Search results for: Graph Library
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1115

Search results for: Graph Library

425 Formal Specification of Web Services Applications for Digital Reference Services of Library Information System

Authors: Magaji Zainab Musa, Nordin M. A. Rahman, Julaily Aida Jusoh

Abstract:

This paper discusses the formal specification of web services applications for digital reference services (WSDRS). Digital reference service involves a user requesting for help from a reference librarian and a reference librarian responding to the request of a user all by electronic means. In most cases users do not get satisfied while using digital reference service due to delay of response of the librarians. Another may be due to no response or due to librarian giving an irrelevant solution to the problem submitted by the user. WDSRS is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ need in the reference section of libraries. But informal model is in natural language which is inconsistent and ambiguous that may cause difficulties to the developers of the system. In order to solve this problem we decided to convert the informal specifications into formal specifications. This is supposed to reduce the overall development time and cost. Formal specification can be used to provide an unambiguous and precise supplement to natural language descriptions. It can be rigorously validated and verified leading to the early detection of specification errors. We use Z language to develop the formal model and verify it with Z/EVES theorem prover tool.

Keywords: formal, specifications, web services, digital reference services

Procedia PDF Downloads 376
424 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 146
423 Judicial Analysis of the Burden of Proof on the Perpetrator of Corruption Criminal Act

Authors: Rahmayanti, Theresia Simatupang, Ronald H. Sianturi

Abstract:

Corruption criminal act develops rapidly since in the transition era there is weakness in law. Consequently, there is an opportunity for a few people to do fraud and illegal acts and to misuse their positions and formal functions in order to make them rich, and the criminal acts are done systematically and sophisticatedly. Some people believe that legal provisions which specifically regulate the corruption criminal act; namely, Law No. 31/1999 in conjunction with Law No. 20/2001 on the Eradication of Corruption Criminal Act are not effective any more, especially in onus probandi (the burden of proof) on corruptors. The research was a descriptive analysis, a research method which is used to obtain description on a certain situation or condition by explaining the data, and the conclusion is drawn through some analyses. The research used judicial normative approach since it used secondary data as the main data by conducting library research. The system of the burden of proof, which follows the principles of reversal of the burden of proof stipulated in Article 12B, paragraph 1 a and b, Article 37A, and Article 38B of Law No. 20/2001 on the Amendment of Law No. 31/1999, is used only as supporting evidence when the principal case is proved. Meanwhile, how to maximize the implementation of the burden of proof on the perpetrators of corruption criminal act in which the public prosecutor brings a corruption case to Court, depends upon the nature of the case and the type of indictment. The system of burden of proof can be used to eradicate corruption in the Court if some policies and general principles of justice such as independency, impartiality, and legal certainty, are applied.

Keywords: burden of proof, perpetrator, corruption criminal act

Procedia PDF Downloads 322
422 Applications of Internet of Things (IoTs) for Information Resources and Services: Survey of Academic Librarians

Authors: Sultan Aldaihani, Eiman Al-Fadhli

Abstract:

Internet of Things (IoTs) expected to change the future of academic libraries operations. It enables academic libraries to be smart libraries through, for example, the connection of the physical objects with the Internet. The implementation of IoTs will improve library resources and services. Therefore, this research aims to investigate the applications of Internet of Things (IoTs) for information resources and services. Understanding perceptions of academic librarians toward IoTs before adopting of such applications will assist decision-makers in academic libraries in their strategic planning. An online questionnaire was administered to academic librarians at Kuwait University. The findings of this study showed that academic librarians have awareness for the IoTs. They have strongly believed that the IoTs contributes to the development of information resources, services, and understanding of the user's information behavior. Identifying new applications of the IoTs in libraries was the highest possible reason for future adoption. Academic librarians indicated that lack of privacy and data penetration were the greatest problem in their future adoption of IoTs. Academic libraries need to implement the IoTs for enhancing their information resources and services. One important step in the success of future adoption is to conduct awareness and training programs for academic librarians. They also need to maintain higher security and privacy measurements in their implementation for the IoTs. This study will assist academic libraries in accommodating this technology.

Keywords: academic libraries, internet of things, information resources, information services

Procedia PDF Downloads 153
421 The Analysis of the Role of Handicrafts in Consolidating Iran National Identity

Authors: Nadia Pourabbas Tahvildari

Abstract:

National identity is formed in the process of time and in the community while influenced by the historical events. The country which has a more coherent national and historical identity would be successful as well as strengthening solidarity and social cohesion. Among the international community where the various likes challenge the subject of identity, taking into consideration the components which using identity seems to be very critical. Handicrafts as reflecting the historical and cultural characteristics of the product location can be used as an important component in order to introduce the culture and identity to be evaluated. As one of the most durable crafts for man, handicrafts have played a continuous role in sustaining human culture. Today without the presence of handicrafts, restoration of culture and national identity and religious beliefs of the past clans and people, is not only difficult but is even impossible also. Due to its brilliant historical experience and having rich culture and civilization, Iran has accomplished to the high competence in the field of traditional arts and handicrafts. This article is a scientific approach which by using descriptive – analytic method based on library studies tried to address the issue of handicrafts looking to examine the position of the industry to consolidate the national identity. Studies indicate that Iran as one of the original human habitats in the field of handicrafts has adequate enrichment and in case there will be an appropriate planning and investment away from oil-based industry, it would be beneficent. Furthermore, the quality and variety of handicrafts can be used as an essential yardstick for the consolidation of Iran national identity in the age of globalization.

Keywords: handicrafts, Iran national identity, globalization, cultural heritage

Procedia PDF Downloads 730
420 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
419 Leveraging the Power of Dual Spatial-Temporal Data Scheme for Traffic Prediction

Authors: Yang Zhou, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is a fundamental problem in urban environment, facilitating the smart management of various businesses, such as taxi dispatching, bike relocation, and stampede alert. Most earlier methods rely on identifying the intrinsic spatial-temporal correlation to forecast. However, the complex nature of this problem entails a more sophisticated solution that can simultaneously capture the mutual influence of both adjacent and far-flung areas, with the information of time-dimension also incorporated seamlessly. To tackle this difficulty, we propose a new multi-phase architecture, DSTDS (Dual Spatial-Temporal Data Scheme for traffic prediction), that aims to reveal the underlying relationship that determines future traffic trend. First, a graph-based neural network with an attention mechanism is devised to obtain the static features of the road network. Then, a multi-granularity recurrent neural network is built in conjunction with the knowledge from a grid-based model. Subsequently, the preceding output is fed into a spatial-temporal super-resolution module. With this 3-phase structure, we carry out extensive experiments on several real-world datasets to demonstrate the effectiveness of our approach, which surpasses several state-of-the-art methods.

Keywords: traffic prediction, spatial-temporal, recurrent neural network, dual data scheme

Procedia PDF Downloads 117
418 Optimization of Hate Speech and Abusive Language Detection on Indonesian-language Twitter using Genetic Algorithms

Authors: Rikson Gultom

Abstract:

Hate Speech and Abusive language on social media is difficult to detect, usually, it is detected after it becomes viral in cyberspace, of course, it is too late for prevention. An early detection system that has a fairly good accuracy is needed so that it can reduce conflicts that occur in society caused by postings on social media that attack individuals, groups, and governments in Indonesia. The purpose of this study is to find an early detection model on Twitter social media using machine learning that has high accuracy from several machine learning methods studied. In this study, the support vector machine (SVM), Naïve Bayes (NB), and Random Forest Decision Tree (RFDT) methods were compared with the Support Vector machine with genetic algorithm (SVM-GA), Nave Bayes with genetic algorithm (NB-GA), and Random Forest Decision Tree with Genetic Algorithm (RFDT-GA). The study produced a comparison table for the accuracy of the hate speech and abusive language detection model, and presented it in the form of a graph of the accuracy of the six algorithms developed based on the Indonesian-language Twitter dataset, and concluded the best model with the highest accuracy.

Keywords: abusive language, hate speech, machine learning, optimization, social media

Procedia PDF Downloads 129
417 Methylprednisolone Injection Did Not Inhibit Anti-Hbs Response Following Hepatitis B Vaccination in Mice

Authors: P. O. Ughachukwu, P. O. Okonkwo, P. C. Unekwe, J. O. Ogamba

Abstract:

Background: The prevalence of hepatitis B viral infection is high worldwide with liver cirrhosis and hepatocellular carcinoma as important complications. Cases of poor antibody response to hepatitis B vaccination abound. Immunosuppression, especially from glucocorticoids, is often cited as a cause of poor antibody response and there are documented evidences of irrational administration of glucocorticoids to children and adults. The study was, therefore, designed to find out if administration of glucocorticoids affects immune response to vaccination against hepatitis B in mice. Methods: Mice of both sexes were randomly divided into 2 groups. Daily intramuscular methylprednisolone injections, (15 mg kg-1), were given to the test group while sterile deionized water (0.1ml) was given to control mice for 30 days. On day 6 all mice were given 2 μg (0.1ml) hepatitis B vaccine and a booster dose on day 27. On day 34, blood samples were collected and analyzed for anti-HBs titres using enzyme-linked immunosorbent assay (ELISA). Statistical analysis was done using Graph Pad Prism 5.0 and the results taken as statistically significant at p value < 0.05. Results: There were positive serum anti-HBs responses in all mice groups but the differences in titres were not statistically significant. Conclusions: At the dosages and length of exposure used in this study, methylprednisolone injection did not significantly inhibit anti-HBs response in mice following immunization against hepatitis B virus. By extrapolation, methylprednisolone, when used in the usual clinical doses and duration of therapy, is not likely to inhibit immune response to hepatitis B vaccinations in man.

Keywords: anti-HBs, hepatitis B vaccine, immune response, methylprednisolone, mice

Procedia PDF Downloads 323
416 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy

Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao

Abstract:

As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.

Keywords: coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain

Procedia PDF Downloads 409
415 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 323
414 Using Surface Entropy Reduction to Improve the Crystallization Properties of a Recombinant Antibody Fragment RNA Crystallization Chaperone

Authors: Christina Roman, Deepak Koirala, Joseph A. Piccirilli

Abstract:

Phage displaying synthetic Fab libraries have been used to obtain Fabs that bind to specific RNA targets with high affinity and specificity. These Fabs have been demonstrated to facilitate RNA crystallization. However, the antibody framework used in the construction of these phage display libraries contains numerous bulky, flexible, and charged residues, which facilitate solubility and hinder aggregation. These residues can interfere with crystallization due to the entropic cost associated with burying them within crystal contacts. To systematically reduce the surface entropy of the Fabs and improve their crystallization properties, a protein engineering strategy termed surface entropy reduction (SER) is being applied to the Fab framework. In this approach, high entropy residues are mutated to smaller ones such as alanine or serine. Focusing initially on Fab BL3-6, which binds an RNA AAACA pentaloop with 20nM affinity, the SER P server (http://services.mbi.ucla.edu/SER/) was used and analysis was performed on existing RNA-Fab BL3-6 co-crystal structures. From this analysis twelve surface entropy reduced mutants were designed. These SER mutants were expressed and are now being measured for their crystallization and diffraction performance with various RNA targets. So far, one mutant has generated 3.02 angstrom diffraction with the yjdF riboswitch RNA. Ultimately, the most productive mutations will be combined into a new Fab framework to be used in a optimized phage displayed Fab library.

Keywords: antibody fragment, crystallography, RNA, surface entropy reduction

Procedia PDF Downloads 197
413 Investigating the Regulation System of the Synchronous Motor Excitation Mode Serving as a Reactive Power Source

Authors: Baghdasaryan Marinka, Ulikyan Azatuhi

Abstract:

The efficient usage of the compensation abilities of the electrical drive synchronous motors used in production processes can essentially improve the technical and economic indices of the process.  Reducing the flows of the reactive electrical energy due to the compensation of reactive power allows to significantly reduce the load losses of power in the electrical networks. As a result of analyzing the scientific works devoted to the issues of regulating the excitation of the synchronous motors, the need for comprehensive investigation and estimation of the excitation mode has been substantiated. By means of the obtained transmission functions, in the Simulink environment of the software package MATLAB, the transition processes of the excitation mode have been studied. As a result of obtaining and estimating the graph of the Nyquist plot and the transient process, the necessity of developing the Proportional-Integral-Derivative (PID) regulator has been justified. The transient processes of the system of the PID regulator have been investigated, and the amplitude–phase characteristics of the system have been estimated. The analysis of the obtained results has shown that the regulation indices of the developed system have been improved. The developed system can be successfully applied for regulating the excitation voltage of different-power synchronous motors, operating with a changing load, ensuring a value of the power coefficient close to 1.

Keywords: transition process, synchronous motor, excitation mode, regulator, reactive power

Procedia PDF Downloads 236
412 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 27
411 Isolation, Identification and Characterization of 1,2-Dichlorobenzene Degrading Bacteria from Consortium

Authors: Ge Cui, Mei Fang Chien, Chihiro Inoue

Abstract:

In this research, enrichment culture using an inorganic liquid medium collected soil contaminated with 1,2-dichlorobenzene (1,2-DCB) in Sendai, Japan, was added 1,2-DCB as the sole carbon source to create a stable consortium. The purpose of this research is to analysis dominant microorganisms in the stable consortium and enzyme system which play a role in the degradation of DCBs. The consortium is now at 30 generation and is still being cultured. By the result of PCR-DGGE and clone library, two bacteria are dominant. The bacteria named sk1 was isolated. 40mg/l of 1,2-DCB and 40mg/l of 1,4-DCB were completely degraded after 32 hours and 50 hours, respectively, but no degradation occurred in the case of 1,3-DCB. By PCR, tecA1 (α-subunit of DCB dioxygenase) gene which plays a role degrading DCB to DCB dihydrodiol, and tecB (dehydrogenase) gene which plays a role degrading DCB dihydrodiol to dichlorocatechol were amplified from strain sk1. Bacteria named sk100 was also isolated. 40mg/l of 1,2-DCB was completely degraded after 32 hours, but no degradation occurred in case of 1,3-DCB and 1,4-DCB. By the result of the catalytic core region of dioxygenase amplified by PCR, gene played a role degrading DCB was analyzed. The results of this study concluded that the isolated strains which have not been reported are able to degrade 1,2-DCB stably, and the characterization of degradation and the genomic analysis which is now in progress is helpful to have an overall view of this microbial degradation.

Keywords: DCB, 1, 2-DCB degrading strains, DCB dioxygenase, enrichment culture

Procedia PDF Downloads 204
410 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 177
409 Housing Delivery in Nigeria’s Urban Areas: The Plight of the Poor in Owerri, Capital of Imo State, Nigeria

Authors: Joachim Onyike

Abstract:

The Federal Government of Nigeria in 2012 came up with a new National Housing Policy; one of its major objectives was to make housing affordable to the poor. Six years down the line, this study was carried out to find out whether the poor have fared better under the new housing policy. Owerri, the capital of Imo State, was adopted as a case study to mirror the situation nationwide. The study population was made up of low-income civil servants, i.e., grade levels 1–6 in the Imo State Civil Service. The study looked at household size, household income, rental levels, house prices, costs of major building materials, land values, land tenure, the interest rate on mortgages, inflation rate, and the status of government interventions, owing to their obvious effect on housing affordability by the low-income earners. The study made use of physical observations, questionnaires, and interviews as well as library studies to elicit relevant information. Housing affordability by the subject population did not improve. It rather dropped. The study came to the conclusion that in spite of the new National Housing Policy, housing affordability by the low-income earners has not improved. The policy as it affects the poor has not been duly implemented by both Federal and State Governments.

Keywords: house prices, housing affordability, housing policy, land values, low-income earners

Procedia PDF Downloads 203
408 A Study on Classic Literature Education in Primary School Using Out-of-School Literature Appreciation Program: An Practice Study Applied to Primary School in Korea

Authors: Hyo Jung Lee

Abstract:

The purpose of this study is to develop a literature appreciation education program for classic literatures and apply them to the field, and to derive the achievements and improvement points. Classic literature is a work of value recognized in the context of literature history and culture history, and learners can develop interest in literature and inherit tradition through appreciation of classic literature. However, in Korean educational environment, classic literature is a means for college entrance examination, and many learners analyze contents and language in textbooks and concentrate on memorizing the whole plot. This study is one of the reasons that classic literature appreciation education is not done properly and it is not able to give an opportunity to appreciate the whole work in the early learning stage. In Korean primary education, classic literature is used as a means to achieve the goals of reading, writing, speaking and listening, rather than being used as a material for its own appreciation. It is problematic to make the piece appreciation experience fragmentary. This study proposes a program to experience classic literatures by linking school education and school library with primary school students in grades 4-6. We work with local primary schools (siheung-si, gyeonggi-do, Korea) to provide appropriate activities and rewards to learners, observe their participation, and introduce student learning outcomes. Through this, we are able to systematically improve the learner 's ability to appreciate the literature and to diversify primary education.

Keywords: classic literature education, primary education, out-of-school program, learning by appreciation experience

Procedia PDF Downloads 148
407 Chitosan Modified Halloysite Nanomaterials for Efficient and Effective Vaccine Delivery in Farmed Fish

Authors: Saji George, Eng Khuan Seng, Christof Luda

Abstract:

Nanotechnology has been recognized as an important tool for modern agriculture and has the potential to overcome some of the pressing challenges faced by aquaculture industry. A strategy for optimizing nanotechnology-based therapeutic delivery platform for immunizing farmed fish was developed. Accordingly, a compositional library of nanomaterials of natural chemistry (Halloysite (clay), Chitosan, Hydroxyapatite, Mesoporous Silica and a composite material of clay-chitosan) was screened for their toxicity and efficiency in delivering models antigens in cellular and zebrafish embryo models using high throughput screening platforms. Through multi-parametric optimization, chitosan modified halloysite (clay) nanomaterial was identified as an optimal vaccine delivery platform. Further, studies conducted in juvenile seabass showed the potential of clay-chitosan in delivering outer membrane protein of Tenacibaculum maritimum- TIMA (pathogenic bacteria) to and its efficiency in eliciting immune responses in fish. In short, as exemplified by this work, the strategy of using compositional nanomaterial libraries and their biological profiling using high-throughput screening platform could fasten the discovery process of nanomaterials with potential applications in food and agriculture.

Keywords: nanotechnology, fish-vaccine, drug-delivery, halloysite-chitosan

Procedia PDF Downloads 285
406 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study

Authors: Colin Smith, Linsey S Passarella

Abstract:

Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.

Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy

Procedia PDF Downloads 134
405 Schizophrenia in Childhood and Adolescence: Research Topics and Applied Methodology

Authors: Jhonas Geraldo Peixoto Flauzino, Pedro Pompeo Boechat Araujo, Alexia Allis Rocha Lima, Giovanna Biângulo Lacerda Chaves, Victor Ryan Ferrão Chaves

Abstract:

Schizophrenia is characterized as a set of psychiatric signs and symptoms (syndrome) that commonly erupt in the stages of adolescence or early adulthood, being recognized as one of the most serious diseases, as it causes important problems during the life of the patient. carrier - both in mental health and in physical health and in social life. Objectives: This is an integrative literature review that aimed to verify what has been produced of scientific knowledge in the field of child and adolescent psychiatry regarding schizophrenia in these stages of life, correlated to the most discussed themes and methodologies of choice for the preparation of studies. Methods: Articles were selected from the following databases: Virtual Health Library and CAPES Journal Portal, published in the last five years; and on Google Scholar, published in 2021, totaling 62 works, searched in September 2021. Results: The studies focus mainly on diagnosis through the DSM-V (25.8%), on drug treatment (25.8%) and in psychotherapy (24.2%), most of them in the literature review format: integrative (27.4%) and systematic (24.2%). Conclusion: The themes and study methods are redundant, and do not cover in depth the immense aspects that encompass Schizophrenia in Childhood and Adolescence, giving attention to the disease in a general way or focusing on the adult patient.

Keywords: schizophrenia, mental health, childhood, adolescence

Procedia PDF Downloads 187
404 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis

Authors: Sahar Shams

Abstract:

Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.

Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing

Procedia PDF Downloads 132
403 Nutritional Supplementation in the Management of Childhood/Youth Aggression: A Systematic Review

Authors: Sabrina M. Wang, Rameen Qamar, Fahad Manzar Qureshi, Laura La Chance, Nathan J. Kolla, Barna Konkolÿ Thege

Abstract:

Elevated level of aggressive behaviour in children and youth can lead to impairments in family, social or academic functioning. The aim of the present study was to critically review the evidence on the effectiveness of nutritional supplements in reducing aggression in children and youth. The Cochrane Library, EMBASE, MEDLINE, ProQuest Dissertations & Theses, PsycINFO, and PubMed data bases were searched for relevant studies. Altogether, 22 studies met inclusion criteria; 13 investigated the effect of macronutrients (fatty acids and amino acids), 6 studies investigated the effect of micronutrients (vitamins and minerals), while 3 studies investigated a combination of macro and micronutrients. Out of the 22 studies, 7 reported a beneficial effect of nutritional supplementation (vitamins and minerals, essential fatty acids, or a certain combination of these). Eight studies did not report a significant beneficial effect of nutritional supplementation (essential fatty acids, vitamin D, and L-tryptophan), while 7 studies reported mixed effects (vitamin B6, essential fatty acids alone and in combination with vitamins and minerals, and carnitine). The results overall suggest that there may be a role for broad-range vitamin and mineral supplements in the treatment of aggression in youth and children.

Keywords: aggression, children, youth, nutritional supplementation, micronutrient, macronutrient

Procedia PDF Downloads 193
402 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 129
401 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 18
400 Design and Identification of Mycobacterium tuberculosis Glutamate Racemase (MurI) Inhibitors

Authors: Prasanthi Malapati, R. Reshma, Vijay Soni, Perumal Yogeeswari, Dharmarajan Sriram

Abstract:

In the present study, we attempted to develop Mycobacterium tuberculosis (Mtb) inhibitors by exploring the pharmaceutically underexploited enzyme targets which are majorly involved in cell wall biosynthesis of mycobacteria. For this purpose, glutamate racemase (coded by MurI gene) was selected. This enzyme racemize L-glutamate to D-glutamate required for the construction of peptidoglycan in the bacterial cell wall synthesis process. Furthermore this enzyme is neither expressed nor its product, D-glutamate is normally found in mammals, and hence designing inhibitors against this enzyme will not affect the host system as well act as potential antitubercular drugs. A library of BITS in house compounds were screened against Mtb MurI enzyme. Based on docking score, interactions and synthetic feasibility one hit lead was identified. Further optimization of lead was attempted and its derivatives were synthesized. Forty eight derivatives of 2-phenylbenzo[d]oxazole and 2-phenylbenzo[d]thiazole were synthesized and evaluated for Mtb MurI inhibition study, in vitro activities against Mtb, cytotoxicity against RAW 264.7 cell line. Chemical derivatization of the lead resulted in compounds NR-1213 AND NR-1124 as the potent M. tuberculosis glutamate racemase inhibitors with IC50 of 4-5µM which are remarkable and were found to be non-cytotoxic. Molecular dynamics, dormant models and cardiotoxicity studies of the most active molecules are in process.

Keywords: cell wall biosynthesis, dormancy, glutamate racemase, tuberculosis

Procedia PDF Downloads 269
399 Polyphosphate Kinase 1 Active Site Characterization for the Identification of Novel Antimicrobial Targets

Authors: Sanaa Bardaweel

Abstract:

Inorganic polyphosphate (poly P) is present in all living forms tested to date, from each of the three kingdoms of life. Studied mainly in prokaryotes, poly P and its associated enzymes are vital in diverse basic metabolism, in at least some structural functions and, notably, in stress responses. These plentiful and unrelated roles for poly P are probably the consequence of its presence in life-forms early in evolution. The genomes of many bacterial species, including pathogens, encode a homologue of a major poly P synthetic enzyme, poly P kinase 1 (PPK1). Genetic deletion of ppk1 results in reduced poly P levels and loss of pathogens virulence towards protozoa and animals. Thus far, no PPK1 homologue has been identified in higher-order eukaryotes and, therefore, PPK1 represents a novel target for chemotherapy. The idea of the current study is to purify the PPK1 from Escherichia coli to homogeneity in order to study the effect of active site point mutations on PPK1 catalysis via the application of site-directed mutagenesis strategy. The knowledge obtained about the active site of PPK1 will be utilized to characterize the catalytic and kinetic mechanism of PPK1 with model substrates. Comprehensive understanding of the enzyme kinetic mechanism and catalysis will be used to design and screen a library of synthetic compounds for potential discovery of selective PPK1-inhibitors.

Keywords: antimicobial, Escherichia coli, inorganic polyphosphate, PPK1-inhibitors

Procedia PDF Downloads 279
398 The Developments Trend of Islamic Inscriptions in the Building Portals of Dezfoul City

Authors: Mahnoush Mahmoudi, Ali Chaeedeh

Abstract:

In the architecture of Iranian traditional houses, the ornamentations available in the inscriptions of houses entrance portal express the identity of architects and personality of houses owners and are rooted in their religious and national beliefs and faiths. The main hypothesis of this research is changing the physique and application of religious contents in compliance with the thoughts and beliefs of people in Dezfoul historical city in the epigraphs of houses entrance portals. The objective of this study is reviewing the development trend of texts, concepts and physique of inscriptions as well as analyzing the factors effective on the quality and diversity of application of inscriptions. The present research is an applied study and descriptive-analytical method has been applied, and the data was collected by library and survey studies. The population of this research includes historical houses, houses damaged in war (Iran & Iraq) and renovated and new tissue and new-built houses of Dezfoul, from Qajar era so far. Random sampling method has been applied in this study and dispersal area includes the city. Data analysis method in this study is qualitative and quantitative. The results of this study indicate that today the inscriptions available in the entrance portal of houses in Dezfoul comparing to inscriptions in Qajar1 and Pahlavi2 era is very simple and has lower aesthetic value. One of the causes for such superficial and contextual gap between inscriptions seems to be the war and renovations during and after destruction.

Keywords: architecture, islamic architecture, reconstruction, epigraph, inscription, entrance portal, Dezfoul

Procedia PDF Downloads 245
397 Hot Corrosion and Oxidation Degradation Mechanism of Turbine Materials in a Water Vapor Environment at a Higher Temperature

Authors: Mairaj Ahmad, L. Paglia, F. Marra, V. Genova, G. Pulci

Abstract:

This study employed Rene N4 and FSX 414 superalloys, which are used in numerous turbine engine components due of their high strength, outstanding fatigue, creep, thermal, and corrosion-resistant properties. An in-depth examination of corrosion mechanisms with vapor present at high temperature is necessary given the industrial trend toward introducing increasing amounts of hydrogen into combustion chambers in order to boost power generation and minimize pollution in contrast to conventional fuels. These superalloys were oxidized in recent tests for 500, 1000, 2000, 3000 and 4000 hours at 982±5°C temperatures with a steady airflow at a flow rate of 10L/min and 1.5 bar pressure. These superalloys were also examined for wet corrosion for 500, 1000, 2000, 3000, and 4000 hours in a combination of air and water vapor flowing at a 10L/min rate. Weight gain, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were used to assess the oxidation and heat corrosion resistance capabilities of these alloys before and after 500, 1000, and 2000 hours. The oxidation/corrosion processes that accompany the formation of these oxide scales are shown in the graph of mass gain vs time. In both dry and wet oxidation, oxides like Al2O3, TiO2, NiCo2O4, Ni3Al, Ni3Ti, Cr2O3, MnCr2O4, CoCr2O4, and certain volatile compounds notably CrO2(OH)2, Cr(OH)3, Fe(OH)2, and Si(OH)4 are formed.

Keywords: hot corrosion, oxidation, turbine materials, high temperature corrosion, super alloys

Procedia PDF Downloads 87
396 Prevalence and Risk Factors of Economic Toxicity in Gynecologic Malignancies: A Systematic Review

Authors: Dongliu Li

Abstract:

Objective: This study systematically evaluates the incidence and influencing factors of economic toxicity in patients with gynecological malignant tumors. Methods: Literature on economic toxicity of gynecological malignancies were comprehensively searched in Pubmed, The Cochrane Library, Web of Science, Embase, CINAHL, CNKI, Wanfang Database, Chinese Biomedical Literature database and VIP database. The search period is up to February 2024. Stata 17 software was used to conduct a single-group meta-analysis of the incidence of economic toxicity in gynecological malignant tumors, and descriptive analysis was used to analyze the influencing factors. Results: A total of 11 pieces of literature were included, including 6475 patients with gynecological malignant tumors. The results of the meta-analysis showed that the incidence of economic toxicity in gynecological malignant tumors was 40% (95%CI 31%—48%). The influencing factors of economic toxicity in patients with gynecological malignant tumors include social demographic factors, medical insurance-related factors and disease-related factors. Conclusion: The incidence of economic toxicity in patients with gynecological malignant tumors is high, and medical staff should conduct early screening of patients according to relevant influencing factors, personalized assessment of patients' economic status, early prevention work and personalized intervention measures.

Keywords: gynecological malignancy, economic toxicity, the incidence rate, influencing factors, systematic review

Procedia PDF Downloads 33