Search results for: dual band band-pass filter
1891 Structural and Vibrational Studies of Ni Alx Fe2-x O4 Ferrites
Authors: Kamel Taıbı, Abdelmadjid Rais
Abstract:
Nickel–Aluminium ferrites with the general formula Ni Alx Fe2-x O4 (0 ≤ x ≤ 1) were studied using X-ray diffraction, Infra Red and Raman spectroscopy. XRD diffraction patterns and their Reitveld refinements show that all samples have a pure single-phase cubic spinel structure. From these patterns, the lattice parameters of these samples have been calculated and compared with those predicted theoretically. Most of the values were found to decrease with increasing Al content. Infra Red spectra showed two significant absorption bands. The high band corresponds to tetrahedral (A) sites and the lower band to octahedral [B] sites, thus confirming the single phase spinel structure. For all compositions, Raman spectra show the five active modes A1g + E1g + 3 T2g of the motion of O2- ions and both the A-site and B-site ions. The Raman frequencies trend with aluminium concentration show a blue shift for all modes consistent with the replacement of Fe3+ by lower mass Al3+. Composition dependence of the Raman frequency modes is discussed in relationship with the cations distribution among the A-sites and B-sites.Keywords: Ni-Al ferrites, spinel structure, XRD, Raman spectroscopy
Procedia PDF Downloads 3741890 Improving Communication System through Router Configuration: The Nigerian Navy Experience
Authors: Saidu I. Rambo, Emmanuel O. Ibam, Sunday O. Adewale
Abstract:
The configuration of routers for effective communication in the Nigerian Navy (NN) enables the navy to improve on the current communication systems. The current system is faced with challenges that make the systems partially effective. The major implementation of the system is to configure routers using hierarchical model and obtaining a VSAT option on C-band platform. These routers will act as a link between Naval Headquarters and the Commands under it. The routers main responsibilities are to forward packets from source location to destination using a Link State Routing Protocol (LSRP). Also using the Point to Point Protocol (PPP), creates a strong encrypted password using Challenge Handshake Authentication Protocol (CHAP) which uses one-way hash function of Message Digest 5 (MD5) to provide complete protection against hackers/intruders. Routers can be configured using a Linux operating system or internet work operating system in the Microsoft platform. With this, system packets can be forwarded to various locations more effectively than the present system being used.Keywords: C-band, communication, router, VSAT
Procedia PDF Downloads 3661889 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride
Authors: A. Melouah, M. Diaf
Abstract:
The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.Keywords: photoluminescence, Erbium, GaN, semiconductor materials
Procedia PDF Downloads 4141888 Development of Perovskite Quantum Dots Light Emitting Diode by Dual-Source Evaporation
Authors: Antoine Dumont, Weiji Hong, Zheng-Hong Lu
Abstract:
Light emitting diodes (LEDs) are steadily becoming the new standard for luminescent display devices because of their energy efficiency and relatively low cost, and the purity of the light they emit. Our research focuses on the optical properties of the lead halide perovskite CsPbBr₃ and its family that is showing steadily improving performances in LEDs and solar cells. The objective of this work is to investigate CsPbBr₃ as an emitting layer made by physical vapor deposition instead of the usual solution-processed perovskites, for use in LEDs. The deposition in vacuum eliminates any risk of contaminants as well as the necessity for the use of chemical ligands in the synthesis of quantum dots. Initial results show the versatility of the dual-source evaporation method, which allowed us to create different phases in bulk form by altering the mole ratio or deposition rate of CsBr and PbBr₂. The distinct phases Cs₄PbBr₆, CsPbBr₃ and CsPb₂Br₅ – confirmed through XPS (x-ray photoelectron spectroscopy) and X-ray diffraction analysis – have different optical properties and morphologies that can be used for specific applications in optoelectronics. We are particularly focused on the blue shift expected from quantum dots (QDs) and the stability of the perovskite in this form. We already obtained proof of the formation of QDs through our dual source evaporation method with electron microscope imaging and photoluminescence testing, which we understand is a first in the community. We also incorporated the QDs in an LED structure to test the electroluminescence and the effect on performance and have already observed a significant wavelength shift. The goal is to reach 480nm after shifting from the original 528nm bulk emission. The hole transport layer (HTL) material onto which the CsPbBr₃ is evaporated is a critical part of this study as the surface energy interaction dictates the behaviour of the QD growth. A thorough study to determine the optimal HTL is in progress. A strong blue shift for a typically green emitting material like CsPbBr₃ would eliminate the necessity of using blue emitting Cl-based perovskite compounds and could prove to be more stable in a QD structure. The final aim is to make a perovskite QD LED with strong blue luminescence, fabricated through a dual-source evaporation technique that could be scalable to industry level, making this device a viable and cost-effective alternative to current commercial LEDs.Keywords: material physics, perovskite, light emitting diode, quantum dots, high vacuum deposition, thin film processing
Procedia PDF Downloads 1611887 Green Synthesis and Photo Catalytic Activity of Monoclinic α-Bi2O3 Nanocrystals
Authors: R. Yuvakkumar, S. I. Hong
Abstract:
Visible light driven monoclinic α-Bi2O3 photocatalyst was synthesized employing green synthesis method using rambutan peel wastes. 10 ml rambutan extract was added to 50 ml of 0.1M Bi(NO3)3 under stirring at about 80°C for 2 hours. The centrifuged and dried product was calcinated in a muffle furnace at 450°C to get pure α-Bi2O3. The characterized product photocatalytic activity was evaluated employing methyl orange (MeO) as model pollutant with 10 mg l-1 concentration at pH 7. The obtained product optical absorption edges located at 484 nm clearly revealed the photocatalyst excitation by visible light irradiation. The obtained yellow color photocatalyst accord with its strong absorption spectrum revealed the visible light absorption due to the band gap transition. The band gap energy of α-Bi2O3 was estimated to be 2.81 eV indicating the absorption of α-Bi2O3 in visible light region. The photocatalytic results of MeO degradation revealed that green synthesized Bi2O3 can effectively degrade 92% MeO within 240 min under visible light (>400 nm), which is slightly increased to that of chemically synthesized Bi2O3 (90%).Keywords: green synthesis, bismuth oxide, photocatalytic activity, nano
Procedia PDF Downloads 2121886 BaFe12O19/Polythiophene Nanocomposite as Electrochemical Supercapacitor Electrode
Authors: H. Farokhi, A. Bahadoran
Abstract:
This paper is focused on the absorbance and magnetic properties of a novel nanocomposite based on conducting polymer, carbon black and barium hexaferrite in epoxy resin on the E-glass fibre substrate. The highly conductive nanocomposite was provided by in-situ polymerization of aniline in the presence of carbon black (C) and barium hexaferrite (BaFe12O19) as electromagnetic absorbance material. The structure, morphology, and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). SEM images showed the uniformly coated PAni on the surface of carbon black and barium hexaferrite. XRD peaks also verified the presence of carbon black and barium hexaferrite in the nanocomposite. The microwave characteristics determined from the magnetic and dielectric properties of the elastomeric composites obtained from scattering data by fitting the samples in a waveguide, where measured in the frequency in X-band frequency range, the range of 8 to 12 GHz. The reflection losses were evaluated to be less than −5dB over the whole X-band frequency (8–12 GHz) for the thickness of 1.4mm.Keywords: conductive polymer, magnetic materials, capacitance, electrochemical cell
Procedia PDF Downloads 2481885 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3871884 Charge Trapping on a Single-wall Carbon Nanotube Thin-film Transistor with Several Electrode Metals for Memory Function Mimicking
Authors: Ameni Mahmoudi, Manel Troudi, Paolo Bondavalli, Nabil Sghaier
Abstract:
In this study, the charge storage on thin-film SWCNT transistors was investigated, and C-V hysteresis tests showed that interface charge trapping effects predominate the memory window. Two electrode materials were utilized to demonstrate that selecting the appropriate metal electrode clearly improves the conductivity and, consequently, the SWCNT thin-film’s memory effect. Because their work function is similar to that of thin-film carbon nanotubes, Ti contacts produce higher charge confinement and show greater charge storage than Pd contacts. For Pd-contact CNTFETs and CNTFETs with Ti electrodes, a sizable clockwise hysteresis window was seen in the dual sweep circle with a threshold voltage shift of V11.52V and V9.7V, respectively. The SWCNT thin-film based transistor is expected to have significant trapping and detrapping charges because of the large C-V hysteresis. We have found that the predicted stored charge density for CNTFETs with Ti contacts is approximately 4.01×10-2C.m-2, which is nearly twice as high as the charge density of the device with Pd contacts. We have shown that the amount of trapped charges can be changed by sweeping the range or Vgs rate. We also looked into the variation in the flat band voltage (V FB) vs. time in order to determine the carrier retention period in CNTFETs with Ti and Pd electrodes. The outcome shows that memorizing trapped charges is about 300 seconds, which is a crucial finding for memory function mimicking.Keywords: charge storage, thin-film SWCNT based transistors, C-V hysteresis, memory effect, trapping and detrapping charges, stored charge density, the carrier retention time
Procedia PDF Downloads 811883 Evaluation of Automated Analyzers of Polycyclic Aromatic Hydrocarbons and Black Carbon in a Coke Oven Plant by Comparison with Analytical Methods
Authors: L. Angiuli, L. Trizio, R. Giua, A. Digilio, M. Tutino, P. Dambruoso, F. Mazzone, C. M. Placentino
Abstract:
In the winter of 2014 a series of measurements were performed to evaluate the behavior of real-time PAHs and black carbon analyzers in a coke oven plant located in Taranto, a city of Southern Italy. Data were collected both insides than outside the plant, at air quality monitoring sites. Contemporary measures of PM2.5 and PM1 were performed. Particle-bound PAHs were measured by two methods: (1) aerosol photoionization using an Ecochem PAS 2000 analyzer, (2) PM2.5 and PM1 quartz filter collection and analysis by gas chromatography/mass spectrometry (GC/MS). Black carbon was determined both in real-time by Magee Aethalometer AE22 analyzer than by semi-continuous Sunset Lab EC/OC instrument. Detected PM2.5 and PM1 levels were higher inside than outside the plant while PAHs real-time values were higher outside than inside. As regards PAHs, inside the plant Ecochem PAS 2000 revealed concentrations not significantly different from those determined on the filter during low polluted days, but at increasing concentrations the automated instrument underestimated PAHs levels. At the external site, Ecochem PAS 2000 real-time concentrations were steadily higher than those on the filter. In the same way, real-time black carbon values were constantly lower than EC concentrations obtained by Sunset EC/OC in the inner site, while outside the plant real-time values were comparable to Sunset EC values. Results showed that in a coke plant real-time analyzers of PAHs and black carbon in the factory configuration provide qualitative information, with no accuracy and leading to the underestimation of the concentration. A site specific calibration is needed for these instruments before their installation in high polluted sites.Keywords: black carbon, coke oven plant, PAH, PAS, aethalometer
Procedia PDF Downloads 3441882 Generation of 3d Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones
Authors: Julio Manuel De Luis Ruiz, Javier Sedano Cibrián, RubéN Pérez Álvarez, Raúl Pereda García, Felipe Piña García
Abstract:
Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In this sense, the classic 3D models are being applied to investigate the direction towards which the generally subterranean structures of an archaeological site may continue and therefore, to help in making the decisions that define the location of new excavations. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimise the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain).Keywords: process optimization, RGB models, thermal models, , UAV, workflow
Procedia PDF Downloads 1381881 High Harmonics Generation in Hexagonal Graphene Quantum Dots
Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan
Abstract:
We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure
Procedia PDF Downloads 1561880 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 1491879 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm
Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao
Abstract:
In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.Keywords: SEDREAMS, GCI, SBC, GOI
Procedia PDF Downloads 3561878 Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release
Authors: Monika Patel, Kazuaki Matsumura
Abstract:
Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH.Keywords: amphiphilic polypeptide, dual drug release, micelle hydrogel composite, tunable DDS
Procedia PDF Downloads 2071877 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery
Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley
Abstract:
Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter
Procedia PDF Downloads 4711876 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials
Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao
Abstract:
In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.Keywords: phase change magnetic materials, transmittance, absorbance, extinction coefficients
Procedia PDF Downloads 4041875 Using Fishers Knowledge in Community Based Fisheries Management in River Nun Estuary, Niger Delta
Authors: Sabina Ngodigha, Roland Gbarabe, Aiyebatonworio Austin
Abstract:
A study of fisher’s knowledge (FK) and community-based fisheries management practices in River Nun estuary was conducted to assess the contribution of FK to fisheries resources conservation. A total of 390 fishers operates in the area of which 221 were interviewed based on having a minimum of 10 years of experience. Community-based fisheries management programme was introduced and implemented by fishermen’s union in 2010 for the sustainable management and conservation of fisheries resources. Local law introduced were: band on the use of mesh size of less than 5cm and band on chemical fishing. Defaulters were made to pay monetary fines ranging from #2,000 to #6,000 while fishers caught using chemicals to fish were arrested and landed over to the police for prosecution. The management method has enhanced conservation of fisheries resources which is a major source of livelihood for the people. Landings increased tremendously resulting in positive increase in the finances of the fishers. It is, therefore, pertinent to introduce community-based laws to check over exploitation of fisheries resources in the Niger Delta.Keywords: community, conservation, fishers knowledge, local laws, management
Procedia PDF Downloads 2771874 Modeling of Void Formation in 3D Woven Fabric During Resin Transfer Moulding
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Jan Kočí, Andy Long
Abstract:
Resin transfer molding (RTM) is increasingly used for manufacturing high-quality composite structures due to its additional advantages over prepregs of low-cost out-of-autoclave processing. However, to retain the advantages, it is critical to reduce the void content during the injection. Reinforcements commonly used in RTM, such as woven fabrics, have dual-scale porosity with mesoscale pores between the yarns and the micro-scale pores within the yarns. Due to the fabric geometry and the nature of the dual-scale flow, the flow front during injection creates a complicated fingering formation which leads to void formation. Analytical modeling of void formation for woven fabrics has been widely studied elsewhere. However, there is scope for improvement to the reduction in void formation in 3D fabrics wherein the in-plane yarn layers are confined by additional through-thickness binder yarns. In the present study, the structural morphology of the tortuous pore spaces in the 3D fabric has been studied and implemented using open-source software TexGen. An analytical model for the void and the fingering formation has been implemented based on an idealized unit cell model of the 3D fabric. Since the pore spaces between the yarns are free domains, the region is treated as flow-through connected channels, whereas intra-yarn flow has been modeled using Darcy’s law with an additional term to account for capillary pressure. Later the void fraction has been characterised using the criterion of void formation by comparing the fill time for inter and intra yarn flow. Moreover, the dual-scale two-phase flow of resin with air has been simulated in the commercial CFD solver OpenFOAM/ANSYS to predict the probable location of voids and validate the analytical model. The use of an idealised unit cell model will give the insight to optimise the mesoscale geometry of the reinforcement and injection parameters to minimise the void content during the LCM process.Keywords: 3D fiber, void formation, RTM, process modelling
Procedia PDF Downloads 961873 Optimal Design of InGaP/GaAs Heterojonction Solar Cell
Authors: Djaafar F., Hadri B., Bachir G.
Abstract:
We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS
Procedia PDF Downloads 6211872 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method
Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao
Abstract:
In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.Keywords: defect levels, nanorods, photoluminescence, Raman modes
Procedia PDF Downloads 2411871 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments
Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan
Abstract:
Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX
Procedia PDF Downloads 5641870 Modified Step Size Patch Array Antenna for UWB Wireless Applications
Authors: Hamid Aslani, Ahmed Radwan
Abstract:
In this paper, a single element microstrip antenna is presented for UWB applications by using techniques as partial ground plane and modified the shape of the patch. The antenna is properly designed to have a compact size and constant gain against frequency. The simulated results have done using two EM software and show good agreement with the measured results for the fabricated antenna. Then a designing of two elements patch antenna array for UWB in the frequency band of 3.1-10 GHz is presented in this paper. The array is constructed by means of feeding two omni-directional modified circular patch elements with a modified power divider. Experimental results show that the array has a stable radiation pattern and low return loss over a broad bandwidth of 64% (3.1–10 GHz). Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.Keywords: ultra wide band, radiation performance, microstrip antenna, size miniaturized antenna
Procedia PDF Downloads 2581869 Prediction of Maximum Inter-Story Drifts of Steel Frames Using Intensity Measures
Authors: Edén Bojórquez, Victor Baca, Alfredo Reyes-Salazar, Jorge González
Abstract:
In this paper, simplified equations to predict maximum inter-story drift demands of steel framed buildings are proposed in terms of two ground motion intensity measures based on the acceleration spectral shape. For this aim, the maximum inter-story drifts of steel frames with 4, 6, 8 and 10 stories subjected to narrow-band ground motion records are estimated and compared with the spectral acceleration at first mode of vibration Sa(T1) which is commonly used in earthquake engineering and seismology, and with a new parameter related with the structural response known as INp. It is observed that INp is the parameter best related with the structural response of steel frames under narrow-band motions. Finally, equations to compute maximum inter-story drift demands of steel frames as a function of spectral acceleration and INp are proposed.Keywords: intensity measures, spectral shape, steel frames, peak demands
Procedia PDF Downloads 3921868 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement
Authors: Pogula Rakesh, T. Kishore Kumar
Abstract:
Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss
Procedia PDF Downloads 4811867 A Comparative Study on Optimized Bias Current Density Performance of Cubic ZnB-GaN with Hexagonal 4H-SiC Based Impatts
Authors: Arnab Majumdar, Srimani Sen
Abstract:
In this paper, a vivid simulated study has been made on 35 GHz Ka-band window frequency in order to judge and compare the DC and high frequency properties of cubic ZnB-GaN with the existing hexagonal 4H-SiC. A flat profile p+pnn+ DDR structure of impatt is chosen and is optimized at a particular bias current density with respect to efficiency and output power taking into consideration the effect of mobile space charge also. The simulated results obtained reveals the strong potentiality of impatts based on both cubic ZnB-GaN and hexagonal 4H-SiC. The DC-to-millimeter wave conversion efficiency for cubic ZnB-GaN impatt obtained is 50% with an estimated output power of 2.83 W at an optimized bias current density of 2.5×108 A/m2. The conversion efficiency and estimated output power in case of hexagonal 4H-SiC impatt obtained is 22.34% and 40 W respectively at an optimum bias current density of 0.06×108 A/m2.Keywords: cubic ZnB-GaN, hexagonal 4H-SiC, double drift impatt diode, millimetre wave, optimised bias current density, wide band gap semiconductor
Procedia PDF Downloads 3591866 Numerical Investigation into Capture Efficiency of Fibrous Filters
Authors: Jayotpaul Chaudhuri, Lutz Goedeke, Torsten Hallenga, Peter Ehrhard
Abstract:
Purification of gases from aerosols or airborne particles via filters is widely applied in the industry and in our daily lives. This separation especially in the micron and submicron size range is a necessary step to protect the environment and human health. Fibrous filters are often employed due to their low cost and high efficiency. For designing any filter the two most important performance parameters are capture efficiency and pressure drop. Since the capture efficiency is directly proportional to the pressure drop which leads to higher operating costs, a detailed investigation of the separation mechanism is required to optimize the filter designing, i.e., to have a high capture efficiency with a lower pressure drop. Therefore a two-dimensional flow simulation around a single fiber using Ansys CFX and Matlab is used to get insight into the separation process. Instead of simulating a solid fiber, the present Ansys CFX model uses a fictitious domain approach for the fiber by implementing a momentum loss model. This approach has been chosen to avoid creating a new mesh for different fiber sizes, thereby saving time and effort for re-meshing. In a first step, only the flow of the continuous fluid around the fiber is simulated in Ansys CFX and the flow field data is extracted and imported into Matlab and the particle trajectory is calculated in a Matlab routine. This calculation is a Lagrangian, one way coupled approach for particles with all relevant forces acting on it. The key parameters for the simulation in both Ansys CFX and Matlab are the porosity ε, the diameter ratio of particle and fiber D, the fluid Reynolds number Re, the Reynolds particle number Rep, the Stokes number St, the Froude number Fr and the density ratio of fluid and particle ρf/ρp. The simulation results were then compared to the single fiber theory from the literature.Keywords: BBO-equation, capture efficiency, CFX, Matlab, fibrous filter, particle trajectory
Procedia PDF Downloads 2061865 Assessing Genetic Variation of Dog Rose (Rosa Canina L.) in Caspian Climate
Authors: Aptin Rahnavard, Ghavamaldin Asadian, Khalil Pourshamsian, Mariamalsadat Taghavi
Abstract:
Dog rose is one of the important rose species in Iran that the distant past had been considered due to nutritional value and medicinal. Despite its long history of use, due to poor information on the genetic modification of plants has been done resources inheritance. In this study was to assess the genetic diversity. Total of 30 genotypes Dog rose from areas of northern Iran in the Caspian region (provinces of Guilan and Mazandaran) were evaluated using 25 RAPD primers. The number of bands produced total of 202 and for each primer were measured in a bands with an average 8-band .The number of polymorphic bands per primer ranged from 1 to 13 and the bands were in the range of 300 to 3000 bp. Based on the results OPA-04 primer with 13 bands and PRA-1, E-09 and A-04 with 5-band were created maximum and minimum number of amplified fragments. Molecular marker genotypes showed a high degree of polymorphism. Studied genotypes based on RAPD results were divided into 2 groups and 2 subgroups. Most similar in subgroups A2 and B group was the lowest.Keywords: rosa canina spp., RAPD marker, genetic variation, caspian climate
Procedia PDF Downloads 5701864 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization
Authors: Mohamed Sanad, Noha Hassan
Abstract:
A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization
Procedia PDF Downloads 2601863 Investigation of the Morphology and Optical Properties of CuAlO₂ Thin Film
Authors: T. M. Aminu, A. Salisu, B. Abdu, H. U. Alhassan, T. H. Dharma
Abstract:
Thin films of CuAlO2 were deposited on clean glass substrate using the chemical solution deposition (sol-gel) method of deposition with CuCl and AlCl3 taken as the starting materials. CuCl was dissolved in HCl while AlCl₃ in distilled water, pH value of the mixture was controlled by addition of NaOH. The samples were annealed at different temperatures in order to determine the effect of annealing temperatures on the morphological and optical properties of the deposited CuAlO₂ thin film. The surface morphology reveals an improved crystalline as annealing temperature increases. The results of the UV-vis and FT-IR spectrophotometry indicate that the absorbance for all the samples decreases sharply from a common value of about 89% at about 329 nm to a range of values of 56.2%-35.2% and the absorption / extinction coefficients of the films decrease with increase in annealing temperature from 1.58 x 10⁻⁶ to1.08 x 10⁻⁶ at about 1.14eV in the infrared region to about 1.93 x 10⁻⁶ to 1.29 x 10⁻⁶ at about 3.62eV in the visible region, the transmittance, reflectance and band gaps vary directly with annealing temperature, the deposited films were found to be suitable in optoelectronic applications.Keywords: copper aluminium-oxide (CuAlO2), absorbance, transmittance, reflectance, band gaps
Procedia PDF Downloads 2941862 Influence of Intra-Yarn Permeability on Mesoscale Permeability of Plain Weave and 3D Fabrics
Authors: Debabrata Adhikari, Mikhail Matveev, Louise Brown, Andy Long, Jan Kočí
Abstract:
A good understanding of mesoscale permeability of complex architectures in fibrous porous preforms is of particular interest in order to achieve efficient and cost-effective resin impregnation of liquid composite molding (LCM). Fabrics used in structural reinforcements are typically woven or stitched. However, 3D fabric reinforcement is of particular interest because of the versatility in the weaving pattern with the binder yarn and in-plain yarn arrangements to manufacture thick composite parts, overcome the limitation in delamination, improve toughness etc. To predict the permeability based on the available pore spaces between the inter yarn spaces, unit cell-based computational fluid dynamics models have been using the Stokes Darcy model. Typically, the preform consists of an arrangement of yarns with spacing in the order of mm, wherein each yarn consists of thousands of filaments with spacing in the order of μm. The fluid flow during infusion exchanges the mass between the intra and inter yarn channels, meaning there is no dead-end of flow between the mesopore in the inter yarn space and the micropore in the yarn. Several studies have employed the Brinkman equation to take into account the flow through dual-scale porosity reinforcement to estimate their permeability. Furthermore, to reduce the computational effort of dual scale flow, scale separation criteria based on the ratio between yarn permeability to the yarn spacing was also proposed to quantify the dual scale and negligible micro-scale flow regime for the prediction of mesoscale permeability. In the present work, the key parameter to identify the influence of intra yarn permeability on the mesoscale permeability has been investigated with the systematic study of weft and warp yarn spacing on the plane weave as well as the position of binder yarn and number of in-plane yarn layers on 3D weave fabric. The permeability tensor has been estimated using an OpenFOAM-based model for the various weave pattern with idealized geometry of yarn implemented using open-source software TexGen. Additionally, scale separation criterion has been established based on the various configuration of yarn permeability for the 3D fabric with both the isotropic and anisotropic yarn from Gebart’s model. It was observed that the variation of mesoscale permeability Kxx within 30% when the isotropic porous yarn is considered for a 3D fabric with binder yarn. Furthermore, the permeability model developed in this study will be used for multi-objective optimizations of the preform mesoscale geometry in terms of yarn spacing, binder pattern, and a number of layers with an aim to obtain improved permeability and reduced void content during the LCM process.Keywords: permeability, 3D fabric, dual-scale flow, liquid composite molding
Procedia PDF Downloads 96