Search results for: dynamic thresholding classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6089

Search results for: dynamic thresholding classification

5399 The Effects of Kicking Leg Preference on the Bilateral Balance Ability Asymmetries in Collegian Football Players

Authors: Mehmet Yildiz, Mehmet Kale

Abstract:

The primary aim of the present study was to identify the bilateral balance asymmetries when comparing the dominant (DL) vs. the non-dominant leg (NDL) in the collegian soccer players. The secondary aim was to compare the inter-limb asymmetry index (ASI) when differentiating by kicking preference (right-dominant vs. left-dominant). 34 right-dominant leg (RightDL) (age:21.12±1.85, height:174.50±5.18, weight:69.42±6.86) and 23 left-dominant leg (LeftDL), (age:21.70±2.03, height:176.2±6.27, weight:68.73±5.96) collegian football players were tested for bilateral static and dynamic balance. Balance ability was assessed by measuring centre of pressure deviation on a single leg. Single leg static and dynamic balance scores and inter-limb asymmetry index (ASI) were determined. Student t tests were used for the comparison of dominant and nondominant leg balance scores and RightDL and LeftDL football players’ inter-limb asymmetry index of the balance scores. The results showed that there were significant differences in the dynamic balance scores in favour of the nondominant leg, (DL:738±211 vs. NDL:606±226, p < 0.01). Also, it has been seen that LeftDL players have significantly higher inter-limb asymmetry index when compared with rightDL players for both static (rightDL:-7.07±94.91 vs. leftDL:-183.19±354.05, p < 0.01) and dynamic (rightDL: 1.73±49.65 vs. leftDL:27.08±23.34, p < 0.05) balance scores. In conclusion, bilateral dynamic balance asymmetries may be affected using single leg predominantly in the mobilization workouts. Because of having higher inter-limb asymmetry index, left-dominant leg players may be screened and trained to minimize balance asymmetry.

Keywords: bilateral balance, asymmetries, dominant leg, leg preference

Procedia PDF Downloads 424
5398 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact

Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed

Abstract:

Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).

Keywords: Bayesian network, classification, expert knowledge, structure learning, surface water analysis

Procedia PDF Downloads 128
5397 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 209
5396 A Framework for Automated Nuclear Waste Classification

Authors: Seonaid Hume, Gordon Dobie, Graeme West

Abstract:

Detecting and localizing radioactive sources is a necessity for safe and secure decommissioning of nuclear facilities. An important aspect for the management of the sort-and-segregation process is establishing the spatial distributions and quantities of the waste radionuclides, their type, corresponding activity, and ultimately classification for disposal. The data received from surveys directly informs decommissioning plans, on-site incident management strategies, the approach needed for a new cell, as well as protecting the workforce and the public. Manual classification of nuclear waste from a nuclear cell is time-consuming, expensive, and requires significant expertise to make the classification judgment call. Also, in-cell decommissioning is still in its relative infancy, and few techniques are well-developed. As with any repetitive and routine tasks, there is the opportunity to improve the task of classifying nuclear waste using autonomous systems. Hence, this paper proposes a new framework for the automatic classification of nuclear waste. This framework consists of five main stages; 3D spatial mapping and object detection, object classification, radiological mapping, source localisation based on gathered evidence and finally, waste classification. The first stage of the framework, 3D visual mapping, involves object detection from point cloud data. A review of related applications in other industries is provided, and recommendations for approaches for waste classification are made. Object detection focusses initially on cylindrical objects since pipework is significant in nuclear cells and indeed any industrial site. The approach can be extended to other commonly occurring primitives such as spheres and cubes. This is in preparation of stage two, characterizing the point cloud data and estimating the dimensions, material, degradation, and mass of the objects detected in order to feature match them to an inventory of possible items found in that nuclear cell. Many items in nuclear cells are one-offs, have limited or poor drawings available, or have been modified since installation, and have complex interiors, which often and inadvertently pose difficulties when accessing certain zones and identifying waste remotely. Hence, this may require expert input to feature match objects. The third stage, radiological mapping, is similar in order to facilitate the characterization of the nuclear cell in terms of radiation fields, including the type of radiation, activity, and location within the nuclear cell. The fourth stage of the framework takes the visual map for stage 1, the object characterization from stage 2, and radiation map from stage 3 and fuses them together, providing a more detailed scene of the nuclear cell by identifying the location of radioactive materials in three dimensions. The last stage involves combining the evidence from the fused data sets to reveal the classification of the waste in Bq/kg, thus enabling better decision making and monitoring for in-cell decommissioning. The presentation of the framework is supported by representative case study data drawn from an application in decommissioning from a UK nuclear facility. This framework utilises recent advancements of the detection and mapping capabilities of complex radiation fields in three dimensions to make the process of classifying nuclear waste faster, more reliable, cost-effective and safer.

Keywords: nuclear decommissioning, radiation detection, object detection, waste classification

Procedia PDF Downloads 200
5395 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. That is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that rely on control-integrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. The paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. The paper starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art on pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general pose-dependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: dynamic behavior, lightweight, machine tool, pose-dependency

Procedia PDF Downloads 459
5394 Study on The Pile Height Loss of Tunisian Handmade Carpets Under Dynamic Loading

Authors: Fatma Abidi, Taoufik Harizi, Slah Msahli, Faouzi Sakli

Abstract:

Nine different Tunisian handmade carpets were used for the investigation. The raw material of the carpet pile yarns was wool. The influence of the different structure parameters (linear density and pile height) on the carpet compression was investigated. Carpets were tested under dynamic loading in order to evaluate and observe the thickness loss and carpet behavior under dynamic loads. To determine the loss of pile height under dynamic loading, the pile height carpets were measured. The test method was treated according to the Tunisian standard NT 12.165 (corresponds to the standard ISO 2094). The pile height measurements are taken and recorded at intervals up to 1000 impacts (measures of this study were made after 50, 100, 200, 500, and 1000 impacts). The loss of pile height is calculated using the variation between the initial height and those measured after the number of reported impacts. The experimental results were statistically evaluated using Design Expert Analysis of Variance (ANOVA) software. As regards the deformation, results showed that both of the structure parameters of the pile yarn and the pile height have an influence. The carpet with the higher pile and the less linear density of pile yarn showed the worst performance. Results of a polynomial regression analysis are highlighted. There is a good correlation between the loss of pile height and the impacts number of dynamic loads. These equations are in good agreement with measured data. Because the prediction is reasonably accurate for all samples, these equations can also be taken into account when calculating the theoretical loss of pile height for the considered carpet samples. Statistical evaluations of the experimen¬tal data showed that the pile material and number of impacts have a significant effect on mean thickness and thickness loss variations.

Keywords: Tunisian handmade carpet, loss of pile height, dynamic loads, performance

Procedia PDF Downloads 321
5393 Temporality in Architecture and Related Knowledge

Authors: Gonca Z. Tuncbilek

Abstract:

Architectural research tends to define architecture in terms of its permanence. In this study, the term ‘temporality’ and its use in architectural discourse is re-visited. The definition, proposition, and efficacy of the temporality occur both in architecture and in its related knowledge. The temporary architecture not only fulfills the requirement of the architectural programs, but also plays a significant role in generating an environment of architectural discourse. In recent decades, there is a great interest on the temporary architectural practices regarding to the installations, exhibition spaces, pavilions, and expositions; inviting the architects to experience and think about architecture. The temporary architecture has a significant role among the architecture, the architect, and the architectural discourse. Experiencing the contemporary materials, methods and technique; they have proposed the possibilities of the future architecture. These structures give opportunities to the architects to a wide-ranging variety of freedoms to experience the ‘new’ in architecture. In addition to this experimentation, they can be considered as an agent to redefine and reform the boundaries of the architectural discipline itself. Although the definition of architecture is re-analyzed in terms of its temporality rather than its permanence; architecture, in reality, still relies on historically codified types and principles of the formation. The concept of type can be considered for several different sciences, and there is a tendency to organize and understand the world in terms of classification in many different cultures and places. ‘Type’ is used as a classification tool with/without the scope of the critical invention. This study considers theories of type, putting forward epistemological and discursive arguments related to the form of architecture, being related to historical and formal disciplinary knowledge in architecture. This study has been to emphasize the importance of the temporality in architecture as a creative tool to reveal the position within the architectural discourse. The temporary architecture offers ‘new’ opportunities in the architectural field to be analyzed. In brief, temporary structures allow the architect freedoms to the experimentation in architecture. While redefining the architecture in terms of temporality, architecture still relies on historically codified types (pavilions, exhibitions, expositions, and installations). The notion of architectural types and its varying interpretations are analyzed based on the texts of architectural theorists since the Age of Enlightenment. Investigating the classification of type in architecture particularly temporary architecture, it is necessary to return to the discussion of the origin of the knowledge and its classification.

Keywords: classification of architecture, exhibition design, pavilion design, temporary architecture

Procedia PDF Downloads 365
5392 Roof Material Detection Based on Object-Based Approach Using WorldView-2 Satellite Imagery

Authors: Ebrahim Taherzadeh, Helmi Z. M. Shafri, Kaveh Shahi

Abstract:

One of the most important tasks in urban area remote sensing is detection of impervious surface (IS), such as building roof and roads. However, detection of IS in heterogeneous areas still remains as one of the most challenging works. In this study, detection of concrete roof using an object-oriented approach was proposed. A new rule-based classification was developed to detect concrete roof tile. The proposed rule-based classification was applied to WorldView-2 image. Results showed that the proposed rule has good potential to predict concrete roof material from WorldView-2 images with 85% accuracy.

Keywords: object-based, roof material, concrete tile, WorldView-2

Procedia PDF Downloads 424
5391 Global Positioning System Match Characteristics as a Predictor of Badminton Players’ Group Classification

Authors: Yahaya Abdullahi, Ben Coetzee, Linda Van Den Berg

Abstract:

The study aimed at establishing the global positioning system (GPS) determined singles match characteristics that act as predictors of successful and less-successful male singles badminton players’ group classification. Twenty-two (22) male single players (aged: 23.39 ± 3.92 years; body stature: 177.11 ± 3.06cm; body mass: 83.46 ± 14.59kg) who represented 10 African countries participated in the study. Players were categorised as successful and less-successful players according to the results of five championships’ of the 2014/2015 season. GPS units (MinimaxX V4.0), Polar Heart Rate Transmitter Belts and digital video cameras were used to collect match data. GPS-related variables were corrected for match duration and independent t-tests, a cluster analysis and a binary forward stepwise logistic regression were calculated. A Receiver Operating Characteristic Curve (ROC) was used to determine the validity of the group classification model. High-intensity accelerations per second were identified as the only GPS-determined variable that showed a significant difference between groups. Furthermore, only high-intensity accelerations per second (p=0.03) and low-intensity efforts per second (p=0.04) were identified as significant predictors of group classification with 76.88% of players that could be classified back into their original groups by making use of the GPS-based logistic regression formula. The ROC showed a value of 0.87. The identification of the last-mentioned GPS-related variables for the attainment of badminton performances, emphasizes the importance of using badminton drills and conditioning techniques to not only improve players’ physical fitness levels but also their abilities to accelerate at high intensities.

Keywords: badminton, global positioning system, match analysis, inertial movement analysis, intensity, effort

Procedia PDF Downloads 191
5390 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles

Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad

Abstract:

Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.

Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness

Procedia PDF Downloads 240
5389 The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)

Authors: Def Primal, Sasanty Kusumaningtyas, Ermita I. Ibrahim

Abstract:

Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response.

Keywords: pes planus plantaris, flatfoot, ground reaction force, static and dynamic stability

Procedia PDF Downloads 144
5388 Revisiting the Swadesh Wordlist: How Long Should It Be

Authors: Feda Negesse

Abstract:

One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified.

Keywords: classification, Cushitic, Swadesh, wordlist

Procedia PDF Downloads 298
5387 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
5386 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical

Authors: Weiwei Xie, Yichao Li

Abstract:

The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.

Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process

Procedia PDF Downloads 155
5385 Energy Detection Based Sensing and Primary User Traffic Classification for Cognitive Radio

Authors: Urvee B. Trivedi, U. D. Dalal

Abstract:

As wireless communication services grow quickly; the seriousness of spectrum utilization has been on the rise gradually. An emerging technology, cognitive radio has come out to solve today’s spectrum scarcity problem. To support the spectrum reuse functionality, secondary users are required to sense the radio frequency environment, and once the primary users are found to be active, the secondary users are required to vacate the channel within a certain amount of time. Therefore, spectrum sensing is of significant importance. Once sensing is done, different prediction rules apply to classify the traffic pattern of primary user. Primary user follows two types of traffic patterns: periodic and stochastic ON-OFF patterns. A cognitive radio can learn the patterns in different channels over time. Two types of classification methods are discussed in this paper, by considering edge detection and by using autocorrelation function. Edge detection method has a high accuracy but it cannot tolerate sensing errors. Autocorrelation-based classification is applicable in the real environment as it can tolerate some amount of sensing errors.

Keywords: cognitive radio (CR), probability of detection (PD), probability of false alarm (PF), primary user (PU), secondary user (SU), fast Fourier transform (FFT), signal to noise ratio (SNR)

Procedia PDF Downloads 345
5384 Dynamic Modeling of a Robot for Playing a Curved 3D Percussion Instrument Utilizing a Finite Element Method

Authors: Prakash Persad, Kelvin Loutan, Trichelle Seepersad

Abstract:

The Finite Element Method is commonly used in the analysis of flexible manipulators to predict elastic displacements and develop joint control schemes for reducing positioning error. In order to preserve simplicity, regular geometries, ideal joints and connections are assumed. This paper presents the dynamic FE analysis of a 4- degrees of freedom open chain manipulator, intended for striking a curved 3D surface percussion musical instrument. This was done utilizing the new MultiBody Dynamics Module in COMSOL, capable of modeling the elastic behavior of a body undergoing rigid body type motion.

Keywords: dynamic modeling, entertainment robots, finite element method, flexible robot manipulators, multibody dynamics, musical robots

Procedia PDF Downloads 337
5383 Enhancing the Pricing Expertise of an Online Distribution Channel

Authors: Luis N. Pereira, Marco P. Carrasco

Abstract:

Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.

Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics

Procedia PDF Downloads 234
5382 Predictive Analytics of Student Performance Determinants

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine, Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis, and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: student performance, supervised machine learning, classification, cross-validation, prediction

Procedia PDF Downloads 126
5381 Deep Learning Approach to Trademark Design Code Identification

Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger

Abstract:

Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.

Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2

Procedia PDF Downloads 232
5380 Quality is the Matter of All

Authors: Mohamed Hamza, Alex Ohoussou

Abstract:

At JAWDA, our primary focus is on ensuring the satisfaction of our clients worldwide. We are committed to delivering new features on our SaaS platform as quickly as possible while maintaining high-quality standards. In this paper, we highlight two key aspects of testing that represent an evolution of current methods and a potential trend for the future, which have enabled us to uphold our commitment effectively. These aspects are: "One Sandbox per Pull Request" (dynamic test environments instead of static ones) and "QA for All.".

Keywords: QA for all, dynamic sandboxes, QAOPS, CICD, continuous testing, all testers, QA matters for all, 1 sandbox per PR, utilization rate, coverage rate

Procedia PDF Downloads 32
5379 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength

Authors: Arturo Maldonado

Abstract:

In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.

Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy

Procedia PDF Downloads 59
5378 Density-based Denoising of Point Cloud

Authors: Faisal Zaman, Ya Ping Wong, Boon Yian Ng

Abstract:

Point cloud source data for surface reconstruction is usually contaminated with noise and outliers. To overcome this, we present a novel approach using modified kernel density estimation (KDE) technique with bilateral filtering to remove noisy points and outliers. First we present a method for estimating optimal bandwidth of multivariate KDE using particle swarm optimization technique which ensures the robust performance of density estimation. Then we use mean-shift algorithm to find the local maxima of the density estimation which gives the centroid of the clusters. Then we compute the distance of a certain point from the centroid. Points belong to outliers then removed by automatic thresholding scheme which yields an accurate and economical point surface. The experimental results show that our approach comparably robust and efficient.

Keywords: point preprocessing, outlier removal, surface reconstruction, kernel density estimation

Procedia PDF Downloads 344
5377 Proposal for a Web System for the Control of Fungal Diseases in Grapes in Fruits Markets

Authors: Carlos Tarmeño Noriega, Igor Aguilar Alonso

Abstract:

Fungal diseases are common in vineyards; they cause a decrease in the quality of the products that can be sold, generating distrust of the customer towards the seller when buying fruit. Currently, technology allows the classification of fruits according to their characteristics thanks to artificial intelligence. This study proposes the implementation of a control system that allows the identification of the main fungal diseases present in the Italia grape, making use of a convolutional neural network (CNN), OpenCV, and TensorFlow. The methodology used was based on a collection of 20 articles referring to the proposed research on quality control, classification, and recognition of fruits through artificial vision techniques.

Keywords: computer vision, convolutional neural networks, quality control, fruit market, OpenCV, TensorFlow

Procedia PDF Downloads 83
5376 Relationship Between Dynamic Balance, Jumping Performance and Q-angle in Soccer Players

Authors: Tarik Ozmen

Abstract:

The soccer players need good dynamic balance and jumping performance for dribbling, crossing rival, and to be effective in high balls during soccer game. The quadriceps angle (Q-angle) is used to assess biomechanics of the patellofemoral joint in the musculoskeletal medicine. The Q angle is formed by the intersection of two lines drawing from the anterior superior iliac spine to the centre of the patella and to the midline of the tibia tuberosity. Studies have shown that the Q angle is inversely associated with quadriceps femoris strength. The purpose of this study was to investigate relationship between dynamic balance, jumping performance and Q-angle in soccer players. Thirty male soccer players (mean ± SD: age, 15.23 ± 0.56 years, height, 170 ± 8.37 cm, weight, 61.36 ± 6.04 kg) participated as volunteer in this study. Dynamic balance of the participants were evaluated at directions of anterior (A), posteromedial (PM) and posterolateral (PL) with Star Excursion Balance Test (SEBT). Each participant was instructed to reach as far as with the non-dominant leg in each of the 3 directions while maintaining dominant leg stance. Leg length was used to normalize excursion distances by dividing the distance reached by leg length and then multiplying the result by 100. The jumping performance was evaluated by squat jump using a contact mat. A universal (standard) goniometer was used to measure the Q angle in standing position. The Q angle was not correlated with directions of SEBT (A: p = 0.32, PM: p = 0.06, PL: p = 0.37). The squat jump height was not correlated with Q-angle (p = 0.21). The findings of this study suggest that there are no significant relationships between dynamic balance, jumping performance and Q-angle in soccer players. Further studies should investigate relationship between balance ability, athletic performance and Q-angle with larger sample size in soccer players.

Keywords: balance, jump height, Q angle, soccer

Procedia PDF Downloads 457
5375 Dynamic vs. Static Bankruptcy Prediction Models: A Dynamic Performance Evaluation Framework

Authors: Mohammad Mahdi Mousavi

Abstract:

Bankruptcy prediction models have been implemented for continuous evaluation and monitoring of firms. With the huge number of bankruptcy models, an extensive number of studies have focused on answering the question that which of these models are superior in performance. In practice, one of the drawbacks of existing comparative studies is that the relative assessment of alternative bankruptcy models remains an exercise that is mono-criterion in nature. Further, a very restricted number of criteria and measure have been applied to compare the performance of competing bankruptcy prediction models. In this research, we overcome these methodological gaps through implementing an extensive range of criteria and measures for comparison between dynamic and static bankruptcy models, and through proposing a multi-criteria framework to compare the relative performance of bankruptcy models in forecasting firm distress for UK firms.

Keywords: bankruptcy prediction, data envelopment analysis, performance criteria, performance measures

Procedia PDF Downloads 249
5374 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 100
5373 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
5372 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 272
5371 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups

Authors: Lily Ingsrisawang, Tasanee Nacharoen

Abstract:

Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.

Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors

Procedia PDF Downloads 435
5370 2D Point Clouds Features from Radar for Helicopter Classification

Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres

Abstract:

This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.

Keywords: helicopter classification, point clouds features, radar, supervised classifiers

Procedia PDF Downloads 227