Search results for: band selection
2703 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes
Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova
Abstract:
Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering
Procedia PDF Downloads 3172702 Enhanced Cluster Based Connectivity Maintenance in Vehicular Ad Hoc Network
Authors: Manverpreet Kaur, Amarpreet Singh
Abstract:
The demand of Vehicular ad hoc networks is increasing day by day, due to offering the various applications and marvelous benefits to VANET users. Clustering in VANETs is most important to overcome the connectivity problems of VANETs. In this paper, we proposed a new clustering technique Enhanced cluster based connectivity maintenance in vehicular ad hoc network. Our objective is to form long living clusters. The proposed approach is grouping the vehicles, on the basis of the longest list of neighbors to form clusters. The cluster formation and cluster head selection process done by the RSU that may results it reduces the chances of overhead on to the network. The cluster head selection procedure is the vehicle which has closest speed to average speed will elect as a cluster Head by the RSU and if two vehicles have same speed which is closest to average speed then they will be calculate by one of the new parameter i.e. distance to their respective destination. The vehicle which has largest distance to their destination will be choosing as a cluster Head by the RSU. Our simulation outcomes show that our technique performs better than the existing technique.Keywords: VANETs, clustering, connectivity, cluster head, intelligent transportation system (ITS)
Procedia PDF Downloads 2472701 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.Keywords: virtualization, OS based virtualization, container based virtualization, hypervisor based virtualization
Procedia PDF Downloads 3292700 Explanatory Variables for Crash Injury Risk Analysis
Authors: Guilhermina Torrao
Abstract:
An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.Keywords: crash, exploratory, injury, risk, variables, vehicle
Procedia PDF Downloads 1352699 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1962698 Iot-Based Interactive Patient Identification and Safety Management System
Authors: Jonghoon Chun, Insung Kim, Jonghyun Lim, Gun Ro
Abstract:
We believe that it is possible to provide a solution to reduce patient safety accidents by displaying correct medical records and prescription information through interactive patient identification. Our system is based on the use of smart bands worn by patients and these bands communicate with the hybrid gateways which understand both BLE and Wifi communication protocols. Through the convergence of low-power Bluetooth (BLE) and hybrid gateway technology, which is one of short-range wireless communication technologies, we implement ‘Intelligent Patient Identification and Location Tracking System’ to prevent medical malfunction frequently occurring in medical institutions. Based on big data and IOT technology using MongoDB, smart band (BLE, NFC function) and hybrid gateway, we develop a system to enable two-way communication between medical staff and hospitalized patients as well as to store locational information of the patients in minutes. Based on the precise information provided using big data systems, such as location tracking and movement of in-hospital patients wearing smart bands, our findings include the fact that a patient-specific location tracking algorithm can more efficiently operate HIS (Hospital Information System) and other related systems. Through the system, we can always correctly identify patients using identification tags. In addition, the system automatically determines whether the patient is a scheduled for medical service by the system in use at the medical institution, and displays the appropriateness of the medical treatment and the medical information (medical record and prescription information) on the screen and voice. This work was supported in part by the Korea Technology and Information Promotion Agency for SMEs (TIPA) grant funded by the Korean Small and Medium Business Administration (No. S2410390).Keywords: BLE, hybrid gateway, patient identification, IoT, safety management, smart band
Procedia PDF Downloads 3112697 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data
Authors: Arjun G. Koppad
Abstract:
The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.Keywords: forest, biomass, LULC, back scatter, SAR, regression
Procedia PDF Downloads 262696 Ionic Liquid and Chemical Denaturants Effects on the Fluorescence Properties of the Laccase
Authors: Othman Saoudi
Abstract:
In this work, we have interested in the investigation of the chemical denaturants and synthesized ionic liquids effects on the fluorescence properties of the laccase from Trametes versicolor. The fluorescence properties of the laccase result from the presence of Tryptophan, which has an aromatic core responsible for the absorption in ultra violet domain and the emission of the photons of fluorescence. The effect Pyrrolidinuim Formate ([pyrr][F]) and Morpholinium Formate ([morph][F]) ionic liquids on the laccase behavior for various volumetric fractions are studied. We have shown that the fluorescence spectrum relative to the [pyrr][F] presents a single band with a maximum around 340 nm and a secondary peak at 361 nm for a volumetric fraction of 20% v/v. For concentration superiors to 40%, the fluorescence intensity decreases and a displacement of the peaks toward higher wavelengths has occurred. For the [morph][F], the fluorescence spectrum showed a single band around 340 nm. The intensity of the principal peak decreases for concentration superiors to 20% v/v. From the plot representing the variation of the λₘₐₓ versus the volumetric concentration, we have determined the concentration of the half-transitions C1/2. These concentrations are equal to 42.62% and 40.91% v/v in the presence of [pyrr][F] and [morph][F] respectively. For the chemical denaturation, we have shown that the fluorescence intensity decreases with increasing denaturant concentrations where the maximum of the wavelength of emission shifts toward the higher wavelengths. We have also determined from the spectrum relative to the urea and GdmCl, the unfolding energy, ∆GD. The results show that the variation of the unfolding energy as a function of the denaturant concentrations varies according to the linear regression model. We have demonstrated also that the half-transitions C1/2 have occurred for urea and GdmCl denaturants concentrations around 3.06 and 3.17 M respectively.Keywords: laccase, fluorescence, ionic liquids, chemical denaturants
Procedia PDF Downloads 5072695 Prey Selection of the Corallivorous Gastropod Drupella cornus in Jeddah Coast, Saudi Arabia
Authors: Gaafar Omer BaOmer, Abdulmohsin A. Al-Sofyani, Hassan A. Ramadan
Abstract:
Drupella is found on coral reefs throughout the tropical and subtropical shallow waters of the Indo-Pacific region. Drupella is muricid gastropod, obligate corallivorous and their population outbreak can cause significant coral mortality. Belt transect surveys were conducted at two sites (Bohairat and Baydah) in Jeddah coast, Saudi Arabia to assess prey preferences for D. cornus with respect to prey availability through resource selection ratios. Results revealed that there are different levels of prey preferences at the different age stages and at the different sites. Acropora species with a caespitose, corymbose and digitate growth forms were preferred prey for recruits and juveniles of Drupella cornus, whereas Acropora variolosa was avoided by D. cornus because of its arborescent colony growth form. Pocillopora, Stylophora, and Millipora were occupied by Drupella cornus less than expected, whereas massive corals genus Porites were avoided. High densities of D. cornus were observed on two fragments of Pocillopora damicornis which may because of the absence of coral guard crabs genus Trapezia. Mean densities of D. cornus per colony for each species showed significant differentiation between the two study sites. Low availability of Acropora colonies in Bayadah patch reef caused high mean density of D. cornus per colony to compare to that in Bohairat, whereas higher mean density of D. cornus per colony of Pocillopora in Bohairat than that in Bayadah may because of most of occupied Pocillopora colonies by D. cornus were physical broken by anchoring compare to those colonies in Bayadah. The results indicated that prey preferences seem to depend on both coral genus and colony shape, while mean densities of D. cornus depend on availability and status of coral colonies.Keywords: prey availability, resource selection, Drupella cornus, Jeddah, Saudi Arabia
Procedia PDF Downloads 1482694 A Comparative Analysis of Classification Models with Wrapper-Based Feature Selection for Predicting Student Academic Performance
Authors: Abdullah Al Farwan, Ya Zhang
Abstract:
In today’s educational arena, it is critical to understand educational data and be able to evaluate important aspects, particularly data on student achievement. Educational Data Mining (EDM) is a research area that focusing on uncovering patterns and information in data from educational institutions. Teachers, if they are able to predict their students' class performance, can use this information to improve their teaching abilities. It has evolved into valuable knowledge that can be used for a wide range of objectives; for example, a strategic plan can be used to generate high-quality education. Based on previous data, this paper recommends employing data mining techniques to forecast students' final grades. In this study, five data mining methods, Decision Tree, JRip, Naive Bayes, Multi-layer Perceptron, and Random Forest with wrapper feature selection, were used on two datasets relating to Portuguese language and mathematics classes lessons. The results showed the effectiveness of using data mining learning methodologies in predicting student academic success. The classification accuracy achieved with selected algorithms lies in the range of 80-94%. Among all the selected classification algorithms, the lowest accuracy is achieved by the Multi-layer Perceptron algorithm, which is close to 70.45%, and the highest accuracy is achieved by the Random Forest algorithm, which is close to 94.10%. This proposed work can assist educational administrators to identify poor performing students at an early stage and perhaps implement motivational interventions to improve their academic success and prevent educational dropout.Keywords: classification algorithms, decision tree, feature selection, multi-layer perceptron, Naïve Bayes, random forest, students’ academic performance
Procedia PDF Downloads 1662693 Material Properties Evolution Affecting Demisability for Space Debris Mitigation
Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji
Abstract:
The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.Keywords: demisability, emissivity, lightweight, re-entry, survivability
Procedia PDF Downloads 1162692 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm
Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim
Abstract:
The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost
Procedia PDF Downloads 3852691 Determinants of Sustainable Supplier Selection: An Exploratory Study of Manufacturing Tunisian’s SMEs
Authors: Ahlem Dhahri, Audrey Becuwe
Abstract:
This study examines the adoption of sustainable purchasing practices among Tunisian SMEs, with a focus on assessing how environmental and social sustainability maturity affects the implementation of sustainable supplier selection (SSS) criteria. Using institutional theory to classify coercive, normative, and mimetic pressures, as well as emerging drivers and barriers, this study explores the institutional factors influencing sustainable purchasing practices and the specific barriers faced by Tunisian SMEs in this area. An exploratory, abductive qualitative research design was adopted for this multiple case study, which involved 19 semi-structured interviews with owners and managers of 17 Tunisian manufacturing SMEs. The Gioia method was used to analyze the data, thus enabling the identification of key themes and relationships directly from the raw data. This approach facilitated a structured interpretation of the institutional factors influencing sustainable purchasing practices, with insights drawn from the participants' perspectives. The study reveals that Tunisian SMEs are at different levels of sustainability maturity, with a significant impact on their procurement practices. SMEs with advanced sustainability maturity integrate both environmental and social criteria into their supplier selection processes, while those with lower maturity levels rely on mostly traditional criteria such as cost, quality, and delivery. Key institutional drivers identified include regulatory pressure, market expectations, and stakeholder influence. Additional emerging drivers—such as certifications and standards, economic incentives, environmental commitment as a core value, and group-wide strategic alignment—also play a critical role in driving sustainable procurement. Conversely, the study reveals significant barriers, including economic constraints, limited awareness, and resource limitations. It also identifies three main categories of emerging barriers: (1) logistical and supply chain constraints, including retailer/intermediary dependency, tariff regulations, and a perceived lack of direct responsibility in B2B supply chains; (2) economic and financial constraints; and (3) operational barriers, such as unilateral environmental responsibility, a product-centric focus and the influence of personal relationships. Providing valuable insights into the role of sustainability maturity in supplier selection, this study is the first to explore sustainable procurement practices in the Tunisian SME context. Integrating an analysis of institutional drivers, including emerging incentives and barriers, provides practical implications for SMEs seeking to improve sustainability in procurement. The results highlight the need for stronger regulatory frameworks and support mechanisms to facilitate the adoption of sustainable practices among SMEs in Tunisia.Keywords: Tunisian SME, sustainable supplier selection, institutional theory, determinant, qualitative study
Procedia PDF Downloads 122690 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder
Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh
Abstract:
In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization
Procedia PDF Downloads 1142689 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.Keywords: treadmill exercise, fluid intelligence, raven progressive matrices test, alpha band
Procedia PDF Downloads 3502688 Investment Projects Selection Problem under Hesitant Fuzzy Environment
Authors: Irina Khutsishvili
Abstract:
In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations, since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.Keywords: In the present research, a decision support methodology for the multi-attribute group decision-making (MAGDM) problem is developed, namely for the selection of investment projects. The objective of the investment project selection problem is to choose the best project among the set of projects, seeking investment, or to rank all projects in descending order. The project selection is made considering a set of weighted attributes. To evaluate the attributes in our approach, expert assessments are used. In the proposed methodology, lingual expressions (linguistic terms) given by all experts are used as initial attribute evaluations since they are the most natural and convenient representation of experts' evaluations. Then lingual evaluations are converted into trapezoidal fuzzy numbers, and the aggregate trapezoidal hesitant fuzzy decision matrix will be built. The case is considered when information on the attribute weights is completely unknown. The attribute weights are identified based on the De Luca and Termini information entropy concept, determined in the context of hesitant fuzzy sets. The decisions are made using the extended Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) method under a hesitant fuzzy environment. Hence, a methodology is based on a trapezoidal valued hesitant fuzzy TOPSIS decision-making model with entropy weights. The ranking of alternatives is performed by the proximity of their distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). For this purpose, the weighted hesitant Hamming distance is used. An example of investment decision-making is shown that clearly explains the procedure of the proposed methodology.
Procedia PDF Downloads 1172687 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst
Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba
Abstract:
Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations
Procedia PDF Downloads 3242686 Facile Synthesis and Characterization of Heterostructure Core-Shell Silver-Silica Nanocomposite for Humidity Sensing
Authors: Fatai O. Oladoyinbo, Felix O. Sanni, Akinwunmi Fatai, Kamoli A. Amusa, Saheed A. Ganiyu, Wasiu B. Ayinde, Tajudeen A. Afolabi, Enock O. Dare
Abstract:
Silver (Ag) and silica (SiO2) nanoparticles were synthesized using the chemical reduction method from silver nitrate and sodium silicate, respectively. X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Scanning Electron Microscopy (SEM), Uv-Visible spectroscopy, Energy Dispersive X-ray (EDX) spectroscopy and N2 adsorption-desorption techniques were utilized to characterize the composition and structure of the samples. The crystallinity pattern of Ag nanoparticles was indexed as (111), (200), (220) and (311), which allowed reflections from face-centered cubic silver. XRD of SiO2 showed good porosity with a broad-spectrum band at Bragg’s angle 2θ of 22° while that of Ag-SiO2 showed distinct peaks at 2θ values of 39°, 43°, 66° and 79°. The XRD result agreed perfectly with the SEM and HRTEM images which showed Ag-SiO2 isotropic and anisotropic under the varying concentration of reactants. The elemental composition of Ag-SiO2, as displayed by EDX, confirmed Ag enrichment in the Ag-SiO2 heterostructure. The Uv-Visible peak at 421 nm confirmed the Surface Plasmon Resonance absorption peak of silver nanoparticles. N2 adsorption-desorption result showed a broad band of Ag-SiO2 from 3 to 8 nm, which indicated relatively narrow pore size distributions. Humidity sensing measurements performed in a controlled humidity chamber showed very high sensitivity with a sensitivity factor (SF) of 4.63 and high linearity with a steady decrease in resistance to humidity from 880 Ω at 10% RH to 190 Ω at 100% RH, indicating that Ag-SiO2 nanocomposite is a good sensing material with high sensitivity and linearity.Keywords: silver, silica, nanocomposite, synthesis, heterostructure, core shell
Procedia PDF Downloads 772685 Electrochemical Growth and Properties of Cu2O Nanostructures
Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia
Abstract:
Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD
Procedia PDF Downloads 3552684 Minimization of Seepage in Sandy Soil Using Different Grouting Types
Authors: Eng. M. Ahmed, A. Ibrahim, M. Ashour
Abstract:
One of the major concerns facing dam is the repair of their structures to prevent the seepage under them. In previous years, many existing dams have been treated by grouting, but with varying degrees of success. One of the major reasons for this erratic performance is the unsuitable selection of the grouting materials to reduce the seepage. Grouting is an effective way to improve the engineering properties of the soil and strengthen of the permeability of the soil to reduce the seepage. The purpose of this paper is to focus on the efficiency of current available grouting materials and techniques from construction, environmental and economical point of view. The seepage reduction usually accomplished by either chemical grouting or cementious grouting using ultrafine cement. In addition, the study shows a comparison between grouting materials according to their degree of permeability reduction and cost. The application of seepage reduction is based on the permeation grouting using grout curtain installation. The computer program (SEEP/W) is employed to model a dam rested on sandy soil, using grout curtain to reduce seepage quantity and hydraulic gradient by different grouting materials. This study presents a relationship that takes into account the permeability of the soil, grout curtain spacing and a new performance parameter that can be used to predict the best selection of grouting materials for seepage reduction.Keywords: seepage, sandy soil, grouting, permeability
Procedia PDF Downloads 3682683 Investigation of the Stability and Spintronic Properties of NbrhgeX (X= Cr, Co, Mn, Fe, Ni) Using Density Functional Theory
Authors: Shittu Akinpelu, Issac Popoola
Abstract:
The compound NbRhGe has been predicted to be a semiconductor with excellent mechanical properties. It is an indirect band gap material. The potential of NbRhGe for non-volatile data storage via element addition is being studied using the Density Functional Theory (DFT). Preliminary results on the electronic and magnetic properties are suggestive for their application in spintronic.Keywords: half-metals, Heusler compound, semiconductor, spintronic
Procedia PDF Downloads 1702682 Studies of Carbohydrate, Antioxidant, Nutrient and Genomic DNA Characterization of Fresh Olive Treated with Alkaline and Acidic Solvent: An Innovation
Authors: A. B. M. S. Hossain, A. Abdelgadir, N. A. Ibrahim
Abstract:
Fresh ripen olive cannot be consumed immediately after harvest due to the excessive bitterness having polyphenol as antioxidant. Industrial processing needs to be edible the fruit. The laboratory processing technique has been used to make it edible by using acid (vinegar, 5% acetic acid) and alkaline solvent (NaOH). Based on the treatment and consequence, innovative data have been found in this regard. The experiment was conducted to investigate biochemical content, nutritional and DNA characterization of olive fruit treated with alkaline (Sodium chloride anhydrous) and acidic solvent (5% acetic acid, vinegar). The treatments were used as control (no water), water control, 10% sodium chloride anhydrous (NaOH), vinegar (5% acetic acid), vinegar + NaOH and vinegar + NaOH + hot water treatment. Our results showed that inverted sugar and glucose content were higher in the vinegar and NaOH treated olive than in other treatments. Fructose content was the highest in vinegar + NaOH treated fruit. Nutrient contents NO3 K, Ca and Na were found higher in the treated fruit than the control fruit. Moreover, maximum K content was observed in the case of all treatments compared to the other nutrient content. The highest acidic (lower pH) condition (sour) was found in treated fruit. DNA yield was found higher in water control than acid and alkaline treated olives. DNA band was wider in the olive treated water control compared to the NaOH, vinegar, vinegar + NaOH and vinegar + NaOH + Hot water treatment. Finally, results suggest that vinegar + NaOH treated olive fruit was the best for fresh olive homemade processing after harvesting for edible purpose.Keywords: olive, vinegar, sugars, DNA band, bioprocess biotechnology
Procedia PDF Downloads 1852681 Early Indications of the Success of Rehabilitating Degraded Lands through the Green Legacy Project Implemented in Ethiopia
Authors: Tamirat Solomon, Aberash Yohannis, Efrem Gulfo
Abstract:
The plantation of trees, which harmonizes the agroecology of the environment, has been implemented in Ethiopia with great concern for a noticeably degraded environment. This study was designed to evaluate the effectiveness of green legacy, species selection and, the rate of survival, and the management status in the study areas. A systematic sampling method was employed to collect the required data from 144 quadrants measuring a 15m radius with an interval of 40m apart. Additionally, 244 sample households were selected for the socioeconomic study in addition to secondary data collected from office recordings. The data collected was analyzed using multivariate analysis, considering exposure and outcome variables. The findings of this study indicated that four exotic tree species, namely; A. salgina, C. fistula, A. indica, and G. robusta, were commonly selected tree species for degraded land restoration in the study areas. Among the seedlings planted at the four study sites, a total of 79.9% survived, and A. salgina was the dominant and best performed species, A. indica was the least survived species in the entire study area. The age of the seedling before planting significantly (p = 0.05) affected the survival potential of most seedlings of species, and the majority (82%) of local communities expressed their positive attitudes and willingness to manage the restoration works in the study areas. It was recommended to consider the inclusion of native species in the restoration effort and evaluate the co-existence of native flora with exotic and its competition for nutrients, water, and light in addition to the invading potentials in the ecosystem. In general, before embarking on degraded land restoration, species selection, adequate preparation of seedlings, and species diversity composition that exactly fit the socioeconomic and ecological demands of the areas must get the attention for the success of the restoration.Keywords: plantation forest, degraded land, forest restoration, plantation survival, species selection
Procedia PDF Downloads 772680 Optimum Turbomachine Preliminary Selection for Power Regeneration in Vapor Compression Cool Production Plants
Authors: Sayyed Benyamin Alavi, Giovanni Cerri, Leila Chennaoui, Ambra Giovannelli, Stefano Mazzoni
Abstract:
Primary energy consumption and emissions of pollutants (including CO2) sustainability call to search methodologies to lower power absorption for unit of a given product. Cool production plants based on vapour compression are widely used for many applications: air conditioning, food conservation, domestic refrigerators and freezers, special industrial processes, etc. In the field of cool production, the amount of Yearly Consumed Primary Energy is enormous, thus, saving some percentage of it, leads to big worldwide impact in the energy consumption and related energy sustainability. Among various techniques to reduce power required by a Vapour Compression Cool Production Plant (VCCPP), the technique based on Power Regeneration by means of Internal Direct Cycle (IDC) will be considered in this paper. Power produced by IDC reduces power need for unit of produced Cool Power by the VCCPP. The paper contains basic concepts that lead to develop IDCs and the proposed options to use the IDC Power. Among various selections for using turbo machines, Best Economically Available Technologies (BEATs) have been explored. Based on vehicle engine turbochargers, they have been taken into consideration for this application. According to BEAT Database and similarity rules, the best turbo machine selection leads to the minimum nominal power required by VCCPP Main Compressor. Results obtained installing the prototype in “ad hoc” designed test bench will be discussed and compared with the expected performance. Forecasts for the upgrading VCCPP, various applications will be given and discussed. 4-6% saving is expected for air conditioning cooling plants and 15-22% is expected for cryogenic plants.Keywords: Refrigeration Plant, Vapour Pressure Amplifier, Compressor, Expander, Turbine, Turbomachinery Selection, Power Saving
Procedia PDF Downloads 4262679 A New Method Separating Relevant Features from Irrelevant Ones Using Fuzzy and OWA Operator Techniques
Authors: Imed Feki, Faouzi Msahli
Abstract:
Selection of relevant parameters from a high dimensional process operation setting space is a problem frequently encountered in industrial process modelling. This paper presents a method for selecting the most relevant fabric physical parameters for each sensory quality feature. The proposed relevancy criterion has been developed using two approaches. The first utilizes a fuzzy sensitivity criterion by exploiting from experimental data the relationship between physical parameters and all the sensory quality features for each evaluator. Next an OWA aggregation procedure is applied to aggregate the ranking lists provided by different evaluators. In the second approach, another panel of experts provides their ranking lists of physical features according to their professional knowledge. Also by applying OWA and a fuzzy aggregation model, the data sensitivity-based ranking list and the knowledge-based ranking list are combined using our proposed percolation technique, to determine the final ranking list. The key issue of the proposed percolation technique is to filter automatically and objectively the relevant features by creating a gap between scores of relevant and irrelevant parameters. It permits to automatically generate threshold that can effectively reduce human subjectivity and arbitrariness when manually choosing thresholds. For a specific sensory descriptor, the threshold is defined systematically by iteratively aggregating (n times) the ranking lists generated by OWA and fuzzy models, according to a specific algorithm. Having applied the percolation technique on a real example, of a well known finished textile product especially the stonewashed denims, usually considered as the most important quality criteria in jeans’ evaluation, we separate the relevant physical features from irrelevant ones for each sensory descriptor. The originality and performance of the proposed relevant feature selection method can be shown by the variability in the number of physical features in the set of selected relevant parameters. Instead of selecting identical numbers of features with a predefined threshold, the proposed method can be adapted to the specific natures of the complex relations between sensory descriptors and physical features, in order to propose lists of relevant features of different sizes for different descriptors. In order to obtain more reliable results for selection of relevant physical features, the percolation technique has been applied for combining the fuzzy global relevancy and OWA global relevancy criteria in order to clearly distinguish scores of the relevant physical features from those of irrelevant ones.Keywords: data sensitivity, feature selection, fuzzy logic, OWA operators, percolation technique
Procedia PDF Downloads 6052678 The Impact of Modeling Method of Moisture Emission from the Swimming Pool on the Accuracy of Numerical Calculations of Air Parameters in Ventilated Natatorium
Authors: Piotr Ciuman, Barbara Lipska
Abstract:
The aim of presented research was to improve numerical predictions of air parameters distribution in the actual natatorium by the selection of calculation formula of mass flux of moisture emitted from the pool. Selected correlation should ensure the best compliance of numerical results with the measurements' results of these parameters in the facility. The numerical model of the natatorium was developed, for which boundary conditions were prepared on the basis of measurements' results carried out in the actual facility. Numerical calculations were carried out with the use of ANSYS CFX software, with six formulas being implemented, which in various ways made the moisture emission dependent on water surface temperature and air parameters in the natatorium. The results of calculations with the use of these formulas were compared for air parameters' distributions: Specific humidity, velocity and temperature in the facility. For the selection of the best formula, numerical results of these parameters in occupied zone were validated by comparison with the measurements' results carried out at selected points of this zone.Keywords: experimental validation, indoor swimming pool, moisture emission, natatorium, numerical calculations CFD, thermal and humidity conditions, ventilation
Procedia PDF Downloads 4112677 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem
Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang
Abstract:
The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.Keywords: stud krill herd, economic dispatch, crossover, stud selection, valve-point effect
Procedia PDF Downloads 1982676 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy
Procedia PDF Downloads 4432675 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer
Procedia PDF Downloads 2622674 Multiple-Channel Piezoelectric Actuated Tunable Optical Filter for WDM Application
Authors: Hailu Dessalegn, T. Srinivas
Abstract:
We propose new multiple-channel piezoelectric (PZT) actuated tunable optical filter based on racetrack multi-ring resonators for wavelength de-multiplexing network applications. We design tunable eight-channel wavelength de-multiplexer consisting of eight cascaded PZT actuated tunable multi-ring resonator filter with a channel spacing of 1.6 nm. The filter for each channel is basically structured on a suspended beam, sandwiched with piezoelectric material and built in integrated ring resonators which are placed on the middle of the beam to gain uniform stress and linearly varying longitudinal strain. A reference single mode serially coupled multi stage racetrack ring resonator with the same radii and coupling length is designed with a line width of 0.8974 nm with a flat top pass band at 1dB of 0.5205 nm and free spectral range of about 14.9 nm. In each channel, a small change in the perimeter of the rings is introduced to establish the shift in resonance wavelength as per the defined channel spacing. As a result, when a DC voltage is applied, the beams will elongate, which involves mechanical deformation of the ring resonators that induces a stress and a strain, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift providing the tunability of central wavelength in each channel. Simultaneous wave length shift as high as 45.54 pm/V has been achieved with negligible tunability variation in the eight channel tunable optical filter proportional to the DC voltage applied in the structure, and it is capable of tuning up to 3.45 nm in each channel with a maximum loss difference of 0.22 dB in the tuning range and out of band rejection ratio of 35 dB, with a low channel crosstalk ≤ 30 dB.Keywords: optical MEMS, piezoelectric (PZT) actuation, tunable optical filter, wavelength de-multiplexer
Procedia PDF Downloads 437