Search results for: cell surface display
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10124

Search results for: cell surface display

3014 Design of Hybrid Auxetic Metamaterials for Enhanced Energy Absorption under Compression

Authors: Ercan Karadogan, Fatih Usta

Abstract:

Auxetic materials have a negative Poisson’s ratio (NPR), which is not often found in nature. They are metamaterials that have potential applications in many engineering fields. Mechanical metamaterials are synthetically designed structures with unusual mechanical properties. These mechanical properties are dependent on the properties of the matrix structure. They have the following special characteristics, i.e., improved shear modulus, increased energy absorption, and intensive fracture toughness. Non-auxetic materials compress transversely when they are stretched. The system naturally is inclined to keep its density constant. The transversal compression increases the density to balance the loss in the longitudinal direction. This study proposes to improve the crushing performance of hybrid auxetic materials. The re-entrant honeycomb structure has been combined with a star honeycomb, an S-shaped unit cell, a double arrowhead, and a structurally hexagonal re-entrant honeycomb by 9 X 9 cells, i.e., the number of cells is 9 in the lateral direction and 9 in the vertical direction. The Finite Element (FE) and experimental methods have been used to determine the compression behavior of the developed hybrid auxetic structures. The FE models have been developed by using Abaqus software. The specimens made of polymer plastic materials have been 3D printed and subjected to compression loading. The results are compared in terms of specific energy absorption and strength. This paper describes the quasi-static crushing behavior of two types of hybrid lattice structures (auxetic + auxetic and auxetic + non-auxetic). The results show that the developed hybrid structures can be useful to control collapse mechanisms and present larger energy absorption compared to conventional re-entrant auxetic structures.

Keywords: auxetic materials, compressive behavior, metamaterials, negative Poisson’s ratio

Procedia PDF Downloads 91
3013 LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma

Authors: Jin Hwan Cheong, Mina Hwang, Myung Hoon Han, Je Il Ryu, Young ha Oh, Seong Ho Koh, Wu Duck Won, Byung Jin Ha

Abstract:

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inꠓhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream sigꠓnaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.

Keywords: LGR5, neuroblastoma, meningioma, pituitary adenoma, hnRNP

Procedia PDF Downloads 54
3012 Understanding the Role of Alkali-Free Accelerators in Wet-Mix Shotcrete

Authors: Ezgi Yurdakul, Klaus-Alexander Rieder, Richard Sibbick

Abstract:

Most of the shotcrete projects require compliance with meeting a specified early-age strength target (e.g., reaching 1 MPa in 1 hour) that is selected based on the underground conditions. To meet the desired early-age performance characteristics, accelerators are commonly used as they increase early-age strength development rate and accelerate the setting thereby reducing sagging and rebound. The selection of accelerator type and its dosage is made by the setting time and strength required for the shotcrete application. While alkaline and alkali-free accelerators are the two main types used in wet-mix shotcrete; alkali-free admixtures increasingly substitute the alkaline accelerators to improve the performance and working safety. This paper aims to evaluate the impact of alkali-free accelerators in wet-mix on various tests including set time, early and later-age compressive strength, boiled absorption, and electrical resistivity. Furthermore, the comparison between accelerated and non-accelerated samples will be made to demonstrate the interaction between cement and accelerators. Scanning electron microscopy (SEM), fluorescent resin impregnated thin section and cut and polished surface images will be used to understand the microstructure characterization of mixes in the presence of accelerators.

Keywords: accelerators, chemical admixtures, shotcrete, sprayed concrete

Procedia PDF Downloads 167
3011 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 291
3010 The Effect of Malaria Parasitaemia on Serum Reproductive Hormonal Levels of Asymptomatic HIV Subjects in Nauth Nnewi, South Eastern Nigeria

Authors: Ezeugwunne Ifeoma Priscilla, Charles Chinedum Onyenekwe, Joseph Eberendu Ahaneku, Rosemary Adanma Analike, Adesuwa Peace Eidangbe

Abstract:

This study was designed to assess the effect of malaria parasitaemia on serum reproductive hormone levels of asymptomatic HIV adult subjects. A total of 271 participants aged between 17 and 58 ears were conveniently recruited. 135 asymptomatic HIV-infected subjects participated in the study; 67 of them had malaria parasitaemia. 136 HIV seropositive control subjects, 68 of them had malaria parasitaemia. Blood samples were collected from the participants for the determination of HIV status by immunoassay and immunochromatography. Enzyme-linked immunosorbent assay (ELISA) was used to assay for serum LH, FSH, Estrogen, testosterone, progesterone, prolactin, and PSA levels, CD4+T cell counts by Cyflow method, thick and thin films determination of malaria parasitaemia count and density by WHO. Student's t-tests and ANOVA were used to compare means. P<0.05 was considered statistically significant. The results showed significant differences in serum levels of LH, FSH, PSA, estrogen, progesterone, and testosterone amongst the groups at P<0.05, respectively. The serum levels of LH, FSH, and PSA were significantly higher in malaria-infected asymptomatic HIV subjects than in asymptomatic HIV subjects with malaria parasitaemia (P<0.05 in each case). Also, the serum levels of LH, FSH, PSA, estrogen, and progesterone were significantly higher in malaria-infected asymptomatic HIV subjects compared with malaria-infected HIV seronegative subjects (P<0.05, respectively). The mean MP counts and MP density were significantly higher in asymptomatic HIV subjects compared to HIV seronegative subjects (P<0.05, in each case). The mean serum levels of testosterone were significantly lower in both malaria-infected and malaria uninfected HIV seronegative subjects (P<0.05, in each case). In conclusion, Malaria and HIV co-infection might increase the burden of hypogonadism as well as primary testicular failure, hyperprogesteronaemia, elevated levels of estrogen, and PSA in adult males asymptomatic HIV subjects.

Keywords: malaria parasitaemia, HIV, CD4, reproductive hormones

Procedia PDF Downloads 137
3009 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: electrohydrodynamics (EHD), swirling flow, convective heat transfer, solid sample

Procedia PDF Downloads 286
3008 Wireless Capsule Endoscope - Antenna and Channel Characterization

Authors: Mona Elhelbawy, Mac Gray

Abstract:

Traditional wired endoscopy is an intrusive process that requires a long flexible tube to be inserted through the patient’s mouth while intravenously sedated. Only images of the upper 4 feet of stomach, colon, and rectum can be captured, leaving the remaining 20 feet of small intestines. Wireless capsule endoscopy offers a painless, non-intrusive, efficient and effective alternative to traditional endoscopy. In wireless capsule endoscopy (WCE), ingestible vitamin-pill-shaped capsules with imaging capabilities, sensors, batteries, and antennas are designed to send images of the gastrointestinal (GI) tract in real time. In this paper, we investigate the radiation performance and specific absorption rate (SAR) of a miniature conformal capsule antenna operating at the Medical Implant Communication Service (MICS) frequency band in the human body. We perform numerical simulations using the finite element method based commercial software, high-frequency structure simulator (HFSS) and the ANSYS human body model (HBM). We also investigate the in-body channel characteristics between the implantable capsule and an external antenna placed on the surface of the human body.

Keywords: IEEE 802.15.6, MICS, SAR, WCE

Procedia PDF Downloads 126
3007 Effect of Probiotic Feeding on Weight Gain, Blood Biochemical and Hematological Indices of Crossbred Dairy Goat Kids

Authors: Claire B. Salvedia, Enrico P. Supangco, Francisco B. Eligado, Renato Sa Vega, Antonio A. Rayos

Abstract:

The study was conducted to evaluate the effect of probiotic feeding on weight gain, blood biochemical and hematological indices of crossbred dairy goat kids. Sixteen (16) crossbred Anglo-Nubian x Saanen dairy goat kids, 3 to 4 months old, ranging from 19 to 23kg were randomly assigned into four treatments fed with 5x109 cfu/ml probiotic supplements; Treatment 1 – control; Treatment 2 – lactic acid bacteria (L. plantarum BS and P. acidilactici 3G3); treatment 3 – S. cerevisiae 2030; Treatment 4 – multi-strain probiotics (L. plantarum BS, P. acidilactici 3G3, and S.cerevisiae 2030). Feed ration provided daily for each of the experimental animals were composed of 1kg mixed concentrate feed ((Leucaena leucocephala dried leaves and pollard), and 4 kg fresh Pennisetum purpureum and Gliciridia sepium leaves (50:50). The experimental feeding trial lasted for 9 weeks. Result revealed that treatments fed with probiotics had significantly (P≤0.05) higher weight gain compared to the control. Significant effect on plasma urea nitrogen (PUN) and triglyceride were noted during 30th and 60th day of probiotic feeding. White blood cell counts were significantly affected by probiotic feeding during the 60th day. Concentrations of glucose and cholesterol remained unchanged throughout the experimental period. The findings suggests, under the condition of the experiment, that live probiotic feeding could have a significant role in improving weight gain and metabolism of crossbred dairy goat kids.

Keywords: probiotics, weight gain, blood biochemical indices, crossbred dairy goat kids

Procedia PDF Downloads 484
3006 Guided Information Campaigns for Counter-Terrorism: Behavioral Approach to Interventions Regarding Polarized Societal Network

Authors: Joshua Midha

Abstract:

The basis for information campaigns and behavioral interventions has long reigned as a tactic. From the Soviet-era propaganda machines to the opinion hijacks in Iran, these measures are now commonplace and are used for dissemination and disassembly. However, the use of these tools for strategic diffusion, specifically in a counter-terrorism setting, has only been explored on the surface. This paper aims to introduce a larger conceptual portion of guided information campaigns into preexisting terror cells and situations. It provides an alternative, low-risk intervention platform for future military strategy. This paper highlights a theoretical framework to lay out the foundationary details and explanations for behavioral interventions and moves into using a case study to highlight the possibility of implementation. It details strategies, resources, circumstances, and risk factors for intervention. It also sets an expanding foundation for offensive PsyOps and argues for tactical diffusion of information to battle extremist sentiment. The two larger frameworks touch on the internal spread of information within terror cells and external political sway, thus charting a larger holistic purpose of strategic operations.

Keywords: terrorism, behavioral intervention, propaganda, SNA, extremism

Procedia PDF Downloads 93
3005 Effect of Corrugating Bottom Surface on Natural Convection in a Square Porous Enclosure

Authors: Khedidja Bouhadef, Imene Said Kouadri, Omar Rahli

Abstract:

In this paper numerical investigation is performed to analyze natural convection heat transfer characteristics within a wavy-wall enclosure filled with fluid-saturated porous medium. The bottom wall which has the wavy geometry is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant lower temperature. The left and right walls of the enclosure are both straight and insulated. The governing differential equations are solved by Finite-volume approach and grid generation is used to transform the physical complex domain to a computational regular space. The aim is to examine flow field, temperature distribution and heat transfer evolutions inside the cavity when Darcy number, Rayleigh number and undulations number values are varied. The results mainly indicate that the heat transfer is rather affected by the permeability and Rayleigh number values since increasing these values enhance the Nusselt number; although the exchanges are not highly affected by the undulations number.

Keywords: grid generation, natural convection, porous medium, wavy wall enclosure

Procedia PDF Downloads 258
3004 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 539
3003 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 182
3002 Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive

Authors: Marcel Lehr, Andreas Binder

Abstract:

This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior.

Keywords: doubly-salient-permanent-magnet-machine, flux-reversal-permanent-magnet-machine, flux-switching-permanent-magnet-machine, industrial drive

Procedia PDF Downloads 364
3001 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 295
3000 Structural and Phase Transformations of Pure and Silica Treated Nanofibrous Al₂O₃

Authors: T. H. N. Nguyen, A. Khodan, M. Amamra, J-V. Vignes, A. Kanaev

Abstract:

The ultraporous nanofibrous alumina (NOA, Al2O3·nH2O) was synthesized by oxidation of laminated aluminium plates through a liquid mercury-silver layer in a humid atmosphere ~80% at 25°C. The material has an extremely high purity (99%), porosity (90%) and specific area (300 m2/g). The subsequent annealing of raw NOA permits obtaining pure transition phase (γ and θ) nanostructured materials. In this combination, we report on chemical, structural and phase transformations of pure and modified NOA by an impregnation of trimethylethoxysilane (TMES) and tetraethoxysilane (TEOS) during thermal annealing in the temperature range between 20 and 1650°C. The mass density, specific area, average diameter and specific area are analysed. The 3D model of pure NOA monoliths and silica modified NOA is proposed, which successfully describes the evolution of specific area, mass density and phase transformations. Activation energies of the mass transport in two regimes of surface diffusion and bulk sintering were obtained based on this model. We conclude about a common origin of modifications of the NOA morphology, chemical composition and phase transition.

Keywords: nanostructured materials, alumina (Al₂O₃), morphology, phase transitions

Procedia PDF Downloads 376
2999 The Prodomain-Bound Form of Bone Morphogenetic Protein 10 is Biologically Active on Endothelial Cells

Authors: Austin Jiang, Richard M. Salmon, Nicholas W. Morrell, Wei Li

Abstract:

BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality due to impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.

Keywords: bone morphogenetic protein 10 (BMP10), endothelial cell, signal transduction, transforming growth factor beta (TGF-B)

Procedia PDF Downloads 272
2998 Study of the Nonlinear Optic Properties of Thin Films of Europium Doped Zinc Oxide

Authors: Ali Ballouch, Nourelhouda Choukri, Zouhair Soufiani, Mohamed El Jouad, Mohamed Addou

Abstract:

For several years, significant research has been developed in the areas of applications of semiconductor wide bandgap such as ZnO in optoelectronics. This oxide has the advantage of having a large exciton energy (60 meV) three times higher than that of GaN (21 meV) or ZnS (20 meV). This energy makes zinc oxide resistant for laser irradiations and very interesting for the near UV-visible optic, as well as for studying physical microcavities. A high-energy direct gap at room temperature (Eg > 1 eV) which makes it a potential candidate for emitting devices in the near UV and visible. Our work is to study the nonlinear optical properties, mainly the nonlinear third-order susceptibility of europium doped Zinc oxide thin films. The samples were prepared by chemical vapor spray method (Spray), XRD, SEM technique, THG were used for characterization. In this context, the influence of europium doping on the nonlinear optical response of the Zinc oxide was investigated. The nonlinear third-order properties depend on the physico-chemical parameters (crystallinity, strain, and surface roughness), the nature and the level of doping, temperature.

Keywords: ZnO, characterization, non-linear optical properties, optoelectronics

Procedia PDF Downloads 478
2997 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 233
2996 Anti-Aging Effects of Retinol and Alpha Hydroxy Acid on Elastin Fibers of Artificially Photo-Aged Human Dermal Fibroblast Cell Lines

Authors: Mohammed Jarrar, Shalini Behl, Nadia Shaheen, Abeer Fatima, Reem Nasab

Abstract:

Skin aging is a slow multifactorial process influenced by both internal as well as external factors. Ultra-violet radiations (UV), diet, smoking and personal habits are the most common environmental factors that affect skin aging. Fat contents and fibrous proteins as collagen and elastin are core internal structural components. The direct influence of UV on elastin integrity and health is crucial on aging of skin by time. The deposition of abnormal elastic material is a major marker in a photo-aged skin. Searching for compounds that may protect against cutaneous photo-damage is highly valued. Retinoids and Alpha Hydroxy Acids protective and or repairing effects of UV have been endorsed by some researchers. For consolidating a better understanding of anti and protective effects of such anti-aging agents, we evaluated the combinatory effects of various dosages of lactic acid and retinol on the dermal fibroblasts elastin levels exposed to UV. The UV exposed cells showed significant reduction in the elastin levels. A combination of drugs with a higher concentration of lactic acid (30-35 mM) and a lower concentration of retinol (10-15mg/mL) showed to work better in enhancing elastin concentration in UV exposed cells. We assume this enhancement could be the result of increased tropo-elastin gene expression stimulated by retinol and lactic acid probably repaired the UV irradiated damage by enhancing the amount and integrity of the elastin fibers.

Keywords: alpha hydroxy acid, elastin, retinol, ultraviolet radiations

Procedia PDF Downloads 338
2995 Mobile Network Users Amidst Ultra-Dense Networks in 5G Using an Improved Coordinated Multipoint (CoMP) Technology

Authors: Johnson O. Adeogo, Ayodele S. Oluwole, O. Akinsanmi, Olawale J. Olaluyi

Abstract:

In this 5G network, very high traffic density in densely populated areas, most especially in densely populated areas, is one of the key requirements. Radiation reduction becomes one of the major concerns to secure the future life of mobile network users in ultra-dense network areas using an improved coordinated multipoint technology. Coordinated Multi-Point (CoMP) is based on transmission and/or reception at multiple separated points with improved coordination among them to actively manage the interference for the users. Small cells have two major objectives: one, they provide good coverage and/or performance. Network users can maintain a good quality signal network by directly connecting to the cell. Two is using CoMP, which involves the use of multiple base stations (MBS) to cooperate by transmitting and/or receiving at the same time in order to reduce the possibility of electromagnetic radiation increase. Therefore, the influence of the screen guard with rubber condom on the mobile transceivers as one major piece of equipment radiating electromagnetic radiation was investigated by mobile network users amidst ultra-dense networks in 5g. The results were compared with the same mobile transceivers without screen guards and rubber condoms under the same network conditions. The 5 cm distance from the mobile transceivers was measured with the help of a ruler, and the intensity of Radio Frequency (RF) radiation was measured using an RF meter. The results show that the intensity of radiation from various mobile transceivers without screen guides and condoms was higher than the mobile transceivers with screen guides and condoms when call conversation was on at both ends.

Keywords: ultra-dense networks, mobile network users, 5g, coordinated multi-point.

Procedia PDF Downloads 94
2994 Concrete Sewer Pipe Corrosion Induced by Sulphuric Acid Environment

Authors: Anna Romanova, Mojtaba Mahmoodian, Upul Chandrasekara, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulphuric acid attack is a recognised problem worldwide, which is not only an attribute of countries with hot climate conditions as thought before. The significance of this problem is by far only realised when the pipe collapses causing surface flooding and other severe consequences. To change the existing post-reactive attitude of managing companies, easy to use and robust models are required to be developed which currently lack reliable data to be correctly calibrated. This paper focuses on laboratory experiments of establishing concrete pipe corrosion rate by submerging samples in to 0.5 pH sulphuric acid solution for 56 days under 10ºC, 20ºC and 30ºC temperature regimes. The result showed that at very early stage of the corrosion process the samples gained overall mass, at 30ºC the corrosion progressed quicker than for other temperature regimes, however with time the corrosion level for 10ºC and 20ºC regimes tended towards those at 30ºC. Overall, at these conditions the corrosion rates of 10 mm/year, 13,5 mm/year, and 17 mm/year were observed.

Keywords: sewer pipes, concrete corrosion, sulphuric acid, concrete coupons, corrosion rate

Procedia PDF Downloads 327
2993 Affordable Aerodynamic Balance for Instrumentation in a Wind Tunnel Using Arduino

Authors: Pedro Ferreira, Alexandre Frugoli, Pedro Frugoli, Lucio Leonardo, Thais Cavalheri

Abstract:

The teaching of fluid mechanics in engineering courses is, in general, a source of great difficulties for learning. The possibility of the use of experiments with didactic wind tunnels can facilitate the education of future professionals. The objective of this proposal is the development of a low-cost aerodynamic balance to be used in a didactic wind tunnel. The set is comprised of an Arduino microcontroller, programmed by an open source software, linked to load cells built by students from another project. The didactic wind tunnel is 5,0m long and the test area is 90,0 cm x 90,0 cm x 150,0 cm. The Weq® electric motor, model W-22 of 9,2 HP, moves a fan with nine blades, each blade 32,0 cm long. The Weq® frequency inverter, model WEGCFW 08 (Vector Inverter) is responsible for wind speed control and also for the motor inversion of the rotational direction. A flat-convex profile prototype of airfoil was tested by measuring the drag and lift forces for certain attack angles; the air flux conditions remained constant, monitored by a Pitot tube connected to a EXTECH® Instruments digital pressure differential manometer Model HD755. The results indicate a good agreement with the theory. The choice of all of the components of this proposal resulted in a low-cost product providing a high level of specific knowledge of mechanics of fluids, which may be a good alternative to teaching in countries with scarce educational resources. The system also allows the expansion to measure other parameters like fluid velocity, temperature, pressure as well as the possibility of automation of other functions.

Keywords: aerodynamic balance, wind tunnel, strain gauge, load cell, Arduino, low-cost education

Procedia PDF Downloads 436
2992 Studying the Moisture Sources and the Stable Isotope Characteristic of Moisture in Northern Khorasan Province, North-Eastern Iran

Authors: Mojtaba Heydarizad, Hamid Ghalibaf Mohammadabadi

Abstract:

Iran is a semi-arid and arid country in south-western Asia in the Middle East facing intense climatological drought from the early times. Therefore, studying the precipitation events and the moisture sources and air masses causing precipitation has great importance in this region. In this study, the moisture sources and stable isotope content of precipitation moisture in three main events in 2015 have been studied in North-Eastern Iran. HYSPLIT model backward trajectories showed that the Caspian Sea and the mixture of the Caspian and Mediterranean Seas are dominant moisture sources for the studied events. This showed the role of cP (Siberian) and Mediterranean (MedT) air masses. Stable isotope studies showed that precipitation events originated from the Caspian Sea with lower Sea Surface Temperature (SST) have more depleted isotope values. However, precipitation events sourced from the mixture of the Caspian and the Mediterranean Seas (with higher SST) showed more enriched isotope values.

Keywords: HYSPLIT, Iran, Northern Khorasan, stable isotopes

Procedia PDF Downloads 129
2991 Experimental Investigation on the Effects of Electroless Nickel Phosphorus Deposition, pH and Temperature with the Varying Coating Bath Parameters on Impact Energy by Taguchi Method

Authors: D. Kari Basavaraja, M. G. Skanda, C. Soumya, V. Ramesh

Abstract:

This paper discusses the effects of sodium hypophosphite concentration, pH, and temperature on deposition rate. This paper also discusses the evaluation of coating strength, surface, and subsurface by varying the bath parameters, percentage of phosphate, plating temperature, and pH of the plating solution. Taguchi technique has been used for the analysis. In the experiment, nickel chloride which is a source of nickel when mixed with sodium hypophosphite has been used as the reducing agent and the source of phosphate and sodium hydroxide has been used to vary the pH of the coating bath. The coated samples are tested for impact energy by conducting impact test. Finally, the effects of coating bath parameters on the impact energy absorbed have been plotted, and analysis has been carried out. Further, percentage contribution of coating bath parameters using Design of Experiments approach (DOE) has been analysed. Finally, it can be concluded that the bath parameters of the Ni-P coating will certainly influence on the strength of the specimen.

Keywords: bath parameters, coatings, design of experiment, fracture toughness, impact strength

Procedia PDF Downloads 349
2990 The Effect of Vitamin D Supplementation on Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials

Authors: Simin Shahvazi, Sepideh Soltani, Seyed Mehdi Ahmadi, Russell J. De Souza, Amin Salehi-Abargouei

Abstract:

Background and Objectives: Vitamin D has received attention for its potential to disrupt cancer processes such as attenuating cell proliferation and exacerbating differentiation and apoptosis. However, whether there exists a role for vitamin D in the treatment of prostate cancer specifically remains controversial. We systematically review the literature to assess whether supplementation with vitamin D influences PSA response and overall survival in patients with prostate cancer. Methods: We searched PubMed, Scopus, ISI Web of Science and Google scholar from inception through up to 10 September 2017 for both before-and-after and randomized trials that evaluated the effect of vitamin D supplementation on the prostate specific antigen (PSA) response rate in participants with prostate cancer. The DerSimonian and Laird, inverse-weighted random-effects model was used to pool effect estimates from the studies. Heterogeneity and potential publication bias were evaluated. Subgroup analyses were also performed. Results: Twenty-two studies (16 before-after and 6 randomized controlled trials) were found and included in meta-analysis. The analysis on controlled clinical trials revealed that PSA change from baseline [weighted mean difference (WMD) = -1.66 ng/ml, 95%CI: -0.69, 0.36, P= 0.543)], PSA response (RR=1.18, 95%CI: 0.97, 1.45, P=0.104) and mortality rate (risk ratio (RR) = 1.05, 95% CI: 0.81-1.36; P=0.713) was not significantly different between vitamin D supplementation and placebo groups. Single arm trials revealed that vitamin D supplementation had had a modest effect on PSA response rate: 19% of those enrolled had at least a 50% reduction in PSA by the end of treatment (95% CI: 7% to 31%; p=0.002). Conclusion: We found that vitamin D modestly increases the PSA response rate in single arm studies. No effect on serum PSA levels, PSA response and mortality was seen in randomized controlled clinical trials. It does not seem patients with prostate cancer benefit from vitamin D supplementation.

Keywords: mortality, prostatic neoplasms, PSA response, vitamin D

Procedia PDF Downloads 191
2989 Infused Mesenchymal Stem Cells Ameliorate Organs Morphology in Cerebral Malaria Infection

Authors: Reva Sharan Thakur, Mrinalini Tiwari, Jyoti das

Abstract:

Cerebral malaria-associated over expression of pro-inflammatory cytokines and chemokines ultimately results in the up-regulation of adhesion molecules in the brain endothelium leading to sequestration of mature parasitized RBCs in the brain. The high-parasitic load subsequently results in increased mortality or development of neurological symptoms within a week of infection. Studies in the human and experimental cerebral malaria have implicated the breakdown of the integrity of blood-brain barrier during the lethal course of infection, cerebral dysfunction, and fatal organ pathologies that result in multi-organ failure. In the present study, using Plasmodium berghei Anka as a mouse model and in vitro conditions, we have investigated the effect of MSCs to attenuate cerebral malaria pathogenesis by diminishing the effect of inflammation altered organ morphology, reduced parasitemia, and increased survival of the mice. MSCs are also validated for their role in preventing BBB dysfunction and reducing malarial toxins. It was observed that administration of MSCs significantly reduced parasitemia and increased survival in Pb A infected mice. It was further demonstrated that MSCs play a significant role in reversing neurological complexities associated with cerebral malaria. Infusion of MSCs in infected mice decreased hemozoin deposition; oedema, and haemorrhagic lesions in vascular organs. MSCs administration also preserved the integrity of the blood-brain barrier and reduced neural inflammation. Taken together, our results demonstrate the potential of MSCs as an emerging anti-malarial candidate.

Keywords: cerebral malaria, mesenchymal stem cells, erythropoesis, cell death

Procedia PDF Downloads 102
2988 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 239
2987 Study of Electro Magnetic Acoustic Transducer to Detect Flaw in Pipeline

Authors: Yu-Lin Shen, Ming-Kuen Chang

Abstract:

In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electro Magnetic Acoustic Transducer Testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length.. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.

Keywords: EMAT, NDT, artificial defect, ultrasonic testing

Procedia PDF Downloads 468
2986 Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

Authors: Muthana A. M. Jameel Al-Jaboori

Abstract:

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Keywords: water wave, models, Wells turbine, MATLAB program

Procedia PDF Downloads 356
2985 BIM Modeling of Site and Existing Buildings: Case Study of ESTP Paris Campus

Authors: Rita Sassine, Yassine Hassani, Mohamad Al Omari, Stéphanie Guibert

Abstract:

Building Information Modelling (BIM) is the process of creating, managing, and centralizing information during the building lifecycle. BIM can be used all over a construction project, from the initiation phase to the planning and execution phases to the maintenance and lifecycle management phase. For existing buildings, BIM can be used for specific applications such as lifecycle management. However, most of the existing buildings don’t have a BIM model. Creating a compatible BIM for existing buildings is very challenging. It requires special equipment for data capturing and efforts to convert these data into a BIM model. The main difficulties for such projects are to define the data needed, the level of development (LOD), and the methodology to be adopted. In addition to managing information for an existing building, studying the impact of the built environment is a challenging topic. So, integrating the existing terrain that surrounds buildings into the digital model is essential to be able to make several simulations as flood simulation, energy simulation, etc. Making a replication of the physical model and updating its information in real-time to make its Digital Twin (DT) is very important. The Digital Terrain Model (DTM) represents the ground surface of the terrain by a set of discrete points with unique height values over 2D points based on reference surface (e.g., mean sea level, geoid, and ellipsoid). In addition, information related to the type of pavement materials, types of vegetation and heights and damaged surfaces can be integrated. Our aim in this study is to define the methodology to be used in order to provide a 3D BIM model for the site and the existing building based on the case study of “Ecole Spéciale des Travaux Publiques (ESTP Paris)” school of engineering campus. The property is located on a hilly site of 5 hectares and is composed of more than 20 buildings with a total area of 32 000 square meters and a height between 50 and 68 meters. In this work, the campus precise levelling grid according to the NGF-IGN69 altimetric system and the grid control points are computed according to (Réseau Gédésique Français) RGF93 – Lambert 93 french system with different methods: (i) Land topographic surveying methods using robotic total station, (ii) GNSS (Global Network Satellite sytem) levelling grid with NRTK (Network Real Time Kinematic) mode, (iii) Point clouds generated by laser scanning. These technologies allow the computation of multiple building parameters such as boundary limits, the number of floors, the floors georeferencing, the georeferencing of the 4 base corners of each building, etc. Once the entry data are identified, the digital model of each building is done. The DTM is also modeled. The process of altimetric determination is complex and requires efforts in order to collect and analyze multiple data formats. Since many technologies can be used to produce digital models, different file formats such as DraWinG (DWG), LASer (LAS), Comma-separated values (CSV), Industry Foundation Classes (IFC) and ReViT (RVT) will be generated. Checking the interoperability between BIM models is very important. In this work, all models are linked together and shared on 3DEXPERIENCE collaborative platform.

Keywords: building information modeling, digital terrain model, existing buildings, interoperability

Procedia PDF Downloads 108