Keywords: LTO, li-ion, battteries, anode

Procedia PDF Downloads 58
1525 Preparation of Papers – Inventorship Status For AI - A South African Perspective

Authors: Meshandren Naidoo

Abstract:

An artificial intelligence (AI) system named DABUS 2021 made headlines when it became the very first AI system to be listed in a patent which was then granted by the South African patent office. This grant raised much criticism. The question that this research intends to answer is (1) whether, in South African patent law, an AI can be an inventor. This research finds that despite South African law not recognising an AI as a legal person and despite the legislation not explicitly allowing AI to be inventors, a legal interpretative exercise would allow AI inventorship.

Keywords: artificial intelligence, intellectual property, inventorship, patents

Procedia PDF Downloads 92
1524 Development and Evaluation of Economical Self-cleaning Cement

Authors: Anil Saini, Jatinder Kumar Ratan

Abstract:

Now a day, the key issue for the scientific community is to devise the innovative technologies for sustainable control of urban pollution. In urban cities, a large surface area of the masonry structures, buildings, and pavements is exposed to the open environment, which may be utilized for the control of air pollution, if it is built from the photocatalytically active cement-based constructional materials such as concrete, mortars, paints, and blocks, etc. The photocatalytically active cement is formulated by incorporating a photocatalyst in the cement matrix, and such cement is generally known as self-cleaning cement In the literature, self-cleaning cement has been synthesized by incorporating nanosized-TiO₂ (n-TiO₂) as a photocatalyst in the formulation of the cement. However, the utilization of n-TiO₂ for the formulation of self-cleaning cement has the drawbacks of nano-toxicity, higher cost, and agglomeration as far as the commercial production and applications are concerned. The use of microsized-TiO₂ (m-TiO₂) in place of n-TiO₂ for the commercial manufacture of self-cleaning cement could avoid the above-mentioned problems. However, m-TiO₂ is less photocatalytically active as compared to n- TiO₂ due to smaller surface area, higher band gap, and increased recombination rate. As such, the use of m-TiO₂ in the formulation of self-cleaning cement may lead to a reduction in photocatalytic activity, thus, reducing the self-cleaning, depolluting, and antimicrobial abilities of the resultant cement material. So improvement in the photoactivity of m-TiO₂ based self-cleaning cement is the key issue for its practical applications in the present scenario. The current work proposes the use of surface-fluorinated m-TiO₂ for the formulation of self-cleaning cement to enhance its photocatalytic activity. The calcined dolomite, a constructional material, has also been utilized as co-adsorbent along with the surface-fluorinated m-TiO₂ in the formulation of self-cleaning cement to enhance the photocatalytic performance. The surface-fluorinated m-TiO₂, calcined dolomite, and the formulated self-cleaning cement were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction analysis (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), BET (Brunauer–Emmett–Teller) surface area, and energy dispersive X-ray fluorescence spectrometry (EDXRF). The self-cleaning property of the as-prepared self-cleaning cement was evaluated using the methylene blue (MB) test. The depolluting ability of the formulated self-cleaning cement was assessed through a continuous NOX removal test. The antimicrobial activity of the self-cleaning cement was appraised using the method of the zone of inhibition. The as-prepared self-cleaning cement obtained by uniform mixing of 87% clinker, 10% calcined dolomite, and 3% surface-fluorinated m-TiO₂ showed a remarkable self-cleaning property by providing 53.9% degradation of the coated MB dye. The self-cleaning cement also depicted a noteworthy depolluting ability by removing 5.5% of NOx from the air. The inactivation of B. subtiltis bacteria in the presence of light confirmed the significant antimicrobial property of the formulated self-cleaning cement. The self-cleaning, depolluting, and antimicrobial results are attributed to the synergetic effect of surface-fluorinated m-TiO₂ and calcined dolomite in the cement matrix. The present study opens an idea and route for further research for acile and economical formulation of self-cleaning cement.

Keywords: microsized-titanium dioxide (m-TiO₂), self-cleaning cement, photocatalysis, surface-fluorination

Procedia PDF Downloads 152
1523 Algebras over an Integral Domain and Immediate Neighbors

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.

Keywords: integral domains, Alexandroff topology, immediate neighbors, valuation domains

Procedia PDF Downloads 164
1522 A Study of the Weld Properties of Inconel 625 Based on Nb Content

Authors: JongWon Han, NoHoon Kim, HyoIk Ahn, HaeWoo Lee

Abstract:

In this study, shielded metal arc welding was performed as a function of Nb content at 2.24 wt%, 3.25 wt%, and 4.26 wt%. The microstructure was observed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and showed the development of a columnar dendrite structure in the specimen having the least Nb content. From the hardness test, the hardness value was confirmed to reduce with decreasing Nb content. From electron backscatter diffraction (EBSD) analysis, the largest grain size was found in the specimen with Nb content of 2.24 wt%. The potentiodynamic polarization test was carried out to determine the pitting corrosion resistance; there was no significant difference in the pitting corrosion resistance with increasing Nb content. To evaluate the degree of sensitization to intergranular corrosion, the Double Loop Electrochemical Potentiodynamic Reactivation(DL-EPR test) was conducted. A similar degree of sensitization was found in two specimens except with a Nb content of 2.24 wt%, while a relatively high degree of sensitization was found in the specimen with a Nb content of 2.24 wt%.

Keywords: inconel 625, Nb content, potentiodynamic test, DL-EPR test

Procedia PDF Downloads 294
1521 Chemical Analysis of Available Portland Cement in Libyan Market Using X-Ray Fluorescence

Authors: M. A. Elbagermia, A. I. Alajtala, M. Alkerzab

Abstract:

This study compares the quality of different brands of Portland Cement (PC) available in Libyan market. The amounts of chemical constituents like SiO2, Al2O3, Fe2O3, CaO, MgO, SO3, and Lime Saturation Factor (LSF) were determined in accordance with Libyan (L.S.S) and Amrican (A.S.S) Standard Specifications. All the cement studies were found to be good for concrete work especially where no special property is required. The chemical and mineralogical analyses for studied clinker samples show that the dominant phases composition are C3S and C2S while the C3A and C4AF are less abundant.

Keywords: Portland cement, chemical composition, Libyan market, X-Ray fluorescence

Procedia PDF Downloads 343
1520 SEM and FTIR Study of Adsorption Characteristics Using Xanthate (KIBX) Synthesized Collectors on Sphalerite

Authors: Zohir Nedjar, Djamel Barkat

Abstract:

Thiols such as alkyl xanthates are commonly used as collectors in the froth flotation of sulfide minerals. Under the concen-tration, pH and Eh conditions relevant to flotation, the thermodynamically favoured reaction between a thiol and a sulfide mineral surface is charge transfechemisorption in which the collector becomes bonded to metal atoms in the outermost layer of the sulfide lattice. The adsorption of potassium isobutyl xanthate (KIBX 3.10-3M) on sphalerite has been also studied using electrochemical potential, FTIR technique and SEM. Non activated minerals and minerals activated with copper sulfate (10-4 M) and copper nitrate (10-4 M) have been investigated at pH = 7.5. Surface species have been identified by FTIR and correlated with SEM. After copper sulfate activation, copper xanthate exists on all of the minerals studied. Neutral pH is most favorable for potassium isobutyl xanthate adsorption on sphalerite.

Keywords: flotation, adsorption, xanthate KIBX, sphalerite

Procedia PDF Downloads 294
1519 Characterisation and in vitro Corrosion Resistance of Plasma Sprayed Hydroxyapatite and Hydroxyapatite: Silicon Oxide Coatings on 316L SS

Authors: Gurpreet Singh, Hazoor Singh, Buta Singh Sidhu

Abstract:

In the current investigation plasma spray technique was used for depositing hydroxyapatite (HA) and HA – silicon oxide (SiO2) coatings on 316L SS substrate. In HA-SiO2 coating, 20 wt% SiO2 was mixed with HA. The feedstock and coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) analyses. The corrosion resistance of the uncoated, HA coated and HA + 20 wt% SiO2 coated 316L SS was investigated by electrochemical corrosion testing in simulated human body fluid (Ringer’s solution). The influence of SiO2 (20 wt%) on corrosion resistance was determined. After the corrosion testing, the samples were analyzed by XRD and SEM/EDX analyses. The addition of SiO2 reduces the crystallinity of the coating. The corrosion resistance of the 316L SS was found to increase after the deposition of the HA + 20 wt% SiO2 and HA coatings.

Keywords: HA, SiO2, corrosion, Ringer’s solution, 316L SS

Procedia PDF Downloads 407
1518 Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature

Authors: Milan Uhríčik, Andrea Soviarová, Zuzana Dresslerová, Peter Palček, Alan Vaško

Abstract:

The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes.

Keywords: internal friction, magnesium alloy, temperature, resonant frequency

Procedia PDF Downloads 682
1517 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 130
1516 Controller Design Using GA for SMC Systems

Authors: Susy Thomas, Sajju Thomas, Varghese Vaidyan

Abstract:

This paper considers SMCs using linear feedback with switched gains and proposes a method which can minimize the pole perturbation. The method is able to enhance the robustness property of the controller. A pre-assigned neighborhood of the ‘nominal’ positions is assigned and the system poles are not allowed to stray out of these bounds even when parameters variations/uncertainties act upon the system. A quasi SMM is maintained within the assigned boundaries of the sliding surface.

Keywords: parameter variations, pole perturbation, sliding mode control, switching surface, robust switching vector

Procedia PDF Downloads 352
1515 Neural Network Mechanisms Underlying the Combination Sensitivity Property in the HVC of Songbirds

Authors: Zeina Merabi, Arij Dao

Abstract:

The temporal order of information processing in the brain is an important code in many acoustic signals, including speech, music, and animal vocalizations. Despite its significance, surprisingly little is known about its underlying cellular mechanisms and network manifestations. In the songbird telencephalic nucleus HVC, a subset of neurons shows temporal combination sensitivity (TCS). These neurons show a high temporal specificity, responding differently to distinct patterns of spectral elements and their combinations. HVC neuron types include basal-ganglia-projecting HVCX, forebrain-projecting HVCRA, and interneurons (HVC¬INT), each exhibiting distinct cellular, electrophysiological and functional properties. In this work, we develop conductance-based neural network models connecting the different classes of HVC neurons via different wiring scenarios, aiming to explore possible neural mechanisms that orchestrate the combination sensitivity property exhibited by HVCX, as well as replicating in vivo firing patterns observed when TCS neurons are presented with various auditory stimuli. The ionic and synaptic currents for each class of neurons that are presented in our networks and are based on pharmacological studies, rendering our networks biologically plausible. We present for the first time several realistic scenarios in which the different types of HVC neurons can interact to produce this behavior. The different networks highlight neural mechanisms that could potentially help to explain some aspects of combination sensitivity, including 1) interplay between inhibitory interneurons’ activity and the post inhibitory firing of the HVCX neurons enabled by T-type Ca2+ and H currents, 2) temporal summation of synaptic inputs at the TCS site of opposing signals that are time-and frequency- dependent, and 3) reciprocal inhibitory and excitatory loops as a potent mechanism to encode information over many milliseconds. The result is a plausible network model characterizing auditory processing in HVC. Our next step is to test the predictions of the model.

Keywords: combination sensitivity, songbirds, neural networks, spatiotemporal integration

Procedia PDF Downloads 51
1514 Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode

Authors: Mohamad Syahrizal Ahmad, Illyas M. Isa

Abstract:

In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%.

Keywords: 1, 4-dihydroxybenzene, hydroquinone, multiwall carbon nanotubes, square wave voltammetry

Procedia PDF Downloads 216
1513 Influence of Graphene Content on Corrosion Behavior of Electrodeposited Zinc–Graphene Composite Coatings

Authors: Bin Yang, Xiaofang Chen, Guangxin Wang

Abstract:

Zinc coating as a sacrificial protection plays an important role in the traditional steel anticorrosion field. Adding second-phase reinforcement particles into zinc matrix is an interesting approach to further enhance its corrosion performance. In this paper, pure Zn and Zn–graphene composite coatings of different graphene contents were prepared by direct current electrodeposition on 304 stainless steel substrate. The coatings were characterized by XRD, SEM/EDS, and Raman spectroscopy. Tafel polarization and electrochemical impedance spectroscopic methods were used to study their corrosion behavior. Result obtained have shown that the concentration of grapheme oxide (GO) in zinc sulfate bath has an important effect on textured structure and surface morphology of Zn–graphene composite coatings. The coating prepared with 1.0g/L GO has shown the best corrosion resistance compared to other coatings prepared in this study.

Keywords: Zn-graphene coatings, electrodeposition, microstructure, corrosion behavior

Procedia PDF Downloads 243