Search results for: dynamic field testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13983

Search results for: dynamic field testing

13293 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics

Procedia PDF Downloads 190
13292 Medical Experience: Usability Testing of Displaying Computed Tomography Scans and Magnetic Resonance Imaging in Virtual and Augmented Reality for Accurate Diagnosis

Authors: Alyona Gencheva

Abstract:

The most common way to study diagnostic results is using specialized programs at a stationary workplace. Magnetic Resonance Imaging is presented in a two-dimensional (2D) format, and Computed Tomography sometimes looks like a three-dimensional (3D) model that can be interacted with. The main idea of the research is to compare ways of displaying diagnostic results in virtual reality that can help a surgeon during or before an operation in augmented reality. During the experiment, the medical staff examined liver vessels in the abdominal area and heart boundaries. The search time and detection accuracy were measured on black-and-white and coloured scans. Usability testing in virtual reality shows convenient ways of interaction like hand input, voice activation, displaying risk to the patient, and the required number of scans. The results of the experiment will be used in the new C# program based on Magic Leap technology.

Keywords: augmented reality, computed tomography, magic leap, magnetic resonance imaging, usability testing, VTE risk

Procedia PDF Downloads 91
13291 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 76
13290 Analysis of Weld Crack of Main Steam Governing Valve Steam Turbine Case

Authors: Sarakorn Sukaviriya

Abstract:

This paper describes the inspection procedure, root cause analysis, the rectification of crack, and how to apply the procedure with other similar plants. During the operation of the steam turbine (620MW), instruments such as speed sensor of steam turbine, the servo valve of main stop valve and electrical wires were malfunction caused by leakage steam from main steam governing valve. Therefore, the power plant decided to shutdown steam turbines for figuring out the cause of leakage steam. Inspection techniques to be applied in this problem were microstructure testing (SEM), pipe stress analysis (FEM) and non-destructive testing. The crack was initially found on main governing valve’s weldment by visual inspection. To analyze more precisely, pipe stress analysis and microstructure testing were applied and results indicated that the crack was intergranular and originated from the weld defect. This weld defect caused the notch with high-stress concentration which created crack and then propagated to steam leakage. The major root cause of this problem was an inappropriate welding process, which created a weld defect. To repair this joint from damage, we used a welding technique by producing refinement of coarse grain HAZ and eliminating stress concentration. After the weldment was completely repaired, other adjacent weldments still had risk. Hence, to prevent any future cracks, non-destructive testing (NDT) shall be applied to all joints in order to ensure that there will be no indication of crack.

Keywords: steam-pipe leakage, steam leakage, weld crack analysis, weld defect

Procedia PDF Downloads 113
13289 Relationship Between Dynamic Balance, Jumping Performance and Q-angle in Soccer Players

Authors: Tarik Ozmen

Abstract:

The soccer players need good dynamic balance and jumping performance for dribbling, crossing rival, and to be effective in high balls during soccer game. The quadriceps angle (Q-angle) is used to assess biomechanics of the patellofemoral joint in the musculoskeletal medicine. The Q angle is formed by the intersection of two lines drawing from the anterior superior iliac spine to the centre of the patella and to the midline of the tibia tuberosity. Studies have shown that the Q angle is inversely associated with quadriceps femoris strength. The purpose of this study was to investigate relationship between dynamic balance, jumping performance and Q-angle in soccer players. Thirty male soccer players (mean ± SD: age, 15.23 ± 0.56 years, height, 170 ± 8.37 cm, weight, 61.36 ± 6.04 kg) participated as volunteer in this study. Dynamic balance of the participants were evaluated at directions of anterior (A), posteromedial (PM) and posterolateral (PL) with Star Excursion Balance Test (SEBT). Each participant was instructed to reach as far as with the non-dominant leg in each of the 3 directions while maintaining dominant leg stance. Leg length was used to normalize excursion distances by dividing the distance reached by leg length and then multiplying the result by 100. The jumping performance was evaluated by squat jump using a contact mat. A universal (standard) goniometer was used to measure the Q angle in standing position. The Q angle was not correlated with directions of SEBT (A: p = 0.32, PM: p = 0.06, PL: p = 0.37). The squat jump height was not correlated with Q-angle (p = 0.21). The findings of this study suggest that there are no significant relationships between dynamic balance, jumping performance and Q-angle in soccer players. Further studies should investigate relationship between balance ability, athletic performance and Q-angle with larger sample size in soccer players.

Keywords: balance, jump height, Q angle, soccer

Procedia PDF Downloads 436
13288 Dynamic vs. Static Bankruptcy Prediction Models: A Dynamic Performance Evaluation Framework

Authors: Mohammad Mahdi Mousavi

Abstract:

Bankruptcy prediction models have been implemented for continuous evaluation and monitoring of firms. With the huge number of bankruptcy models, an extensive number of studies have focused on answering the question that which of these models are superior in performance. In practice, one of the drawbacks of existing comparative studies is that the relative assessment of alternative bankruptcy models remains an exercise that is mono-criterion in nature. Further, a very restricted number of criteria and measure have been applied to compare the performance of competing bankruptcy prediction models. In this research, we overcome these methodological gaps through implementing an extensive range of criteria and measures for comparison between dynamic and static bankruptcy models, and through proposing a multi-criteria framework to compare the relative performance of bankruptcy models in forecasting firm distress for UK firms.

Keywords: bankruptcy prediction, data envelopment analysis, performance criteria, performance measures

Procedia PDF Downloads 231
13287 FPGA Based Vector Control of PM Motor Using Sliding Mode Observer

Authors: Hanan Mikhael Dawood, Afaneen Anwer Abood Al-Khazraji

Abstract:

The paper presents an investigation of field oriented control strategy of Permanent Magnet Synchronous Motor (PMSM) based on hardware in the loop simulation (HIL) over a wide speed range. A sensorless rotor position estimation using sliding mode observer for permanent magnet synchronous motor is illustrated considering the effects of magnetic saturation between the d and q axes. The cross saturation between d and q axes has been calculated by finite-element analysis. Therefore, the inductance measurement regards the saturation and cross saturation which are used to obtain the suitable id-characteristics in base and flux weakening regions. Real time matrix multiplication in Field Programmable Gate Array (FPGA) using floating point number system is used utilizing Quartus-II environment to develop FPGA designs and then download these designs files into development kit. dSPACE DS1103 is utilized for Pulse Width Modulation (PWM) switching and the controller. The hardware in the loop results conducted to that from the Matlab simulation. Various dynamic conditions have been investigated.

Keywords: magnetic saturation, rotor position estimation, sliding mode observer, hardware in the loop (HIL)

Procedia PDF Downloads 508
13286 Neutron Contamination in 18 MV Medical Linear Accelerator

Authors: Onur Karaman, A. Gunes Tanir

Abstract:

Photon radiation therapy used to treat cancer is one of the most important methods. However, photon beam collimator materials in Linear Accelerator (LINAC) head generally contains heavy elements is used and the interaction of bremsstrahlung photon with such heavy nuclei, the neutron can be produced inside the treatment rooms. In radiation therapy, neutron contamination contributes to the risk of secondary malignancies in patients, also physicians working in this field. Since the neutron is more dangerous than photon, it is important to determine neutron dose during radiotherapy treatment. In this study, it is aimed to analyze the effect of field size, distance from axis and depth on the amount of in-field and out-field neutron contamination for ElektaVmat accelerator with 18 MV nominal energy. The photon spectra at the distance of 75, 150, 225, 300 cm from target and on the isocenter of beam were scored for 5x5, 10x10, 20x20, 30x30 and 40x40 cm2 fields. Results demonstrated that the neutron spectra and dose are dependent on field size and distances. Beyond 225 cm of isocenter, the dependence of the neutron dose on field size is minimal. As a result, it is concluded that as the open field increases, neutron dose determined decreases. It is important to remember that when treating with high energy photons, the dose from contamination neutrons must be considered as it is much greater than the photon dose.

Keywords: radiotherapy, neutron contamination, linear accelerators, photon

Procedia PDF Downloads 331
13285 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 84
13284 Estimates of Freshwater Content from ICESat-2 Derived Dynamic Ocean Topography

Authors: Adan Valdez, Shawn Gallaher, James Morison, Jordan Aragon

Abstract:

Global climate change has impacted atmospheric temperatures contributing to rising sea levels, decreasing sea ice, and increased freshening of high latitude oceans. This freshening has contributed to increased stratification inhibiting local mixing and nutrient transport and modifying regional circulations in polar oceans. In recent years, the Western Arctic has seen an increase in freshwater volume at an average rate of 397+-116 km3/year. The majority of the freshwater volume resides in the Beaufort Gyre surface lens driven by anticyclonic wind forcing, sea ice melt, and Arctic river runoff. The total climatological freshwater content is typically defined as water fresher than 34.8. The near-isothermal nature of Arctic seawater and non-linearities in the equation of state for near-freezing waters result in a salinity driven pycnocline as opposed to the temperature driven density structure seen in the lower latitudes. In this study, we investigate the relationship between freshwater content and remotely sensed dynamic ocean topography (DOT). In-situ measurements of freshwater content are useful in providing information on the freshening rate of the Beaufort Gyre; however, their collection is costly and time consuming. NASA’s Advanced Topographic Laser Altimeter System (ATLAS) derived dynamic ocean topography (DOT), and Air Expendable CTD (AXCTD) derived Freshwater Content are used to develop a linear regression model. In-situ data for the regression model is collected across the 150° West meridian, which typically defines the centerline of the Beaufort Gyre. Two freshwater content models are determined by integrating the freshwater volume between the surface and an isopycnal corresponding to reference salinities of 28.7 and 34.8. These salinities correspond to those of the winter pycnocline and total climatological freshwater content, respectively. Using each model, we determine the strength of the linear relationship between freshwater content and satellite derived DOT. The result of this modeling study could provide a future predictive capability of freshwater volume changes in the Beaufort-Chukchi Sea using non in-situ methods. Successful employment of the ICESat-2’s DOT approximation of freshwater content could potentially reduce reliance on field deployment platforms to characterize physical ocean properties.

Keywords: ICESat-2, dynamic ocean topography, freshwater content, beaufort gyre

Procedia PDF Downloads 62
13283 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage

Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle

Abstract:

Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.

Keywords: public health, disability, accessibility, inclusive health care, universal health coverage

Procedia PDF Downloads 55
13282 Assessing Usability of Behavior Coaching Organizer

Authors: Nathaniel A. Hoston

Abstract:

Teacher coaching is necessary for improving student behaviors. While coaching technologies (e.g., bug-in-ear coaching, video-coaching) can assist the coaching process, little is known about the usability of those tools. This study assessed the usability and perceived efficacy of the Behavior Coaching Organizer (BCO) using usability testing methods (i.e., concurrent think-aloud, retrospective probing) in a simulated learning environment. Participants found that the BCO is moderately usable while perceiving the tool as highly effective for addressing concerning student behaviors. Additionally, participants noted a general need for continued coaching support. The results indicate a need for further usability testing with education research.

Keywords: behavioral interventions, Behavior Coaching Organizer, coaching technologies, usability methods

Procedia PDF Downloads 107
13281 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 305
13280 Rheological Behavior of Oxidized Vegetable Oils

Authors: Ioana Stanciu

Abstract:

This article presents the study of the rheological behavior of oxidized and non-oxidized vegetable oils at high temperatures and increasing shear rates. The largest increases in the dynamic viscosity of oxidized oils, in relation to the values that characterize non-oxidized oils, are recorded for soybean oil, followed by corn oil. Oxidized olive and rapeseed oils do not register significant increases in dynamic viscosity compared to non-oxidized oils.

Keywords: oil, oxidized, viscosity, vegetable

Procedia PDF Downloads 61
13279 Study on the Seismic Response of Slope under Pulse-Like Ground Motion

Authors: Peter Antwi Buah, Yingbin Zhang, Jianxian He, Chenlin Xiang, Delali Atsu Y. Bakah

Abstract:

Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is as well known to be stronger than the single pulse. This study has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a more strong dynamic response.

Keywords: velocity pulses, dynamic response, PGV magnification effect, elevation effect, double pulse

Procedia PDF Downloads 144
13278 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up

Procedia PDF Downloads 302
13277 Fruit of the General Status of Usak Provicce District of Sivasli

Authors: Ayşen Melda Çolak, Volkan Okatan, Ercan Yıldız

Abstract:

In our country, fruit production was determined as 17.2 million tons in 2011 according to official data. Turkey fig, apricot, cherry and quince production ranks first in the world. Almost all the regions of our country, despite the growing of fruit 54% of the total fruit production occur in the Mediterranean and the Aegean Region. However, fruit production in the country is consumed in the domestic market and export rates are often very low. In this study, a questionnaire to 100 farmers face-to-face interview. According to the survey, 40% of those in fruit and 7 da of 7 hectares land are small. 30% of soil testing for manufacturers, testing for 20% of the water. Manufacturers who deliberately fertilization rate of only 10%.

Keywords: fruit, generation, potential, Sivasli survey

Procedia PDF Downloads 240
13276 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications

Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa

Abstract:

This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.

Keywords: capacitor copper plates, electric field distribution, dielectric heating, grains

Procedia PDF Downloads 391
13275 The Interactions of Attentional Bias for Food, Trait Self-Control, and Motivation: A Model Testing Study

Authors: Hamish Love, Navjot Bhullar, Nicola Schutte

Abstract:

Self-control and related psychological constructs have been shown to have a large role in the improvement and maintenance of healthful dietary behaviour. However, self-control for diet, and related constructs such as motivation, level of conflict between tempting desires and dietary goals, and attentional bias for tempting food, have not been studied together to establish their relationships, to the author’s best knowledge. Therefore the aim of this paper was to conduct model testing on these constructs and evaluate how they relate to affect dietary outcomes. 400 Australian adult participants will be recruited via the Qualtrics platform and will be representative across age and gender. They will complete survey and reaction timing surveys to gather data on the five target constructs: Trait Self-control, Attentional Bias for Food, Dietary Goal-Desire Incongruence, Motivation for Dietary Self-control, and Satisfaction with Dietary Behaviour. A model of moderated mediation is predicted, whereby the initial predictor (Dietary Goal-Desire Incongruence) predicts the level of the outcome variable, Satisfaction with Dietary Behaviour. We hypothesise that the relationship between these two variables will be mediated by Trait Self-Control and that the extent that Trait Self-control is allowed to mediate dietary outcome is moderated by both Attentional Bias for Food and Motivation for Dietary Self-control. The analysis will be conducted using the PROCESS module in SPSS 23. The results of model testing in this current study will be valuable to direct future research and inform which constructs could be important targets for intervention to improve dietary outcomes.

Keywords: self-control, diet, model testing, attentional bias, motivation

Procedia PDF Downloads 155
13274 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. These equations provide downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: dynamic equation, downscaling, inverse distance, weight interpolation

Procedia PDF Downloads 285
13273 The Development of Encrypted Near Field Communication Data Exchange Format Transmission in an NFC Passive Tag for Checking the Genuine Product

Authors: Tanawat Hongthai, Dusit Thanapatay

Abstract:

This paper presents the development of encrypted near field communication (NFC) data exchange format transmission in an NFC passive tag for the feasibility of implementing a genuine product authentication. We propose a research encryption and checking the genuine product into four major categories; concept, infrastructure, development and applications. This result shows the passive NFC-forum Type 2 tag can be configured to be compatible with the NFC data exchange format (NDEF), which can be automatically partially data updated when there is NFC field.

Keywords: near field communication, NFC data exchange format, checking the genuine product, encrypted NFC

Procedia PDF Downloads 263
13272 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: dynamic modelling, long term instability risks, room and pillar, seismic collapse

Procedia PDF Downloads 118
13271 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures

Authors: Tomoko Fukuyama, Osamu Senbu

Abstract:

Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.

Keywords: capacitance, conductance, prestressed concrete, susceptance

Procedia PDF Downloads 398
13270 Experimental and CFD of Desgined Small Wind Turbine

Authors: Tarek A. Mekail, Walid M. A. Elmagid

Abstract:

Many researches have concentrated on improving the aerodynamic performance of wind turbine blade through testing and theoretical studies. A small wind turbine blade is designed, fabricated and tested. The power performance of small horizontal axis wind turbines is simulated in details using Computational Fluid Dynamic (CFD). The three-dimensional CFD models are presented using ANSYS-CFX v13 software for predicting the performance of a small horizontal axis wind turbine. The simulation results are compared with the experimental data measured from a small wind turbine model, which designed according to a vehicle-based test system. The analysis of wake effect and aerodynamic of the blade can be carried out when the rotational effect was simulated. Finally, comparison between experimental, numerical and analytical performance has been done. The comparison is fairly good.

Keywords: small wind turbine, CFD of wind turbine, CFD, performance of wind turbine, test of small wind turbine, wind turbine aerodynamic, 3D model

Procedia PDF Downloads 527
13269 Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain

Authors: Radwa Elshorbagy, Alaa Elden Balbaa, Khaled Ayad, Waleed Reda

Abstract:

Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury.

Keywords: hip strategy, ankle strategy, postural control, dynamic balance

Procedia PDF Downloads 321
13268 Problems of Using Mobile Photovoltaic Installations

Authors: Ksenia Siadkowska, Łukasz Grabowski, Michał Gęca

Abstract:

The dynamic development of photovoltaics in the 21st century has resulted in more possibilities for using photovoltaic systems. In order to reduce emissions, a retrofitting of vehicles with photovoltaic modules has recently become increasingly popular. Preparing such an installation, however, requires professional knowledge and compliance with safety rules. The paper discusses the advantages and disadvantages of some types of flexible photovoltaic modules that can be applied to mobile installations, types and causes of damage to photovoltaic modules as well as the most frequent types of misinstallation. Our attention has been drawn to the risk of fire caused by misintallation or defective insulation and the need to closely monitor mobile installations, for example by a non-destructive testing with a thermal imaging camera. The paper also presents certain selected results of the research conducted at the Lublin University of Technology. This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS2/A6/16/2013.

Keywords: flexible PV module, mobile PV module, photovoltaic module, photovoltaic

Procedia PDF Downloads 235
13267 Prediction Study of a Corroded Pressure Vessel Using Evaluation Measurements and Finite Element Analysis

Authors: Ganbat Danaa, Chuluundorj Puntsag

Abstract:

The steel structures of the Oyu-Tolgoi mining Concentrator plant are corroded during operation, which raises doubts about the continued use of some important structures of the plant, which is one of the problems facing the plant's regular operation. As a part of the main operation of the plant, the bottom part of the pressure vessel, which plays an important role in the reliable operation of the concentrate filter-drying unit, was heavily corroded, so it was necessary to study by engineering calculations, modeling, and simulation using modern advanced engineering programs and methods. The purpose of this research is to investigate whether the corroded part of the pressure vessel can be used normally in the future using advanced engineering software and to predetermine the remaining life of the time of the pressure vessel based on engineering calculations. When the thickness of the bottom part of the pressure vessel was thinned by 0.5mm due to corrosion detected by non-destructive testing, finite element analysis using ANSYS WorkBench software was used to determine the mechanical stress, strain and safety factor in the wall and bottom of the pressure vessel operating under 2.2 MPa working pressure, made conclusions on whether it can be used in the future. According to the recommendations, by using sand-blast cleaning and anti-corrosion paint, the normal, continuous and reliable operation of the Concentrator plant can be ensured, such as ordering new pressure vessels and reducing the installation period. By completing this research work, it will be used as a benchmark for assessing the corrosion condition of steel parts of pressure vessels and other metallic and non-metallic structures operating under severe conditions of corrosion, static and dynamic loads, and other deformed steels to make analysis of the structures and make it possible to evaluate and control the integrity and reliable operation of the structures.

Keywords: corrosion, non-destructive testing, finite element analysis, safety factor, structural reliability

Procedia PDF Downloads 39
13266 Disintegration of Deuterons by Photons Reaction Model for GEANT4 with Dibaryon Formalism

Authors: Jae Won Shin, Chang Ho Hyun

Abstract:

A disintegration of deuterons by photons (dγ → np) reaction model for GEANT4 is developed in this work. An effective field theory with dibaryon fields Introducing a dibaryon field, we can take into account the effective range contribution to the propagator up to infinite order, and it consequently makes the convergence of the theory better than the pionless effective field theory without dibaryon fields. We develop a hadronic model for GEANT4 which is specialized for the disintegration of the deuteron by photons, dγ → np. For the description of two-nucleon interactions, we employ an effective field theory so called pionless theory with dibaryon fields (dEFT). In spite of its simplicity, the theory has proven very effective and useful in the applications to various two-nucleon systems and processes at low energies. We apply the new model of GEANT4 (G4dEFT) to the calculation of total and differential cross sections in dγ → np, and obtain good agreements to experimental data for a wide range of incoming photon energies.

Keywords: dγ → np, dibaryon fields, effective field theory, GEANT4

Procedia PDF Downloads 355
13265 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils

Authors: Karim Kootahi, Seyed Abolhasan Naeini

Abstract:

The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.

Keywords: SWCC, correlations, index properties, validation

Procedia PDF Downloads 155
13264 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: aeroelasticity, labyrinth packings, oscillation phase shift, vibration

Procedia PDF Downloads 278