Search results for: Spatial Data Analyses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28625

Search results for: Spatial Data Analyses

27935 Spatial Practice Towards Urban Identity: The Shift, Limitation and Contemporary Value of Christopher

Authors: Botao Zhao, Hong Jiang

Abstract:

Christopher Alexander's urban design theory challenges the technical rationality of the empiricism that prevailsin the first half of the 20th century. Alexander emphasizes the wholeness of the city through progressive design, conceptual-based participation, shaping of centrality, and other principles. Based on Christopher Alexander’s comprehensive book “a new theory of urban design” and by combining with other major works, this paper puts Alexander into the history of the post-modern shift of architecture and urban planning in the middle and late 20th century and analyzes the uniqueness of Alexander’s systematization of spatial context. Despite the overemphasis on the initiative of design, Alexander's attempt to discover the “objectivity” of good space -the ability to generate people's urban identity-through an expanded concept of space, and a systematic approach to design restructures the visceral connection between urban space and human. The concept of urban identity is then decomposed into the identity of the physical setting, identity of process, and identity of meaning. Professionals need to learn from the reality and history of urban space to construct spatial“vocabulary libraries” and create the wholeness of the city, and in which process strengthen the subjectivity of the discipline simultaneously, to generate living structures in which urban identity could be ultimately cultivated.

Keywords: christopher alexander, a new theory of urban design, Urban identity, pattern language, urban design

Procedia PDF Downloads 151
27934 PET Image Resolution Enhancement

Authors: Krzysztof Malczewski

Abstract:

PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity.

Keywords: PET, super-resolution, image reconstruction, pattern recognition

Procedia PDF Downloads 371
27933 Investigating the Relationship between Iranian EFL Teachers' Motivation, Creativity and Job Stress

Authors: Mehrab Karimian

Abstract:

This study investigates the intricate relationships among Iranian EFL teachers’ motivation, creativity, and job stress in Shiraz and Fasa institutes. The primary aim is to explore these links using quantitative methods, providing a comprehensive understanding of how these factors interact within the educational context. The research employed convenient sampling, gathering data from 101 EFL teachers through three specific questionnaires: the Motivation to Teach Questionnaire, Teacher Creativity Questionnaire, and Job Stress Questionnaire. The methodology involved rigorous statistical analyses, including Pearson correlation and multiple regression, to interpret the collected data. The findings revealed positive relationships between motivation and creativity, as well as between motivation and job stress. However, no significant link was observed between creativity and job stress. Notably, creativity emerged as a strong predictor of motivation, highlighting its crucial role in the motivational dynamics of EFL teachers. The theoretical importance of this study lies in its contribution to understanding how motivation can influence both creativity and job stress among EFL teachers. By emphasizing the complex interplay of these factors, the study provides valuable insights that can inform future research and educational practices. The data collection process was thorough, utilizing well-established questionnaires to ensure the reliability and validity of the findings. Statistical analyses such as Pearson correlation and multiple regression were employed to interpret the relationships between motivation, creativity, and job stress. These analyses provided a detailed understanding of how these variables interact, offering a nuanced view of the motivational and stress dynamics in the teaching profession. The study addressed key questions regarding the influence of motivation on creativity and job stress, underscoring the predictive power of creativity on motivation. The conclusion drawn from the study suggests that motivated EFL teachers may experience higher levels of job stress. This finding highlights the need for targeted interventions to support teacher well-being and maintain their motivation. Such interventions could include professional development programs, stress management workshops, and creative teaching strategies to help teachers manage stress while fostering their motivation and creativity. Reviewers have commended the study for its contribution to the field, particularly in revealing the intricate dynamics between motivation, creativity, and job stress in EFL teachers. They recommend enhancing the methodology by considering potential confounding variables and incorporating qualitative approaches to complement the quantitative findings. These suggestions aim to provide a more comprehensive understanding of the factors influencing EFL teachers’ motivation, creativity, and job stress.

Keywords: creativity, Job stress, gender, years of teaching experience

Procedia PDF Downloads 16
27932 Study and Analysis of Optical Intersatellite Links

Authors: Boudene Maamar, Xu Mai

Abstract:

Optical Intersatellite Links (OISLs) are wireless communications using optical signals to interconnect satellites. It is expected to be the next generation wireless communication technology according to its inherent characteristics like: an increased bandwidth, a high data rate, a data transmission security, an immunity to interference, and an unregulated spectrum etc. Optical space links are the best choice for the classical communication schemes due to its distinctive properties; high frequency, small antenna diameter and lowest transmitted power, which are critical factors to define a space communication. This paper discusses the development of free space technology and analyses the parameters and factors to establish a reliable intersatellite links using an optical signal to exchange data between satellites.

Keywords: optical intersatellite links, optical wireless communications, free space optical communications, next generation wireless communication

Procedia PDF Downloads 447
27931 Sampling Two-Channel Nonseparable Wavelets and Its Applications in Multispectral Image Fusion

Authors: Bin Liu, Weijie Liu, Bin Sun, Yihui Luo

Abstract:

In order to solve the problem of lower spatial resolution and block effect in the fusion method based on separable wavelet transform in the resulting fusion image, a new sampling mode based on multi-resolution analysis of two-channel non separable wavelet transform, whose dilation matrix is [1,1;1,-1], is presented and a multispectral image fusion method based on this kind of sampling mode is proposed. Filter banks related to this kind of wavelet are constructed, and multiresolution decomposition of the intensity of the MS and panchromatic image are performed in the sampled mode using the constructed filter bank. The low- and high-frequency coefficients are fused by different fusion rules. The experiment results show that this method has good visual effect. The fusion performance has been noted to outperform the IHS fusion method, as well as, the fusion methods based on DWT, IHS-DWT, IHS-Contourlet transform, and IHS-Curvelet transform in preserving both spectral quality and high spatial resolution information. Furthermore, when compared with the fusion method based on nonsubsampled two-channel non separable wavelet, the proposed method has been observed to have higher spatial resolution and good global spectral information.

Keywords: image fusion, two-channel sampled nonseparable wavelets, multispectral image, panchromatic image

Procedia PDF Downloads 440
27930 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
27929 The Analysis of Movement Pattern during Reach and Grasp in Stroke Patients: A Kinematic Approach

Authors: Hyo Seon Choi, Ju Sun Kim, DY Kim

Abstract:

Introduction: This study was aimed to evaluate temporo-spatial patterns during the reach and grasp task in hemiplegic stroke patients and to identify movement pattern according to severity of motor impairment. Method: 29 subacute post-stroke patients were enrolled in this study. The temporo-spatial and kinematic data were obtained during reach and grasp task through 3D motion analysis (VICON). The reach and grasp task was composed of four sub-tasks: reach (T1), transport to mouth (T2), transport back to table (T3) and return (T4). The movement time, joint angle and sum of deviation angles from normative data were compared between affected side and unaffected side. They were also compared between two groups (mild to moderate group: 28~66, severe group: 0~27) divided by upper-Fugl-Meyer Assessment (FMA) scale. Result: In affected side, total time and durations of all four tasks were significantly longer than those in unaffected side (p < 0.001). The affected side demonstrated significant larger shoulder abduction, shoulder internal rotation, wrist flexion, wrist pronation, thoracic external rotation and smaller shoulder flexion during reach and grasp task (p < 0.05). The significant differences between mild to moderate group and severe group were observed in total duration, durations of T1, T2, and T3 in reach and grasp task (p < 0.01). The severe group showed significant larger shoulder internal rotation during T2 (p < 0.05) and wrist flexion during T2, T3 (p < 0.05) than mild to moderate group. In range of motion during each task, shoulder abduction-adduction during T2 and T3, shoulder internal-external rotation during T2, elbow flexion-extension during T1 showed significant difference between two groups (p < 0.05). The severe group had significant larger total deviation angles in shoulder internal-external rotation and wrist extension-flexion during reach and grasp task (p < 0.05). Conclusion: This study suggests that post-stroke hemiplegic patients have an unique temporo-spatial and kinematic patterns during reach and grasp task, and the movement pattern may be related to affected upper limb severity. These results may be useful to interpret the motion of upper extremity in stroke patients.

Keywords: Fugl-Meyer Assessment (FMA), motion analysis, reach and grasp, stroke

Procedia PDF Downloads 238
27928 Groundwater Quality Monitoring in the Shoush Suburbs, Khouzestan Province, Iran

Authors: Mohammad Tahsin Karimi Nezhad, Zaynab Shadbahr, Ali Gholami

Abstract:

In recent years many attempts have been made to assess groundwater contamination by nitrates worldwide. The assessment of spatial and temporal variations of physico-chemical parameters of water is necessary to mange water quality. The objectives of the study were to evaluate spatial variability and temporal changes of hydrochemical factors by water sampling from 24 wells in the Shoush City suburb. The analysis was conducted for the whole area and for different land use and geological classes. In addition, nitrate concentration variability with descriptive parameters such as sampling depth, dissolved oxygen, and on ground nitrogen loadings was also investigated The results showed that nitrate concentrations did not exceed the standard limit (50 mg/l). EC of water samples, ranged from 900 to 1200 µs/cm, TDS from 775 to 830 mg/l and pH from 5.6 to 9.

Keywords: groundwater, GIS, water quality, Iran

Procedia PDF Downloads 431
27927 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139
27926 Geochemical and Spatial Distribution of Minerals in the Tailings of IFE/IJESA Gold Mine Zone, Nigeria

Authors: Oladejo S. O, Tomori W. B, Adebayo A. O

Abstract:

The main objective of this research is to identify the geochemical and mineralogical characteristics potential of unexplored tailings around the gold deposit region using spatial statistics and map modeling. Some physicochemical parameters such as pH, redox potential, electrical conductivity, cation exchange capacity, total organic carbon, total organic matter, residual humidity, Cation exchange capacity, and particle size were determined from both the mine drains and tailing samples using standard methods. The physicochemical parameters of tailings ranges obtained were pH (6.0 – 7.3), Eh (−16 - 95 Mev), EC (49 - 156 µS/cm), RH (0.20-2.60%), CEC (3.64-6.45 cmol/kg), TOC (3.57-18.62%), TOM (6.15-22.93%). The geochemical oxide composition were identified using Proton Induced X-ray emission and the results indicated that SiO2>Al2O3>Fe2O3>TiO2>K2O>MgO>CaO>Na2O> P2O5>MnO>Cr2O3>SrO>K2O>P2O5. The major mineralogical components in the tailing samples were determined by quantitative X-ray diffraction techniques using the Rietveld method. Geostatistical relationships among the known points were determined using ArcGIS 10.2 software to interpolate mineral concentration with respect to the study area. The Rietveld method gave a general Quartz value of 73.73-92.76%, IImenite as 0.38-4.77%, Kaolinite group as 3.19-20.83%, Muscovite as 0.77-11.70% with a trace of other minerals. The high percentage of quartz is an indication of a sandy environment with a loose binding site.

Keywords: tailings, geochemical, mineralogy, spatial

Procedia PDF Downloads 74
27925 Analyzing the Evolution of Adverse Events in Pharmacovigilance: A Data-Driven Approach

Authors: Kwaku Damoah

Abstract:

This study presents a comprehensive data-driven analysis to understand the evolution of adverse events (AEs) in pharmacovigilance. Utilizing data from the FDA Adverse Event Reporting System (FAERS), we employed three analytical methods: rank-based, frequency-based, and percentage change analyses. These methods assessed temporal trends and patterns in AE reporting, focusing on various drug-active ingredients and patient demographics. Our findings reveal significant trends in AE occurrences, with both increasing and decreasing patterns from 2000 to 2023. This research highlights the importance of continuous monitoring and advanced analysis in pharmacovigilance, offering valuable insights for healthcare professionals and policymakers to enhance drug safety.

Keywords: event analysis, FDA adverse event reporting system, pharmacovigilance, temporal trend analysis

Procedia PDF Downloads 48
27924 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms

Authors: İsmail Ay

Abstract:

In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.

Keywords: psychological symptoms, need for psychological help, structural equation model, correlation

Procedia PDF Downloads 368
27923 Structural Parameter Identification of Old Steel Truss Bridges

Authors: A. Bogdanovic, M. Vitanova, J. Bojadjieva, Z. Rakicevic, V. Sesov, K. Edip, N. Naumovski, F. Manojlovski, A.Popovska, A. Shoklarovski, T. Kitanovski, D. Ivanovski, I. Markovski, D. Filipovski

Abstract:

The conditions of existing structures change in the course of time and can hardly be characterized particularly if a bridge has long been in function and there is no design documentation related to it. To define the real conditions of a structure, detailed static and dynamic analysis of the structure has to be carried out and its modal parameters have to be defined accurately. Modal analysis enables a quite accurate identification of the natural frequencies and mode shapes. Presented in this paper are the results from the performed detailed analyses of a steel truss bridge that has been in use for more than 7 decades by the military services of R.N. Macedonia and for which there is no documentation at all. Static and dynamic investigations and ambient vibration measurements were performed. The acquired data were used to identify the mode shapes that were used for comparison with the numerical model. Dynamic tests were performed to define the bridge behaviour and the damping index. Finally, based on all the conducted detailed analyses and investigations, conclusions on the conditions of the bridge structure were drawn.

Keywords: ambient vibrations, dynamic identification, in-situ measurement, steel truss bridge

Procedia PDF Downloads 91
27922 The Research of Students Internet in Choosing the Technical and Professional Course in Izeh: Educational Year 2001-2002

Authors: Seyyed Kavous Abbasi

Abstract:

Technical and professional branch is a subcategory of high school educational system. It deals with the programs which have been designed for the promotion of applied science and necessary skill and growth of potential talents in students. The purpose of performance of this branch is preparing of preponderance of in police in different section of industries and service. The aim of this research is the survey of group relation family, economic, educational and individual factors and the student's tendency toward technical professional courses. The method of the study is descriptive survey. 195 subjects were chosen randomly from all the male and female students of technical and professional school in Izeh. Instrument for this research was research-made questionnaire consisting of 22 questions on the base of likers spectrum. The reliability of this questionnaire has been estimated 0.8. Analyses of research data has been performed in two levels of descriptive and inferential statistics. Analyses of data has shown that the family factors with average of 3.12, individual factors 3.95, economic factors 3.92 and educational factors 3.57 more than middle level have more effects , in comparison with the factor of group relation with average of 2.79 less than average level in tendency the technical and professional course . Comparison of effective factors in tendency to technical and professional course has shown that individual factors had the most effects and the group relation factors had the least effects. Comparison between male and female subject's ideas showed that there is a different between their ideas about economics and family factors.

Keywords: high school, relation family, individual factors, analysis interest

Procedia PDF Downloads 245
27921 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 119
27920 Comparison of Gait Variability in Individuals with Trans-Tibial and Trans-Femoral Lower Limb Loss: A Pilot Study

Authors: Hilal Keklicek, Fatih Erbahceci, Elif Kirdi, Ali Yalcin, Semra Topuz, Ozlem Ulger, Gul Sener

Abstract:

Objectives and Goals: The stride-to-stride fluctuations in gait is a determinant of qualified locomotion as known as gait variability. Gait variability is an important predictive factor of fall risk and useful for monitoring the effects of therapeutic interventions and rehabilitation. Comparison of gait variability in individuals with trans-tibial lower limb loss and trans femoral lower limb loss was the aim of the study. Methods: Ten individuals with traumatic unilateral trans femoral limb loss(TF), 12 individuals with traumatic transtibial lower limb loss(TT) and 12 healthy individuals(HI) were the participants of the study. All participants were evaluated with treadmill. Gait characteristics including mean step length, step length variability, ambulation index, time on each foot of participants were evaluated with treadmill. Participants were walked at their preferred speed for six minutes. Data from 4th minutes to 6th minutes were selected for statistical analyses to eliminate learning effect. Results: There were differences between the groups in intact limb step length variation, time on each foot, ambulation index and mean age (p < .05) according to the Kruskal Wallis Test. Pairwise analyses showed that there were differences between the TT and TF in residual limb variation (p=.041), time on intact foot (p=.024), time on prosthetic foot(p=.024), ambulation index(p = .003) in favor of TT group. There were differences between the TT and HI group in intact limb variation (p = .002), time on intact foot (p<.001), time on prosthetic foot (p < .001), ambulation index result (p < .001) in favor of HI group. There were differences between the TF and HI group in intact limb variation (p = .001), time on intact foot (p=.01) ambulation index result (p < .001) in favor of HI group. There was difference between the groups in mean age result from HI group were younger (p < .05).There were similarity between the groups in step lengths (p>.05) and time of prosthesis using in individuals with lower limb loss (p > .05). Conclusions: The pilot study provided basic data about gait stability in individuals with traumatic lower limb loss. Results of the study showed that to evaluate the gait differences between in different amputation level, long-range gait analyses methods may be useful to get more valuable information. On the other hand, similarity in step length may be resulted from effective prosthetic using or effective gait rehabilitation, in conclusion, all participants with lower limb loss were already trained. The differences between the TT and HI; TF and HI may be resulted from the age related features, therefore, age matched population in HI were recommended future studies. Increasing the number of participants and comparison of age-matched groups also recommended to generalize these result.

Keywords: lower limb loss, amputee, gait variability, gait analyses

Procedia PDF Downloads 280
27919 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 147
27918 Gravity Due to the Expansion of Matter and Distortion of Hyperspace

Authors: Arif Ali, Divya Raj Sapkota

Abstract:

In this paper, we explain gravitational attraction as the consequence of the dynamics of four-dimensional bodies and the consequent distortion of space. This approach provides an alternative direction to understand various physical phenomena based on the existence of the fourth spatial dimension. For this interpretation, we formulate the acceleration due to gravity and orbital velocity based on the accelerating expansion of three-dimensional symmetric bodies. It is also shown how distortion in space caused by the dynamics of four-dimensional bodies counterbalances the effect of expansion. We find that the motion of four-dimensional bodies through four-dimensional space leads to gravitational attraction, and the expansion of bodies leads to surface gravity. Thus, dynamics in the fourth spatial dimension provide an alternative explanation to gravity.

Keywords: dimensions, four, gravity, voluceleration

Procedia PDF Downloads 98
27917 Urban Landscape Composition and Configuration Dynamics and Expansion of Hawassa City Analysis, Ethiopia Using Satellite Images and Spatial Metrics Approach

Authors: Berhanu Keno Terfa

Abstract:

To understand the consequences of urbanization, accurate, and long-term representation of urban dynamics is essential. Remote sensing data from various multi-temporal satellite images viz., TM (1987), TM (1995), ETM+ (2005) and OLI (2017) were used. An integrated method, landscape metrics, built-up density, and urban growth type analysis were employed to analyze the pattern, process, and overall growth status in the city. The result showed that the built-up area had increased by 541.3% between 1987 and 2017, at an average annual increment of 8.9%. The area of urban expansion in a city has tripled during the 2005-2017 period as compared to 187- 1995. The major growth took place in the east and southeast directions during 1987–1995 period, whereas predominant built-up development was observed in south and southeast direction during 1995–2017 period. The analysis using landscape metrics and urban typologies showed that Hawassa experienced a fragmented and irregular spatiotemporal urban growth patterns, mostly by extension, suggesting a strong tendency towards sprawl in the past three decades.

Keywords: Hawassa, spatial patterns, remote sensing, multi-temporal, urban sprawl

Procedia PDF Downloads 148
27916 Digital Image Steganography with Multilayer Security

Authors: Amar Partap Singh Pharwaha, Balkrishan Jindal

Abstract:

In this paper, a new method is developed for hiding image in a digital image with multilayer security. In the proposed method, the secret image is encrypted in the first instance using a flexible matrix based symmetric key to add first layer of security. Then another layer of security is added to the secret data by encrypting the ciphered data using Pythagorean Theorem method. The ciphered data bits (4 bits) produced after double encryption are then embedded within digital image in the spatial domain using Least Significant Bits (LSBs) substitution. To improve the image quality of the stego-image, an improved form of pixel adjustment process is proposed. To evaluate the effectiveness of the proposed method, image quality metrics including Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), entropy, correlation, mean value and Universal Image Quality Index (UIQI) are measured. It has been found experimentally that the proposed method provides higher security as well as robustness. In fact, the results of this study are quite promising.

Keywords: Pythagorean theorem, pixel adjustment, ciphered data, image hiding, least significant bit, flexible matrix

Procedia PDF Downloads 337
27915 Field Production Data Collection, Analysis and Reporting Using Automated System

Authors: Amir AlAmeeri, Mohamed Ibrahim

Abstract:

Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance.

Keywords: automation, oil production, Cheleken, exploration and production (E&P), Caspian Sea, allocation, forecast

Procedia PDF Downloads 156
27914 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India

Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi

Abstract:

River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.

Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality

Procedia PDF Downloads 464
27913 Review of the Road Crash Data Availability in Iraq

Authors: Abeer K. Jameel, Harry Evdorides

Abstract:

Iraq is a middle income country where the road safety issue is considered one of the leading causes of deaths. To control the road risk issue, the Iraqi Ministry of Planning, General Statistical Organization started to organise a collection system of traffic accidents data with details related to their causes and severity. These data are published as an annual report. In this paper, a review of the available crash data in Iraq will be presented. The available data represent the rate of accidents in aggregated level and classified according to their types, road users’ details, and crash severity, type of vehicles, causes and number of causalities. The review is according to the types of models used in road safety studies and research, and according to the required road safety data in the road constructions tasks. The available data are also compared with the road safety dataset published in the United Kingdom as an example of developed country. It is concluded that the data in Iraq are suitable for descriptive and exploratory models, aggregated level comparison analysis, and evaluation and monitoring the progress of the overall traffic safety performance. However, important traffic safety studies require disaggregated level of data and details related to the factors of the likelihood of traffic crashes. Some studies require spatial geographic details such as the location of the accidents which is essential in ranking the roads according to their level of safety, and name the most dangerous roads in Iraq which requires tactic plan to control this issue. Global Road safety agencies interested in solve this problem in low and middle-income countries have designed road safety assessment methodologies which are basing on the road attributes data only. Therefore, in this research it is recommended to use one of these methodologies.

Keywords: road safety, Iraq, crash data, road risk assessment, The International Road Assessment Program (iRAP)

Procedia PDF Downloads 256
27912 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations

Procedia PDF Downloads 546
27911 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 125
27910 Nature of Forest Fragmentation Owing to Human Population along Elevation Gradient in Different Countries in Hindu Kush Himalaya Mountains

Authors: Pulakesh Das, Mukunda Dev Behera, Manchiraju Sri Ramachandra Murthy

Abstract:

Large numbers of people living in and around the Hindu Kush Himalaya (HKH) region, depends on this diverse mountainous region for ecosystem services. Following the global trend, this region also experiencing rapid population growth, and demand for timber and agriculture land. The eight countries sharing the HKH region have different forest resources utilization and conservation policies that exert varying forces in the forest ecosystem. This created a variable spatial as well altitudinal gradient in rate of deforestation and corresponding forest patch fragmentation. The quantitative relationship between fragmentation and demography has not been established before for HKH vis-à-vis along elevation gradient. This current study was carried out to attribute the overall and different nature in landscape fragmentations along the altitudinal gradient with the demography of each sharing countries. We have used the tree canopy cover data derived from Landsat data to analyze the deforestation and afforestation rate, and corresponding landscape fragmentation observed during 2000 – 2010. Area-weighted mean radius of gyration (AMN radius of gyration) was computed owing to its advantage as spatial indicator of fragmentation over non-spatial fragmentation indices. Using the subtraction method, the change in fragmentation was computed during 2000 – 2010. Using the tree canopy cover data as a surrogate of forest cover, highest forest loss was observed in Myanmar followed by China, India, Bangladesh, Nepal, Pakistan, Bhutan, and Afghanistan. However, the sequence of fragmentation was different after the maximum fragmentation observed in Myanmar followed by India, China, Bangladesh, and Bhutan; whereas increase in fragmentation was seen following the sequence of as Nepal, Pakistan, and Afghanistan. Using SRTM-derived DEM, we observed higher rate of fragmentation up to 2400m that corroborated with high human population for the year 2000 and 2010. To derive the nature of fragmentation along the altitudinal gradients, the Statistica software was used, where the user defined function was utilized for regression applying the Gauss-Newton estimation method with 50 iterations. We observed overall logarithmic decrease in fragmentation change (area-weighted mean radius of gyration), forest cover loss and population growth during 2000-2010 along the elevation gradient with very high R2 values (i.e., 0.889, 0.895, 0.944 respectively). The observed negative logarithmic function with the major contribution in the initial elevation gradients suggest to gap filling afforestation in the lower altitudes to enhance the forest patch connectivity. Our finding on the pattern of forest fragmentation and human population across the elevation gradient in HKH region will have policy level implication for different nations and would help in characterizing hotspots of change. Availability of free satellite derived data products on forest cover and DEM, grid-data on demography, and utility of geospatial tools helped in quick evaluation of the forest fragmentation vis-a-vis human impact pattern along the elevation gradient in HKH.

Keywords: area-weighted mean radius of gyration, fragmentation, human impact, tree canopy cover

Procedia PDF Downloads 215
27909 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 374
27908 Spatial Conceptualization in French and Italian Speakers: A Contrastive Approach in the Context of the Linguistic Relativity Theory

Authors: Camilla Simoncelli

Abstract:

The connection between language and cognition has been one of the main interests of linguistics from several years. According to the Sapir-Whorf Linguistic Relativity Theory, the way we perceive reality depends on the language we speak which in turn has a central role in the human cognition. This paper is in line with this research work with the aim of analyzing how language structures reflect on our cognitive abilities even in the description of space, which is generally considered as a human natural and universal domain. The main objective is to identify the differences in the encoding of spatial inclusion relationships in French and Italian speakers to make evidence that a significant variation exists at various levels even in two similar systems. Starting from the constitution a corpora, the first step of the study has been to establish the relevant complex prepositions marking an inclusion relation in French and Italian: au centre de, au cœur de, au milieu de, au sein de, à l'intérieur de and the opposition entre/parmi in French; al centro di, al cuore di, nel mezzo di, in seno a, all'interno di and the fra/tra contrast in Italian. These prepositions had been classified on the base of the type of Noun following them (e.g. mass nouns, concrete nouns, abstract nouns, body-parts noun, etc.) following the Collostructional Analysis of lexemes with the purpose of analyzing the preferred construction of each preposition comparing the relations construed. Comparing the Italian and the French results it has been possible to define the degree of representativeness of each target Noun for the chosen preposition studied. Lexicostatistics and Statistical Association Measures showed the values of attraction or repulsion between lexemes and a given preposition, highlighting which words are over-represented or under-represented in a specific context compared to the expected results. For instance, a Noun as Dibattiti has a negative value for the Italian Al cuore di (-1,91), but it has a strong positive representativeness for the corresponding French Au cœur de (+677,76). The value, positive or negative, is the result of a hypergeometric distribution law which displays the current use of some relevant nouns in relations of spatial inclusion by French and Italian speakers. Differences on the kind of location conceptualization denote syntactic and semantic constraints based on spatial features as well as on linguistic peculiarity, too. The aim of this paper is to demonstrate that the domain of spatial relations is basic to human experience and is linked to universally shared perceptual mechanisms which create mental representations depending on the language use. Therefore, linguistic coding strongly correlates with the way spatial distinctions are conceptualized for non-verbal tasks even in close language systems, like Italian and French.

Keywords: cognitive semantics, cross-linguistic variations, locational terms, non-verbal spatial representations

Procedia PDF Downloads 113
27907 Clinical and Laboratory Diagnosis of Malaria in Surat Thani, Southern Thailand

Authors: Manas Kotepui, Chatree Ratcha, Kwuntida Uthaisar

Abstract:

Malaria infection is still to be considered a major public health problem in Thailand. This study, a retrospective data of patients in Surat Thani Province, Southern Thailand during 2012-2015 was retrieved and analyzed. These data include demographic data, clinical characteristics and laboratory diagnosis. Statistical analyses were performed to demonstrate the frequency, proportion, data tendency, and group comparisons. Total of 395 malaria patients were found. Most of patients were male (253 cases, 64.1%). Most of patients (262 cases, 66.3%) were admitted at 6 am-11.59 am of the day. Three hundred and fifty-five patients (97.5%) were positive with P. falciparum. Hemoglobin, hematocrit, and MCHC between P. falciparum and P. vivax were significant different (P value<0.05).During 2012-2015, prevalence of malaria was highest in 2013. Neutrophils, lymphocytes, and monocytes were significantly changed among patients with fever ≤ 3 days compared with patients with fever >3 days. This information will guide to understanding pathogenesis and characteristic of malaria infection in Sothern Thailand.

Keywords: prevalence, malaria, Surat Thani, Thailand

Procedia PDF Downloads 276
27906 Spatial Interactions Between Earthworm Abundance and Tree Growth Characteristics in Western Niger Delta

Authors: Olatunde Sunday Eludoyin, Charles Obiechina Olisa

Abstract:

The study examined the spatial interactions between earthworm abundance (EA) and tree growth characteristics in ecological belts of Western Niger Delta, Nigeria. Eight 20m x 20m quadrat were delimited in the natural vegetation in each of the rainforest (RF), mangrove (M), fresh water swamp (FWS), and guinea savanna (GS) ecological belts to gather data about the tree species (TS) characteristics which included individual number of tree species (IN), diversity (Di), density (De) and richness (Ri). Three quadrats of 1m x 1m were delineated in each of the 20m x 20m quadrats to collect earthworm species the topsoil (0-15cm), and subsoil (15-30cm) and were taken to laboratory for further analysis. Descriptive statistics and inferential statistics were used for data analysis. Findings showed that a total of 19 earthworm species was found, with 58.5% individual species recorded in the topsoil and 41.5% recorded in the subsoil. The total population ofEudriliuseugeniae was predominantly highest in both topsoil (38.4%) and subsoil (27.1%). The total population of individual species of earthworm was least in GS in the topsoil (11.9%) and subsoil (8.4%). A total of 40 different species of TS was recorded, of which 55.5% were recorded in FWS, while RF was significantly highest in the species diversity(0.5971). Regression analysis revealed that Ri, IN, DBH, Di, and De of trees explained 65.9% of the variability of EA in the topsoil, while 46.9 % of the variability of earthworm abundance was explained by the floristic parameters in the subsoil.Similarly, correlation statistics revealed that in the topsoil, EA is positively and significantly correlated with Ri (r=0.35; p<0.05), IN (r=0.523; p<0.05) and De (r=0.469; p<0.05) while DBH was negatively and significantly correlated with earthworm abundance (r=-0.437; p<0.05). In the subsoil, only Ri and DBH correlated significantly with EA. The study concluded that EA in the study locations was highly influenced by tree growth species especially Ri, IN, DBH, Di, and De. The study recommended that the TSabundance should be improved in the study locations to ensure the survival of earthworms for ecosystem functions.

Keywords: interactions, earthworm abundance, tree growth, ecological zones, western niger delta

Procedia PDF Downloads 99