Search results for: 16s rRNA gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1553

Search results for: 16s rRNA gene

863 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice

Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza

Abstract:

Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.

Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E

Procedia PDF Downloads 423
862 Allele Mining for Rice Sheath Blight Resistance by Whole-Genome Association Mapping in a Tail-End Population

Authors: Naoki Yamamoto, Hidenobu Ozaki, Taiichiro Ookawa, Youming Liu, Kazunori Okada, Aiping Zheng

Abstract:

Rice sheath blight is one of the destructive fungal diseases in rice. We have thought that rice sheath blight resistance is a polygenic trait. Host-pathogen interactions and secondary metabolites such as lignin and phytoalexins are likely to be involved in defense against R. solani. However, to our knowledge, it is still unknown how sheath blight resistance can be enhanced in rice breeding. To seek for an alternative genetic factor that contribute to sheath blight resistance, we mined relevant allelic variations from rice core collections created in Japan. Based on disease lesion length on detached leaf sheath, we selected 30 varieties of the top tail-end and the bottom tail-end, respectively, from the core collections to perform genome-wide association mapping. Re-sequencing reads for these varieties were used for calling single nucleotide polymorphisms among the 60 varieties to create a SNP panel, which contained 1,137,131 homozygous variant sites after filitering. Association mapping highlighted a locus on the long arm of chromosome 11, which is co-localized with three sheath blight QTLs, qShB11-2-TX, qShB11, and qSBR-11-2. Based on the localization of the trait-associated alleles, we identified an ankyryn repeat-containing protein gene (ANK-M) as an uncharacterized candidate factor for rice sheath blight resistance. Allelic distributions for ANK-M in the whole rice population supported the reliability of trait-allele associations. Gene expression characteristics were checked to evaluiate the functionality of ANK-M. Since an ANK-M homolog (OsPIANK1) in rice seems a basal defense regulator against rice blast and bacterial leaf blight, ANK-M may also play a role in the rice immune system.

Keywords: allele mining, GWAS, QTL, rice sheath blight

Procedia PDF Downloads 72
861 Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate

Authors: Saira Khalid, Imran Hashmi

Abstract:

Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells.

Keywords: biodegradation, chlorpyrifos, immobilization, wastewater

Procedia PDF Downloads 169
860 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 11
859 Assessment of Genetic Diversity and Population Structure of Goldstripe Sardinella, Sardinella gibbosa in the Transboundary Area of Kenya and Tanzania Using mtDNA and msDNA Markers

Authors: Sammy Kibor, Filip Huyghe, Marc Kochzius, James Kairo

Abstract:

Goldstripe Sardinella, Sardinella gibbosa, (Bleeker, 1849) is a commercially and ecologically important small pelagic fish common in the Western Indian Ocean region. The present study aimed to assess genetic diversity and population structure of the species in the Kenya-Tanzania transboundary area using mtDNA and msDNA markers. Some 630 bp sequence in the mitochondrial DNA (mtDNA) Cytochrome C Oxidase I (COI) and five polymorphic microsatellite DNA loci were analyzed. Fin clips of 309 individuals from eight locations within the transboundary area were collected between July and December 2018. The S. gibbosa individuals from the different locations were distinguishable from one another based on the mtDNA variation, as demonstrated with a neighbor-joining tree and minimum spanning network analysis. None of the identified 22 haplotypes were shared between Kenya and Tanzania. Gene diversity per locus was relatively high (0.271-0.751), highest Fis was 0.391. The structure analysis, discriminant analysis of Principal component (DAPC) and the pair-wise (FST = 0.136 P < 0.001) values after Bonferroni correction using five microsatellite loci provided clear inference on genetic differentiation and thus evidence of population structure of S. gibbosa along the Kenya-Tanzania coast. This study shows a high level of genetic diversity and the presence of population structure (Φst =0.078 P < 0.001) resulting to the existence of four populations giving a clear indication of minimum gene flow among the population. This information has application in the designing of marine protected areas, an important tool for marine conservation.

Keywords: marine connectivity, microsatellites, population genetics, transboundary

Procedia PDF Downloads 119
858 Lucilia Sericata Netrin-A: Secreted by Salivary Gland Larvae as a Potential to Neuroregeneration

Authors: Hamzeh Alipour, Masoumeh Bagheri, Tahereh Karamzadeh, Abbasali Raz, Kourosh Azizi

Abstract:

Netrin-A, a protein identified for conducting commissural axons, has a similar role in angiogenesis. In addition, studies have shown that one of the netrin-A receptors is expressed in the growing cells of small capillaries. It will be interesting to study this new group of molecules because their role in wound healing will become clearer in the future due to angiogenesis. The greenbottle blowfly Luciliasericata (L. sericata) larvae are increasingly used in maggot therapy of chronic wounds. This aim of this was the identification of moleculareatures of Netrin-A in L. sericata larvae. Larvae were reared under standard maggotarium conditions. The nucleic acid sequence of L. sericataNetrin-A (LSN-A) was then identified using Rapid Amplification of cDNA Ends (RACE) and Rapid Amplification of Genomic Ends (RAGE). Parts of the Netrin-A gene, including the middle, 3′-, and 5′-ends were identified, TA cloned in pTG19 plasmid, and transferred into DH5ɑ Escherichia coli. Each part was sequenced and assembled using SeqMan software. This gene structure was further subjected to in silico analysis. The DNA of LSN-A was identified to be 2407 bp, while its mRNA sequence was recognized as 2115 bp by Oligo0.7 software. It translated the Netrin-A protein with 704 amino acid residues. Its molecular weight is estimated to be 78.6 kDa. The 3-D structure ofNetrin-A drawn by SWISS-MODEL revealed its similarity to the Netrin-1 of humans with 66.8% identity. The LSN-A protein conduces to repair the myelin membrane in neuronal cells. Ultimately, it can be an effective candidate in neural regeneration and wound healing. Furthermore, our next attempt is to deplore recombinant proteins for use in medical sciences.

Keywords: maggot therapy, netrin-A, RACE, RAGE, lucilia sericata

Procedia PDF Downloads 103
857 Electrochemical APEX for Genotyping MYH7 Gene: A Low Cost Strategy for Minisequencing of Disease Causing Mutations

Authors: Ahmed M. Debela, Mayreli Ortiz , Ciara K. O´Sullivan

Abstract:

The completion of the human genome Project (HGP) has paved the way for mapping the diversity in the overall genome sequence which helps to understand the genetic causes of inherited diseases and susceptibility to drugs or environmental toxins. Arrayed primer extension (APEX) is a microarray based minisequencing strategy for screening disease causing mutations. It is derived from Sanger DNA sequencing and uses fluorescently dideoxynucleotides (ddNTPs) for termination of a growing DNA strand from a primer with its 3´- end designed immediately upstream of a site where single nucleotide polymorphism (SNP) occurs. The use of DNA polymerase offers a very high accuracy and specificity to APEX which in turn happens to be a method of choice for multiplex SNP detection. Coupling the high specificity of this method with the high sensitivity, low cost and compatibility for miniaturization of electrochemical techniques would offer an excellent platform for detection of mutation as well as sequencing of DNA templates. We are developing an electrochemical APEX for the analysis of SNPs found in the MYH7 gene for group of cardiomyopathy patients. ddNTPs were labeled with four different redox active compounds with four distinct potentials. Thiolated oligonucleotide probes were immobilised on gold and glassy carbon substrates which are followed by hybridisation with complementary target DNA just adjacent to the base to be extended by polymerase. Electrochemical interrogation was performed after the incorporation of the redox labelled dedioxynucleotide. The work involved the synthesis and characterisation of the redox labelled ddNTPs, optimisation and characterisation of surface functionalisation strategies and the nucleotide incorporation assays.

Keywords: array based primer extension, labelled ddNTPs, electrochemical, mutations

Procedia PDF Downloads 242
856 Molecular Characterization of Cysticercus tenuicolis of Slaughtered Livestock in Upper-Egypt Governorates

Authors: Mosaab A. Omara, Layla O. Elmajdoubb, Mohammad Saleh Al-Aboodyc, Ahmed ElSifyd, Ahmed O. Elkhtamd

Abstract:

The aim of this study is to present the molecular characterization of cysticercus tenuicolis of Taenia hydatigena from livestock isolates in Egypt, using the amplification of sequencing of the mt-CO1 gene. We introduce a detailed image of the Cysticercus tenuicolis infection in ruminant animals in Upper Egypt. Cysticercus tenuicolis inhabits such organs in ruminants as the omentum, viscera, and liver. In the present study, the infection rate of Cysticercus tenuicolis was found to be 16% and 19% in sheep and goat sample respectively. Firstly we report one larval stage of Taenia hydatigena detected in the camel liver in Egypt. Cysticercus tenuicolis infection manifested a higher prevalence in females than in males. Those above 2 years of age manifested a higher infection rate than younger animals. The preferred site for the infection was the omentum: a 70% preference in sheep and a 68% preference in goat samples. The molecular characterization using the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene of isolates from sheep, goats and camels corresponded to T. hydatigena. For this study, molecular characterizations of T. hydatigena were done for the first time in Egypt. Molecular tools are of great assistance in characterizing the Cysticercus tenuicolis parasite especially when the morphological character cannot be detected because the metacestodes are frequently confused with infection by the Hydatid cyst, especially when these occur in the visceral organs. In the present study, Cysticercus tenuicolis manifested high identity in the goat and sheep samples, while differences were found more frequently in the camel samples (10 pairbase). Clearly molecular diagnosis for Cysticercus tenuicolis infection significantly helps to differentiate it from such other metacestodes.

Keywords: cysticercus tenuicolis, its2, genetic, qena, molecular and taenia hydatigena

Procedia PDF Downloads 519
855 Assessing Significance of Correlation with Binomial Distribution

Authors: Vijay Kumar Singh, Pooja Kushwaha, Prabhat Ranjan, Krishna Kumar Ojha, Jitendra Kumar

Abstract:

Present day high-throughput genomic technologies, NGS/microarrays, are producing large volume of data that require improved analysis methods to make sense of the data. The correlation between genes and samples has been regularly used to gain insight into many biological phenomena including, but not limited to, co-expression/co-regulation, gene regulatory networks, clustering and pattern identification. However, presence of outliers and violation of assumptions underlying Pearson correlation is frequent and may distort the actual correlation between the genes and lead to spurious conclusions. Here, we report a method to measure the strength of association between genes. The method assumes that the expression values of a gene are Bernoulli random variables whose outcome depends on the sample being probed. The method considers the two genes as uncorrelated if the number of sample with same outcome for both the genes (Ns) is equal to certainly expected number (Es). The extent of correlation depends on how far Ns can deviate from the Es. The method does not assume normality for the parent population, fairly unaffected by the presence of outliers, can be applied to qualitative data and it uses the binomial distribution to assess the significance of association. At this stage, we would not claim about the superiority of the method over other existing correlation methods, but our method could be another way of calculating correlation in addition to existing methods. The method uses binomial distribution, which has not been used until yet, to assess the significance of association between two variables. We are evaluating the performance of our method on NGS/microarray data, which is noisy and pierce by the outliers, to see if our method can differentiate between spurious and actual correlation. While working with the method, it has not escaped our notice that the method could also be generalized to measure the association of more than two variables which has been proven difficult with the existing methods.

Keywords: binomial distribution, correlation, microarray, outliers, transcriptome

Procedia PDF Downloads 407
854 Biochemical and Molecular Analysis of Staphylococcus aureus Various Isolates from Different Places

Authors: Kiran Fatima, Kashif Ali

Abstract:

Staphylococcus aureus is an opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 70 staphylococci isolates were obtained from soil, water, yogurt, and clinical samples. The likely staphylococci clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species-specific 16S rRNA primer pairs, and finally, 50 isolates were found to be positive as Staphylococcus aureus, sciuri, xylous and cohnii. Screened isolates were further analyzed by several microbiological diagnostics tests, including gram staining, coagulase, capsule, hemolysis, fermentation of glucose, lactose, maltose, and sucrose tests enzymatic reactions. It was found that 78%, 81%, and 51% of isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance patterns ranging from 57 to 96%. Our study also shows 70% of strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes, and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high-level multidrug-resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.

Keywords: MRSA, VRSA, mecA, MSSA

Procedia PDF Downloads 124
853 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria

Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy

Abstract:

Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.

Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic

Procedia PDF Downloads 156
852 Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate

Authors: Lay Poh Tan, Chor Yong Tay, Haiyang Yu

Abstract:

Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level.

Keywords: micro-contact printing, polymer substrate, cell-material interaction, stem cell differentiation

Procedia PDF Downloads 169
851 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 268
850 Genetic Structuring of Four Tectona grandis L. F. Seed Production Areas in Southern India

Authors: P. M. Sreekanth

Abstract:

Teak (Tectona grandis L. f.) is a tree species indigenous to India and other Southeastern countries. It produces high-value timber and is easily established in plantations. Reforestation requires a constant supply of high quality seeds. Seed Production Areas (SPA) of teak are improved stands used for collection of open-pollinated quality seeds in large quantities. Information on the genetic diversity of major teak SPAs in India is scanty. The genetic structure of four important seed production areas of Kerala State in Southern India was analyzed employing amplified fragment length polymorphism markers using ten selective primer combinations on 80 samples (4 populations X 20 trees). The study revealed that the gene diversity of the SPAs varied from 0.169 (Konni SPA) to 0.203 (Wayanad SPA). The percentage of polymorphic loci ranged from 74.42 (Parambikulam SPA) to 84.06 (Konni SPA). The mean total gene diversity index (HT) of all the four SPAs was 0.2296 ±0.02. A high proportion of genetic diversity was observed within the populations (83%) while diversity between populations was lower (17%) (GST = 0.17). Principal coordinate analysis and STRUCTURE analysis of the genotypes indicated that the pattern of clustering was in accordance with the origin and geographic location of SPAs, indicating specific identity of each population. A UPGMA dendrogram was prepared and showed that all the twenty samples from each of Konni and Parambikulam SPAs clustered into two separate groups, respectively. However, five Nilambur genotypes and one Wayanad genotype intruded into the Konni cluster. The higher gene flow estimated (Nm = 2.4) reflected the inclusion of Konni origin planting stock in the Nilambur and Wayanad plantations. Evidence for population structure investigated using 3D Principal Coordinate Analysis of FAMD software 1.30 indicated that the pattern of clustering was in accordance with the origin of SPAs. The present study showed that assessment of genetic diversity in seed production plantations can be achieved using AFLP markers. The AFLP fingerprinting was also capable of identifying the geographical origin of planting stock and there by revealing the occurrence of the errors in genotype labeling. Molecular marker-based selective culling of genetically similar trees from a stand so as to increase the genetic base of seed production areas could be a new proposition to improve quality of seeds required for raising commercial plantations of teak. The technique can also be used to assess the genetic diversity status of plus trees within provenances during their selection for raising clonal seed orchards for assuring the quality of seeds available for raising future plantations.

Keywords: AFLP, genetic structure, spa, teak

Procedia PDF Downloads 306
849 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank

Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh

Abstract:

Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we  also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.

Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI

Procedia PDF Downloads 109
848 Endocrine Disruptors Effects on the 20-Hydroxyecdysone Concentration and the Vitellogenin Gene Expression in Gammarus sp.

Authors: Eric Gismondi, Aurelie Bigot-Clivot

Abstract:

Endocrine disruptors (EDCs) are well known to disrupt the development and the reproduction of exposed organisms. Although this point has been studied in vertebrate models, the limited knowledge of the endocrine system of invertebrates makes the evaluation of EDCs effects difficult. However, invertebrates represent the major part of aquatic ecosystems, such as amphipods Gammaridea, which are crucial for their functioning (e.g., litter degradation, food resource). Moreover, gammarids are hosts of parasites such as vertically-transmitted microsporidia (microsporidia VT), which could be confounding factors in assessment of EDC effects. Indeed, some microsporidia VT could have endocrine effects by their own present in the host since it was observed for example, a feminization of juvenile males, which become phenotypic females. This work evaluated the impact of ethinylestradiol (EE₂, estrogenic), cyproterone acetate (CPA, anti-androgenic), 4-hydroxytamoxifen (4HT, anti-estrogenic) and 17α-methyltestosterone (17MT - androgenic), on the 20-hydroxyecdysone concentration (i.e. 20HE - molt process) and the vitellogenin gene expression (i.e. reproduction) in the freshwater amphipod Gammarus pulex, after a 96h laboratory exposure. In addition, the presence of microsporidia VT was verified in order to analyze the effect of this confounding factor. Results of this study shown that, although endocrine systems of invertebrates and vertebrates are different, EDCs proved in vertebrates could also affect biological functions hormonally controlled in invertebrates. Indeed, the molt process of crustaceans was disrupted in the first stage (i.e. 20-HE concentration) and therefore, could affect, at the long term, the population dynamic. In addition, it was observed that G. pulex was differently impacted according to the gender and parasitism, which underline the importance to take into account these confounding factors to better evaluate the EDCs impact on invertebrate populations.

Keywords: endocrine disruption, gammarus sp., molt, parasitism

Procedia PDF Downloads 161
847 Interpersonal Variation of Salivary Microbiota Using Denaturing Gradient Gel Electrophoresis

Authors: Manjula Weerasekera, Chris Sissons, Lisa Wong, Sally Anderson, Ann Holmes, Richard Cannon

Abstract:

The aim of this study was to characterize bacterial population and yeasts in saliva by Polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and measure yeast levels by culture. PCR-DGGE was performed to identify oral bacteria and yeasts in 24 saliva samples. DNA was extracted and used to generate DNA amplicons of the V2–V3 hypervariable region of the bacterial 16S rDNA gene using PCR. Further universal primers targeting the large subunit rDNA gene (25S-28S) of fungi were used to amplify yeasts present in human saliva. Resulting PCR products were subjected to denaturing gradient gel electrophoresis using Universal mutation detection system. DGGE bands were extracted and sequenced using Sanger method. A potential relationship was evaluated between groups of bacteria identified by cluster analysis of DGGE fingerprints with the yeast levels and with their diversity. Significant interpersonal variation of salivary microbiome was observed. Cluster and principal component analysis of the bacterial DGGE patterns yielded three significant major clusters, and outliers. Seventeen of the 24 (71%) saliva samples were yeast positive going up to 10³ cfu/mL. Predominately, C. albicans, and six other species of yeast were detected. The presence, amount and species of yeast showed no clear relationship to the bacterial clusters. Microbial community in saliva showed a significant variation between individuals. A lack of association between yeasts and the bacterial fingerprints in saliva suggests the significant ecological person-specific independence in highly complex oral biofilm systems under normal oral conditions.

Keywords: bacteria, denaturing gradient gel electrophoresis, oral biofilm, yeasts

Procedia PDF Downloads 219
846 Genomics Approach for Excavation of NAS Genes from Nutri Rich Minor Millet Crops: Transforming Perspective from Orphan Plants to Future Food Crops

Authors: Mahima Dubey, Girish Chandel

Abstract:

Minor millets are highly nutritious and climate resilient cereal crops. These features make them ideal candidates to excavate the physiology of the underlying mechanism. In an attempt to understand the basis of mineral nutrition in minor millets, a set of five Barnyard millet genotypes were analyzed for grain Fe and Zn content under contrasting Fe-Zn supply to identify genotypes proficient in tolerating mineral deficiency. This resulted in the identification of Melghat-1 genotype to be nutritionally superior with better ability to withstand deficiency. Expression analysis of several Nicotianamine synthase (NAS) genes showed that HvNAS1 and OsNAS2 genes were prominent in positively mediating mineral deficiency response in Barnyard millet. Further, strategic efforts were employed for fast-track identification of more effective orthologous NAS genes from Barnyard millet. This resulted in the identification of two genes namely EfNAS1 (orthologous to HvNAS1 of barley) and EfNAS2 (orthologous to OsNAS2 gene of rice). Sequencing and thorough characterization of these sequences revealed the presence of intact NAS domain and signature tyrosine and di-leucine motifs in their predicted proteins and thus established their candidature as functional NAS genes in Barnyard millet. Moreover, EfNAS1 showed structural superiority over previously known NAS genes and is anticipated to have role in more efficient metal transport. Findings of the study provide insight into Fe-Zn deficiency response and mineral nutrition in millets. This provides millets with a physiological edge over micronutrient deficient staple cereals such as rice in withstanding Fe-Zn deficiency and subsequently accumulating higher levels of Fe and Zn in millet grains.

Keywords: gene expression, micronutrient, millet, ortholog

Procedia PDF Downloads 227
845 Characterization of the Lytic Bacteriophage VbɸAB-1 against Drug Resistant Acinetobacter baumannii Isolated from Hospitalized Pressure Ulcers Patients

Authors: M. Doudi, M. H. Pazandeh, L. Rahimzadeh Torabi

Abstract:

Bedsores are pressure ulcers that occur on the skin or tissue due to being immobile and lying in bed for extended periods. Bedsores have the potential to progress into open ulcers, increasing the possibility of variety of bacterial infection. Acinetobacter baumannii, a pathogen of considerable clinical importance, exhibited a significant correlation with Bedsores (pressure ulcers) infections, thereby manifesting a wide spectrum of antibiotic resistance. The emergence of drug resistance has led researchers to focus on alternative methods, particularly phage therapy, for tackling bacterial infections. Phage therapy has emerged as a novel therapeutic approach to regulate the activity of these agents. The management of bacterial infections greatly benefits from the clinical utilization of bacteriophages as a valuable antimicrobial intervention. The primary objective of this investigation consisted of isolating and discerning potent bacteriophage capable of targeting multi drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria obtained from pressure ulcers. In present study, analyzed and isolated A. baumannii strains obtained from a cohort of patients suffering from pressure ulcers at Taleghani Hospital in Ahvaz, Iran. An approach that included biochemical and molecular identification techniques was used to determine the taxonomic classification of bacterial isolates at the genus and species levels. The molecular identification process was facilitated by using the 16S rRNA gene in combination with universal primers 27 F, and 1492 R. Bacteriophage was obtained through the isolation process conducted on treatment plant sewage located in Isfahan, Iran. The main goal of this study was to evaluate different characteristics of phage, such as their appearance, range of hosts they can infect, how quickly they can enter a host, their stability at varying temperatures and pH levels, their effectiveness in killing bacteria, the growth pattern of a single phage stage, mapping of enzymatic digestion, and identification of proteomics patterns. The findings demonstrated that an examination was conducted on a sample of 50 specimens, wherein 15 instances of A. baumannii were identified. These microorganisms are the predominant Gram-negative agents known to cause wound infections in individuals suffering from bedsores. The study's findings indicated a high prevalence of antibiotic resistance in the strains isolated from pressure ulcers, excluding the clinical strains that exhibited responsiveness to colistin.According to the findings obtained from assessments of host range and morphological characteristics of bacteriophage VbɸAB-1, it can be concluded that this phage possesses specificity towards A. Baumannii BAH_Glau1001 was classified as a member of the Plasmaviridae family. The bacteriophage mentioned earlier showed the strongest antibacterial effect at a temperature of 18 °C and a pH of 6.5. Through the utilization of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis on protein fragments, it was established that the bacteriophage VbɸAB-1 exhibited a size range between 50 and 75 kilodaltons (KDa). The numerous research findings on the effectiveness of phages and the safety studies conducted suggest that the phages studied in this research can be considered as a practical solution and recommended approach for controlling and treating stubborn pathogens in burn wounds among hospitalized patients.

Keywords: acinetobacter baumannii, extremely drug- resistant, phage therapy, surgery wound

Procedia PDF Downloads 86
844 Quality and Yield of Potato Seed Tubers as Influenced by Plant Growth Promoting Rhizobacteria

Authors: Muhammad Raqib Rasul, Tavga Sulaiman Rashid

Abstract:

Fertilization increases efficiency and obtains better quality of product recovery in agricultural activities. However, fertilizer consumption increased exponentially throughout the world, causing severe environmental problems. Biofertilizers can be a practical approach to minimize chemical fertilizer sources and ultimately develop soil fertility. This study was carried out to isolate, identify and characterize bacteria from medicinal plant (Rumex tuberosus L. and Verbascum sp.) rhizosphere for in vivo screening. 25 bacterial isolates were isolated and several biochemical tests were performed. Two isolates that were positive for most biochemical tests were chosen for the field experiment. The isolates were identified as Go1 Alcaligenes faecalis (Accession No. OP001725) and T11 (Bacillus sp.) based on the 16S rRNA sequence analysis that was compared with related bacteria in GenBank database using MEGA 6.1. For the field trial isolate GO1 and T11 (separately and mixed), NPK as a positive control was used. Both isolates increased plant height, chlorophyll content, number of tubers, and tuber’s weight. The results demonstrated that these two isolates of bacteria can potentially replace with chemical fertilizers for potato production.

Keywords: biofertilizer, Bacillus subtilis, Alcaligenes faecalis, potato tubers, in vivo screening

Procedia PDF Downloads 99
843 High-Risk Gene Variant Profiling Models Ethnic Disparities in Diabetes Vulnerability

Authors: Jianhua Zhang, Weiping Chen, Guanjie Chen, Jason Flannick, Emma Fikse, Glenda Smerin, Yanqin Yang, Yulong Li, John A. Hanover, William F. Simonds

Abstract:

Ethnic disparities in many diseases are well recognized and reflect the consequences of genetic, behavior, and environmental factors. However, direct scientific evidence connecting the ethnic genetic variations and the disease disparities has been elusive, which may have led to the ethnic inequalities in large scale genetic studies. Through the genome-wide analysis of data representing 185,934 subjects, including 14,955 from our own studies of the African America Diabetes Mellitus, we discovered sets of genetic variants either unique to or conserved in all ethnicities. We further developed a quantitative gene function-based high-risk variant index (hrVI) of 20,428 genes to establish profiles that strongly correlate with the subjects' self-identified ethnicities. With respect to the ability to detect human essential and pathogenic genes, the hrVI analysis method is both comparable with and complementary to the well-known genetic analysis methods, pLI and VIRlof. Application of the ethnicity-specific hrVI analysis to the type 2 diabetes mellitus (T2DM) national repository, containing 20,791 cases and 24,440 controls, identified 114 candidate T2DM-associated genes, 8.8-fold greater than that of ethnicity-blind analysis. All the genes identified are defined as either pathogenic or likely-pathogenic in ClinVar database, with 33.3% diabetes-associated and 54.4% obesity-associated genes. These results demonstrate the utility of hrVI analysis and provide the first genetic evidence by clustering patterns of how genetic variations among ethnicities may impede the discovery of diabetes and foreseeably other disease-associated genes.

Keywords: diabetes-associated genes, ethnic health disparities, high-risk variant index, hrVI, T2DM

Procedia PDF Downloads 132
842 Neurotoxic Effects Assessment of Metformin in Danio rerio

Authors: Gustavo Axel Elizalde-Velázquez

Abstract:

Metformin is the first line of oral therapy to treat type II diabetes and is also employed as a treatment for other indications, such as polycystic ovary syndrome, cancer, and COVID-19. Recent data suggest it is the aspirin of the 21st century due to its antioxidant and anti-aging effects. However, increasingly current articles indicate its long-term consumption generates mitochondrial impairment. Up to date, it is known metformin increases the biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription, but further information related to brain damage after its consumption is missing. Bearing in mind the above, this work aimed to establish whether or not chronic exposure to metformin may alter swimming behavior and induce neurotoxicity in Danio rerio adults. For this purpose, 250 Danio rerio grown-ups were assigned to six tanks of 50 L of capacity. Four of the six systems contained 50 fish, while the remaining two had 25 fish (≈1 male:1 female ratio). Every system with 50 fish was allocated one of the three metformin treatment concentrations (1, 20, and 40 μg/L), with one system as the control treatment. Systems with 25 fish, on the other hand, were used as positive controls for acetylcholinesterase (10 μg/L of Atrazine) and oxidative stress (3 μg/L of Atrazine). After four months of exposure, a mean of 32 fish (S.D. ± 2) per group of MET treatment survived, which were used for the evaluation of behavior with the Novel Tank test. Moreover, after the behavioral assessment, we aimed to collect the blood and brains of all fish from all treatment groups. For blood collection, fish were anesthetized with an MS-222 solution (150 mg/L), while for brain gathering, fish were euthanized using the hypothermic shock method (2–4 °C). Blood was employed to determine CASP3 activity and the percentage of apoptotic cells with the TUNEL assay, and brains were used to evaluate acetylcholinesterase activity, oxidative damage, and gene expression. After chronic exposure, MET-exposed fish exhibited less swimming activity when compared to control fish. Moreover, compared with the control group, MET significantly inhibited the activity of AChE and induced oxidative damage in the brain of fish. Concerning gene expression, MET significantly upregulated the expression of Nrf1, Nrf2, BAX, p53, BACE1, APP, PSEN1, and downregulated CASP3 and CASP9. Although MET did not overexpress the CASP3 gene, we saw a meaningful rise in the activity of this enzyme in the blood of fish exposed to MET compared to the control group, which we then confirmed by a high number of apoptotic cells in the TUNEL assay. To the best of our understanding, this is the first study that delivers evidence of oxidative impairment, apoptosis, AChE alteration, and overexpression of B- amyloid-related genes in the brain of fish exposed to metformin.

Keywords: AChE inhibition, CASP3 activity, NovelTank test, oxidative damage, TUNEL assay

Procedia PDF Downloads 79
841 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway

Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih

Abstract:

Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.

Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi

Procedia PDF Downloads 79
840 Calcitonin gene-related peptide Receptor Antagonists for Chronic Migraine – Real World Outcomes

Authors: B. J. Mahen, N. E. Lloyd-Gale, S. Johnson, W. P. Rakowicz, M. J. Harris, A. D. Miller

Abstract:

Background: Migraine is a leading cause of disability in the world. Calcitonin gene-related peptide (CGRP) receptor antagonists offer an approach to migraine prophylaxis by inhibiting the inflammatory and vasodilatory effects of CGRP. In recent years, NICE licensed the use of three CGRP-receptor antagonists: Fremanezumab, Galcanezumab, and Erenumab. Here, we present the outcomes of CGRP-antagonist treatment in a cohort of patients who suffer from episodic or chronic migraine and have failed at least three oral prophylactic therapies. Methods: We offered CGRP antagonists to 86 patients who met the NICE criteria to start therapy. We recorded the number of headache days per month (HDPM) at 0 weeks, 3 months, and 12 months. Of those, 26 patients were switched to an alternative treatment due to poor response or side effects. Of the 112 total cases, 9 cases did not sufficiently maintain their headache diary, and 5 cases were not followed up at 3 months. We have therefore included 98 sets of data in our analysis. Results: Fremanezumab achieved a reduction in HDPM by 51.7% at 3 months (p<0.0001), with 63.7% of patients meeting NICE criteria to continue therapy. Patients trialed on Galcanezumab attained a reduction in HDPM by 47.0% (p=0.0019), with 51.6% of patients meeting NICE criteria to continue therapy. Erenumab, however, only achieved a reduction in HDPM by 17.0% (p=0.29), and this was not statistically significant. Furthermore, 34.4%, 9.7%, and 4.9% of patients taking Fremanezumab, Galcanezumab, and Erenumab, respectively, continued therapy beyond 12 months. Of those who attempted drug holidays following 12 months of treatment, migraine symptoms relapsed in 100% of cases. Conclusion: We observed a significant improvement in HDPM amongst episodic and chronic migraine patients following treatment with Fremanezumab or Galcanezumab.

Keywords: migraine, CGRP, fremanezumab, galcanezumab, erenumab

Procedia PDF Downloads 90
839 Platform Integration for High-Throughput Functional Screening Applications

Authors: Karolis Leonavičius, Dalius Kučiauskas, Dangiras Lukošius, Arnoldas Jasiūnas, Kostas Zdanys, Rokas Stanislovas, Emilis Gegevičius, Žana Kapustina, Juozas Nainys

Abstract:

Screening throughput is a common bottleneck in many research areas, including functional genomics, drug discovery, and directed evolution. High-throughput screening techniques can be classified into two main categories: (i) affinity-based screening and (ii) functional screening. The first one relies on binding assays that provide information about the affinity of a test molecule for a target binding site. Binding assays are relatively easy to establish; however, they reveal no functional activity. In contrast, functional assays show an effect triggered by the interaction of a ligand at a target binding site. Functional assays might be based on a broad range of readouts, such as cell proliferation, reporter gene expression, downstream signaling, and other effects that are a consequence of ligand binding. Screening of large cell or gene libraries based on direct activity rather than binding affinity is now a preferred strategy in many areas of research as functional assays more closely resemble the context where entities of interest are anticipated to act. Droplet sorting is the basis of high-throughput functional biological screening, yet its applicability is limited due to the technical complexity of integrating high-performance droplet analysis and manipulation systems. As a solution, the Droplet Genomics Styx platform enables custom droplet sorting workflows, which are necessary for the development of early-stage or complex biological therapeutics or industrially important biocatalysts. The poster will focus on the technical design considerations of Styx in the context of its application spectra.

Keywords: functional screening, droplet microfluidics, droplet sorting, dielectrophoresis

Procedia PDF Downloads 126
838 Computational Investigation on Structural and Functional Impact of Oncogenes and Tumor Suppressor Genes on Cancer

Authors: Abdoulie K. Ceesay

Abstract:

Within the sequence of the whole genome, it is known that 99.9% of the human genome is similar, whilst our difference lies in just 0.1%. Among these minor dissimilarities, the most common type of genetic variations that occurs in a population is SNP, which arises due to nucleotide substitution in a protein sequence that leads to protein destabilization, alteration in dynamics, and other physio-chemical properties’ distortions. While causing variations, they are equally responsible for our difference in the way we respond to a treatment or a disease, including various cancer types. There are two types of SNPs; synonymous single nucleotide polymorphism (sSNP) and non-synonymous single nucleotide polymorphism (nsSNP). sSNP occur in the gene coding region without causing a change in the encoded amino acid, while nsSNP is deleterious due to its replacement of a nucleotide residue in the gene sequence that results in a change in the encoded amino acid. Predicting the effects of cancer related nsSNPs on protein stability, function, and dynamics is important due to the significance of phenotype-genotype association of cancer. In this thesis, Data of 5 oncogenes (ONGs) (AKT1, ALK, ERBB2, KRAS, BRAF) and 5 tumor suppressor genes (TSGs) (ESR1, CASP8, TET2, PALB2, PTEN) were retrieved from ClinVar. Five common in silico tools; Polyphen, Provean, Mutation Assessor, Suspect, and FATHMM, were used to predict and categorize nsSNPs as deleterious, benign, or neutral. To understand the impact of each variation on the phenotype, Maestro, PremPS, Cupsat, and mCSM-NA in silico structural prediction tools were used. This study comprises of in-depth analysis of 10 cancer gene variants downloaded from Clinvar. Various analysis of the genes was conducted to derive a meaningful conclusion from the data. Research done indicated that pathogenic variants are more common among ONGs. Our research also shows that pathogenic and destabilizing variants are more common among ONGs than TSGs. Moreover, our data indicated that ALK(409) and BRAF(86) has higher benign count among ONGs; whilst among TSGs, PALB2(1308) and PTEN(318) genes have higher benign counts. Looking at the individual cancer genes predisposition or frequencies of causing cancer according to our research data, KRAS(76%), BRAF(55%), and ERBB2(36%) among ONGs; and PTEN(29%) and ESR1(17%) among TSGs have higher tendencies of causing cancer. Obtained results can shed light to the future research in order to pave new frontiers in cancer therapies.

Keywords: tumor suppressor genes (TSGs), oncogenes (ONGs), non synonymous single nucleotide polymorphism (nsSNP), single nucleotide polymorphism (SNP)

Procedia PDF Downloads 83
837 Exploring Simple Sequence Repeats within Conserved microRNA Precursors Identified from Tea Expressed Sequence Tag (EST) Database

Authors: Anjan Hazra, Nirjhar Dasgupta, Chandan Sengupta, Sauren Das

Abstract:

Tea (Camellia sinensis) has received substantial attention from the scientific world time to time, not only for its commercial importance, but also for its demand to the health-conscious people across the world for its extensive use as potential sources of antioxidant supplement. These health-benefit traits primarily rely on some regulatory networks of different metabolic pathways. Development of microsatellite markers from the conserved genomic regions is being worthwhile for studying the genetic diversity of closely related species or self-pollinated species. Although several SSR markers have been reported, in tea the trait-specific Simple Sequence Repeats (SSRs) are yet to be identified, which can be used for marker assisted breeding technique. MicroRNAs are endogenous, noncoding, short RNAs directly involved in regulating gene expressions at the post-transcriptional level. It has been found that diversity in miRNA gene interferes the formation of its characteristic hair pin structure and the subsequent function. In the present study, the precursors of small regulatory RNAs (microRNAs) has been fished out from tea Expressed Sequence Tag (EST) database. Furthermore, the simple sequence repeat motifs within the putative miRNA precursor genes are also identified in order to experimentally validate their existence and function. It is already known that genic-SSR markers are very adept and breeder-friendly source for genetic diversity analysis. So, the potential outcome of this in-silico study would provide some novel clues in understanding the miRNA-triggered polymorphic genic expression controlling specific metabolic pathways, accountable for tea quality.

Keywords: micro RNA, simple sequence repeats, tea quality, trait specific marker

Procedia PDF Downloads 307
836 NeuroBactrus, a Novel, Highly Effective, and Environmentally Friendly Recombinant Baculovirus Insecticide

Authors: Yeon Ho Je

Abstract:

A novel recombinant baculovirus, NeuroBactrus, was constructed to develop an improved baculovirus insecticide with additional beneficial properties, such as a higher insecticidal activity and improved recovery, compared to wild-type baculovirus. For the construction of NeuroBactrus, the Bacillus thuringiensis crystal protein gene (here termed cry1-5) was introduced into the Autographa californica nucleopolyhedrovirus (AcMNPV) genome by fusion of the polyhedrin–cry1-5–polyhedrin genes under the control of the polyhedrin promoter. In the opposite direction, an insect-specific neurotoxin gene, AaIT, from Androctonus australis was introduced under the control of an early promoter from Cotesia plutellae bracovirus by fusion of a partial fragment of orf603. The polyhedrin–Cry1-5–polyhedrin fusion protein expressed by the NeuroBactrus was not only occluded into the polyhedra, but it was also activated by treatment with trypsin, resulting in an_65-kDa active toxin. In addition, quantitative PCR revealed that the neurotoxin was expressed from the early phase of infection. NeuroBactrus showed a high level of insecticidal activity against Plutella xylostella larvae and a significant reduction in the median lethal time against Spodoptera exigua larvae compared to those of wild-type AcMNPV. Rerecombinant mutants derived from NeuroBactrus in which AaIT and/or cry1-5 were deleted were generated by serial passages in vitro. Expression of the foreign proteins (B. thuringiensis toxin and AaIT) was continuously reduced during the serial passage of the NeuroBactrus. Moreover, polyhedra collected from S. exigua larvae infected with the serially passaged NeuroBactrus showed insecticidal activity similar to that of wild-type AcMNPV. These results suggested that NeuroBactrus could be recovered to wild-type AcMNPV through serial passaging.

Keywords: baculovirus, insecticide, neurotoxin, neurobactrus

Procedia PDF Downloads 314
835 Metabolic Profiling of Populus trichocarpa Family 1 UDP-Glycosyltransferases

Authors: Patricia M. B. Saint-Vincent, Anna Furches, Stephanie Galanie, Erica Teixeira Prates, Piet Jones, Nancy Engle, David Kainer, Wellington Muchero, Daniel Jacobson, Timothy J. Tschaplinski

Abstract:

Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that catalyze sugar transfer to a variety of plant metabolites. UGT substrates, which include plant secondary metabolites involved in lignification, demonstrate new activities and incorporation when glycosylated. Knowledge of UGT function, substrate specificity, and enzyme products is important for plant engineering efforts, especially related to increasing plant biomass through lignification. UGTs in Populus trichocarpa, a biofuel feedstock, and model woody plant, were selected from a pool of gene candidates using rapid prioritization strategies. A functional genomics workflow, consisting of a metabolite genome-wide association study (mGWAS), expression of synthetic codon-optimized genes, and high-throughput biochemical assays with mass spectrometry-based analysis, was developed for determining the substrates and products of previously-uncharacterized enzymes. A total of 40 UGTs from P. trichocarpa were profiled, and the biochemical assay results were compared to predicted mGWAS connections. Assay results confirmed seven of 11 leaf mGWAS associations and demonstrated varying levels of substrate specificity among candidate UGTs. P. trichocarpa UGT substrate processing confirms the role of these newly-characterized enzymes in lignan, flavonoid, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress responses.

Keywords: Populus, metabolite-gene associations, GWAS, bio feedstocks, glycosyltransferase

Procedia PDF Downloads 109
834 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis

Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin

Abstract:

Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.

Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis

Procedia PDF Downloads 265