Search results for: academic performance prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16511

Search results for: academic performance prediction

15821 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 145
15820 Analysis and Prediction of Fine Particulate Matter in the Air Environment for 2007-2020 in Bangkok Thailand

Authors: Phawichsak Prapassornpitaya, Wanida Jinsart

Abstract:

Daily monitoring PM₁₀ and PM₂.₅ data from 2007 to 2017 were analyzed to provide baseline data for prediction of the air pollution in Bangkok in the period of 2018 -2020. Two statistical models, Autoregressive Integrated Moving Average model (ARIMA) were used to evaluate the trends of pollutions. The prediction concentrations were tested by root means square error (RMSE) and index of agreement (IOA). This evaluation of the traffic PM₂.₅ and PM₁₀ were studied in association with the regulatory control and emission standard changes. The emission factors of particulate matter from diesel vehicles were decreased when applied higher number of euro standard. The trends of ambient air pollutions were expected to decrease. However, the Bangkok smog episode in February 2018 with temperature inversion caused high concentration of PM₂.₅ in the air environment of Bangkok. The impact of traffic pollutants was depended upon the emission sources, temperature variations, and metrological conditions.

Keywords: fine particulate matter, ARIMA, RMSE, Bangkok

Procedia PDF Downloads 274
15819 The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics

Authors: Dorottya Horváth, Tímea Harmath-Tánczos

Abstract:

Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders.

Keywords: ADHD, attention functions, executive functions, learning disabilities, working memory

Procedia PDF Downloads 92
15818 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 221
15817 A Comparative Analysis of Lexical Bundles in Academic Writing: Insights from Persian and Native English Writers in Applied Linguistics

Authors: Elham Shahrjooi Haghighi

Abstract:

This research explores how lexical bundles are utilized in writing in the field of linguistics by comparing professional Persian writers with native English writers using corpus-based studies and advanced computational techniques to examine the occurrence and characteristics of lexical bundles in academic writings. The review of literature emphasizes how important lexical bundles are, in organizing discussions and conveying opinions in both spoken and written language contexts across genres and proficiency levels in fields of study. Previous research has indicated that native English writers tend to employ an array and diversity of bundles than non-native writers do; these bundles are essential elements in academic writing. In this study’s methodology section, the research utilizes a corpus-based method to analyze a collection of writings such as research papers and advanced theses at the doctoral and masters’ levels. The examination uncovers variances in the utilization of groupings between writers who are native speakers of Persian and those who are native English speakers with the latter group displaying a greater occurrence and variety, in types of groupings. Furthermore, the research delves into how these groupings contribute to aspects classifying them into categories based on their relevance to research text structure and individuals as outlined in Hyland’s framework. The results show that Persian authors employ phrases and demonstrate distinct structural and functional tendencies in comparison to native English writers. This variation is linked to differing language skills, levels, disciplinary norms and cultural factors. The study also highlights the pedagogical implications of these findings, suggesting that targeted instruction on the use of lexical bundles could enhance the academic writing skills of non-native speakers. In conclusion, this research contributes to the understanding of lexical bundles in academic writing by providing a detailed comparative analysis of their use by Persian and native English writers. The insights from this study have important implications for language education and the development of effective writing strategies for non-native English speakers in academic contexts.

Keywords: lexical bundles, academic writing, comparative analysis, computational techniques

Procedia PDF Downloads 18
15816 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 136
15815 A Qualitative Study About a Former Professional Baseball Player with Dyslexia

Authors: Matthias Grunke

Abstract:

In this qualitative study, we interviewed a young man with learning disabilities who played professional baseball for two years. Individuals with severe academic challenges constitute one of the most vulnerable groups of our society. Science has to find ways on how to arm them against life’s challenges and help them to cope with the many risk factors that they are usually confronted with. Team sports like baseball seem to be a suitable means for that purpose. In the interview, our participant talked about his life as a student with severe learning difficulties and related how his career in baseball made his academic challenges appear much less significant. He gave some meaningful insights into what helped him to build a happy and fulfilling life for himself, not only in spite of his challenges but also because of what he's learning disabilities taught him. Support from significant others, a sense of purpose, his fighting spirit ignited by sports, and the success that he experienced on the baseball field were among the most relevant factors. Overall, this study highlights the importance of finding an outlet for young people with learning disabilities where their academic difficulties retreat into the background and their talents are validated.

Keywords: baseball, inclusion, learning disabilities, resilience

Procedia PDF Downloads 94
15814 An Optimal Perspective on Research in Translation Studies

Authors: Andrea Musumeci

Abstract:

General theory of translation has suffered the lack of a homogeneous academic dialect, a holistic methodology to account for the diversity of factors involved in the discipline. An underlying pattern amongst theories of translation belonging to different periods and schools has been identified. Such pattern, which is linguistics oriented, could play a role towards unified academic and professional environments, both in terms of research and as a professional category. The implementation of such an approach has also led to a critique of the concept of equivalence, as being not the best of ways to account for translating phenomena.

Keywords: optimal, translating, research translation theory, methodology, descriptive analysis

Procedia PDF Downloads 619
15813 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence

Procedia PDF Downloads 117
15812 Time Series Forecasting (TSF) Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed-length window in the past as an explicit input. In this paper, we study how the performance of predictive models changes as a function of different look-back window sizes and different amounts of time to predict the future. We also consider the performance of the recent attention-based Transformer models, which have had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (RNN, LSTM, GRU, and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the UCI website, which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Average Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: air quality prediction, deep learning algorithms, time series forecasting, look-back window

Procedia PDF Downloads 151
15811 Assessment of Modern RANS Models for the C3X Vane Film Cooling Prediction

Authors: Mikhail Gritskevich, Sebastian Hohenstein

Abstract:

The paper presents the results of a detailed assessment of several modern Reynolds Averaged Navier-Stokes (RANS) turbulence models for prediction of C3X vane film cooling at various injection regimes. Three models are considered, namely the Shear Stress Transport (SST) model, the modification of the SST model accounting for the streamlines curvature (SST-CC), and the Explicit Algebraic Reynolds Stress Model (EARSM). It is shown that all the considered models face with a problem in prediction of the adiabatic effectiveness in the vicinity of the cooling holes; however, accounting for the Reynolds stress anisotropy within the EARSM model noticeably increases the solution accuracy. On the other hand, further downstream all the models provide a reasonable agreement with the experimental data for the adiabatic effectiveness and among the considered models the most accurate results are obtained with the use EARMS.

Keywords: discrete holes film cooling, Reynolds Averaged Navier-Stokes (RANS), Reynolds stress tensor anisotropy, turbulent heat transfer

Procedia PDF Downloads 417
15810 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction

Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey

Abstract:

In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.

Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization

Procedia PDF Downloads 343
15809 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 661
15808 Influence of Procrastination on Academic Achievement of Students in Tertiary Institutions in Kwara State, Nigeria

Authors: Usman Tunde Saadu, Adedayo Adesokan, Raseed Adewale Hamsat

Abstract:

This study examined the influence of procrastination on the academic achievement of students in tertiary institutions in Kwara State, Nigeria. Descriptive survey was adopted for this study and the total number of 300 respondents participated in the study. Stratified and simple random sampling techniques were used to select 3 institutions and 30 departments respectively. Systematic sampling technique was used to select 10 final year students in each department. Two instruments were used to obtain data from the respondents. Procrastination Assessment Scale adapted from Solomon and Rothblum (1984) and a proforma designed by researchers to obtain students CGPA in 2013/2014 academic session. The reliability score of 0.80 was obtained for the instrument using split half method. One research question and one hypothesis were postulated for this study. Percentage was employed to answer research question while research hypothesis was tested with t-test statistical analysis at 0.05 level of significant. The findings of this study revealed that most of final year students in tertiary institutions in Kwara State procrastinated because 82.3% engaged in procrastination while 17.7% did not procrastinate. Also, the study revealed that there was a significant difference between the academic achievement of tertiary institution students who procrastinate and those who did not procrastinate (cal. t-value =2.634 < critical t-value = 1.960). Students who did not engage in act of procrastinate achieved better academically than students who engage in procrastination. Based on the findings of this study, the following recommendations were made; procrastination as a concept, should be taught at the various institutions so that students will understand what the concept is all about. Guidance and counsellor and educational psychologists should be employed at various institutions to handle students who procrastinate so that appropriate methods will be recommended so solve the problem.

Keywords: academic, achievement, procrastination, institution

Procedia PDF Downloads 445
15807 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores

Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi

Abstract:

In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.

Keywords: drug synergy, clustering, prediction, machine learning., deep learning

Procedia PDF Downloads 76
15806 Changing Pedagogy from Segregation to Inclusion: A Phenomenological Case Study of Ten Special Educators

Authors: Monique Somma

Abstract:

As special education service delivery models are shifting in order to better meet the academic and social rights of students with exceptionalities, teaching practices must also align with these goals. This phenomenological case study explored the change experiences of special education teachers who have transitioned from teaching in a self-contained special education class to an inclusive class setting. Ten special educators who had recently changed their teaching roles to inclusive classrooms, completed surveys and participated in a focus group. Of the original ten educators, five chose to participate further in individual interviews. Data collected from the three methods was examined and compared for common themes. Emergent themes included, support and training, attitudes and perceptions, inclusive practice, growth and change, and teaching practice. The overall findings indicated that despite their special education training, these educators were challenged by their own beliefs and expectations, the attitudes of others and systematic barriers in the education system. They were equally surprised by the overall social and academic performance of students with exceptionalities in inclusive classes, as well as, the social and academic growth and development of the other students in the class. Over the course of their careers, they all identified an overall personal pedagogical shift, to some degree or another, which they contributed to the successful experiences of inclusion they had. They also recognized that collaborating with others was essential for inclusion to be successful. The findings from this study suggest several implications for professional development and training needs specific to special education teachers moving into inclusive settings. Maximizing the skills of teachers with special education experience in a Professional Learning Community (PLC) and mentorship opportunities would be beneficial to all staffs working toward creating inclusive classrooms and schools.

Keywords: attitudes and perceptions, inclusion of students with exceptionalities, special education teachers, teacher change

Procedia PDF Downloads 232
15805 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 107
15804 A Case Study in Montreal: Strategies Implemented by Immigrant Parents to Support Their Child's Educational and Academic Success: Managing Distance between School in the Country of Origin and School in the Host Society

Authors: Josée Charette

Abstract:

The academic and educational success of immigrant students is a current issue in education, especially in western societies such in the province of Quebec, in Canada. For people who immigrate with school-age children, the success of the family’s migratory project is often measured by the benefits drawn by children from the educational institutions of their host society. In order to support the academic achievement of their children, immigrant parents try to develop practices that derive from their representations of school and related challenges inspired by the socio-cultural context of their country of origin. These findings lead us to the following question: How does strategies implemented by immigrant parents to manage the representational distance between school of their country of origin and school of the host society support or not the academic and educational success of their child? In the context of a qualitative exploratory approach, we have made interviews in the French-, English- and Spanish-languages with 32 newly immigrated parents and 10 of their children. Parents were invited to complete a network of free associations about «School in Quebec» as a premise for the interview. The objective of this communication is to present strategies implemented by immigrant parents to manage the distance between their representations of schools in their country of origin and in the host society, and to explore the influence of this management on their child’s academic and educational trajectories. Data analysis led us to develop various types of strategies, such as continuity, adaptation, resources mobilization, compensation and "return to basics" strategies. These strategies seem to be part of a continuum from oppositional-conflict scenario, in which parental strategies act as a risk factor, to conciliator-integrator scenario, in which parental strategies act as a protective factor for immigrant students’ academic and educational success. In conclusion, we believe that our research helps in providing a more efficient support to immigrant parents and contributes to develop a wider portrait of immigrant students’ academic achievement. In addition, we think that by improving the experience of immigrant families in Quebec schools, a greater number of migratory projects will be effective.

Keywords: immigrant students, family’s migratory project, school of origin and school of host society, immigrants parental strategies

Procedia PDF Downloads 443
15803 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 197
15802 Solid State Drive End to End Reliability Prediction, Characterization and Control

Authors: Mohd Azman Abdul Latif, Erwan Basiron

Abstract:

A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.

Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control

Procedia PDF Downloads 170
15801 Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils

Authors: Bao Thach Nguyen, Abbas Mohajerani

Abstract:

The California bearing ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments, and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength, and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some fine-grained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.

Keywords: California bearing ratio, fine-grained soils, soil physical properties, pavement, soil test

Procedia PDF Downloads 507
15800 Effectiveness of a Peer-Mediated Intervention on Writing Skills in Students with Autism Spectrum Disorder in the Inclusive Classroom

Authors: Siddiq Ahmed

Abstract:

The current study aimed to investigate the effectiveness of a Peer-Mediated Intervention (PMI) on writing skills for a student with autism spectrum disorders in inclusive classrooms. The participants in this study were two students, one as a tutor and another as a tutee who was diagnosed with autism spectrum disorder (ASD). The target participant struggled with writing skills and was paired with a student with high academic outcomes. The Tutor had a readiness to act as a tutor for his peer and was trained on how to assist his peer and how to identify and guide his peer’s writing mistakes. Multiple baseline design across behaviors was implemented to monitor the student’s progress in writing skills. The results of the present study showed that PMI yielded significant improvements in academic achievements for the target student. This study suggests that further studies should replicate the current study with an intensive focus on other academic skills such as reading comprehension, writing social stories, and math.

Keywords: peer tutoring, writing skills, autism, inclusion

Procedia PDF Downloads 105
15799 Supporting the ESL Student in a Tertiary Setting: Carrot and Stick

Authors: Ralph Barnes

Abstract:

The internationalization and globalization of education are now a huge, multi-million dollar industry. The movement of international students across the globe has provided a rich vein of revenue for universities and institutions of higher learning to exploit and harvest. A concerted effort has been made by universities worldwide to court students from overseas, with some countries relying up to one-third of student fees, coming from international students. Australian universities and English Language Centres are coming under increased government scrutiny in respect to such areas as the academic progression of international students, management and understanding of student visa requirements and the design of higher education courses and effective assessment regimes. As such, universities and other higher education institutions are restructuring themselves more as service providers rather than as strictly education providers. In this paper, the high-touch, tailored academic model currently followed by some Australian educational institutions to support international students, is examined and challenged. Academic support services offered to international students need to be coordinated, sustained and reviewed regularly, in order to assess their effectiveness. Maintaining the delivery of high-quality educational programs and learning outcomes for this high income-generating student cohort is vital, in order to continue the successful academic and social engagement by international students across the Australian university and higher education landscape.

Keywords: ESL, engagement, tertiary, learning

Procedia PDF Downloads 202
15798 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii

Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi

Abstract:

Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.

Keywords: full factorial design, neural network, nose radius, surface finish

Procedia PDF Downloads 365
15797 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaning-making characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: learning activity, mathematics, motivation, student

Procedia PDF Downloads 415
15796 Understanding of Heritage Values within University Education Systems in the Kingdom of Saudi Arabia

Authors: Mahmoud Tarek Mohamed Hammad

Abstract:

Despite the importance of the role and efforts made by the universities of the Kingdom of Saudi Arabia in reviving and preserving heritage architecture as an important cultural heritage in the Kingdom, The idea revolves around restoration and conservation processes and neglects the architectural heritage values, whose content can be used in sustainable contemporary architectural works. Educational values based on heritage architecture and how to integrate with the contemporary requirements were investigated in this research. For this purpose, by understanding the heritage architectural values as well as educational, academic process, the researcher presented an educational model of questionnaire forms for architecture students and the staff at the Architecture Department at Al-Baha University as a case study that serves the aims of the research. The results of the research show that heritage values especially those interview results are considered as a positive indicator of the importance of these values. The students and the staff need both to gain an understanding of heritage values as well as an understanding of theories of incorporating those values into the design process of contemporary local architecture. The research concludes that a correct understanding of the heritage values, its performance, and its reintegration with modern architecture technology should be focused on architectural education.

Keywords: heritage architecture, academic work, heritage values, sustainable contemporary local architectural

Procedia PDF Downloads 165
15795 Valuing Academic Excellence in Higher Education: The Case of Establishing a Human Development Unit in a European Start-up University

Authors: Eleftheria Atta, Yianna Vovides, Marios Katsioloudes

Abstract:

In the fusion of neoliberalism and globalization, Higher Education (HE) is becoming increasingly complex. The changing patterns of the economy worldwide caused the development of high value-added economy HE has been viewed as a social investment, significant for the development of knowledge-based societies and economies. In order to contribute to economic competitiveness universities are required to produce local and employable workers in order to fit into the neoliberal economic environment. The emergence of neoliberal performativity, which measures outcomes, is a key aspect in a neoliberal era. It facilitates the redesign of institutions making organizations and individuals to think about themselves in relation to their performance. Performativity and performance management systems lead academics to become more effective, professionally advance, improve and become better than others and therefore act competitively. Besides the aforementioned complexities, universities also encounter the challenge of maintaining a set of values to guide an institution’s actions and which have always been highly respected in developing a HE institution. The formulation of a clear set of values also determines the institutional culture which will be maintained. It is evident that values create a significant framework for the workplace and may determine positive institutional results. Universities are required to engage in activities for capacity building which will improve their students’ competence as well as offer opportunities to administrative and academic staff to professionally develop in light of neoliberal performativity. Additionally, the University is now considered as an innovation ecosystem playing a significant role in providing education, research and innovation to help create solutions to meet social, environmental and economic challenges. Thus, Universities become central in orchestrating multi-actor innovation networks. This presentation will discuss the establishment of an institutional unit entitled ‘Human Development Unit’ (HDU) in a European start-up university. The activities of the HDU are envisioned as drivers for innovation that would enable the university as a whole to maintain its position in a fast-changing world and be ready to face adaptive challenges. In addition, the HDU provides its students, staff, and faculty with opportunities to advance their academic and professional development through engagement in programs that align with institutional values. It also serves as a connector with the broader community. The presentation will highlight the functions of three centers which the unit will coordinate namely, the Student Development Center (SDC), the Faculty & Staff Development Center (FSDC) and the Continuing Education Center (CEC). The presentation aligns with the aim of the conference as it welcomes presentations to discuss innovations and challenges encountered in HE. Particularly, this presentation seeks to discuss the establishment of an innovative unit at a start-up university which will contribute to creating an institutional culture shaped by the value of academic excellence for students as well as for staff, shaping and defining the functions and activities of the unit. The establishment of the proposed unit is crucial in a start-up university both to differentiate from other competitors but also to sustain its presence given the pressures in a neoliberal HE context.

Keywords: academic excellence, globalization, human development unit, neoliberalism

Procedia PDF Downloads 143
15794 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
15793 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes

Authors: Qiming Zhang, Youda Ye, Qinxue Jiang

Abstract:

Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.

Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes

Procedia PDF Downloads 246
15792 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone

Procedia PDF Downloads 401