Search results for: Response Surface Method (RSM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26808

Search results for: Response Surface Method (RSM)

19728 Biomimicked Nano-Structured Coating Elaboration by Soft Chemistry Route for Self-Cleaning and Antibacterial Uses

Authors: Elodie Niemiec, Philippe Champagne, Jean-Francois Blach, Philippe Moreau, Anthony Thuault, Arnaud Tricoteaux

Abstract:

Hygiene of equipment in contact with users is an important issue in the railroad industry. The numerous cleanings to eliminate bacteria and dirt cost a lot. Besides, mechanical solicitations on contact parts are observed daily. It should be interesting to elaborate on a self-cleaning and antibacterial coating with sufficient adhesion and good resistance against mechanical and chemical solicitations. Thus, a Hauts-de-France and Maubeuge Val-de-Sambre conurbation authority co-financed Ph.D. thesis has been set up since October 2017 based on anterior studies carried by the Laboratory of Ceramic Materials and Processing. To accomplish this task, a soft chemical route has been implemented to bring a lotus effect on metallic substrates. It involves nanometric liquid zinc oxide synthesis under 100°C. The originality here consists in a variation of surface texturing by modification of the synthesis time of the species in solution. This helps to adjust wettability. Nanostructured zinc oxide has been chosen because of the inherent photocatalytic effect, which can activate organic substance degradation. Two methods of heating have been compared: conventional and microwave assistance. Tested subtracts are made of stainless steel to conform to transport uses. Substrate preparation was the first step of this protocol: a meticulous cleaning of the samples is applied. The main goal of the elaboration protocol is to fix enough zinc-based seeds to make them grow during the next step as desired (nanorod shaped). To improve this adhesion, a silica gel has been formulated and optimized to ensure chemical bonding between substrate and zinc seeds. The last step consists of deposing a wide carbonated organosilane to improve the superhydrophobic property of the coating. The quasi-proportionality between the reaction time and the nanorod length will be demonstrated. Water Contact (superior to 150°) and Roll-off Angle at different steps of the process will be presented. The antibacterial effect has been proved with Escherichia Coli, Staphylococcus Aureus, and Bacillus Subtilis. The mortality rate is found to be four times superior to a non-treated substrate. Photocatalytic experiences were carried out from different dyed solutions in contact with treated samples under UV irradiation. Spectroscopic measurements allow to determinate times of degradation according to the zinc quantity available on the surface. The final coating obtained is, therefore, not a monolayer but rather a set of amorphous/crystalline/amorphous layers that have been characterized by spectroscopic ellipsometry. We will show that the thickness of the nanostructured oxide layer depends essentially on the synthesis time set in the hydrothermal growth step. A green, easy-to-process and control coating with self-cleaning and antibacterial properties has been synthesized with a satisfying surface structuration.

Keywords: antibacterial, biomimetism, soft-chemistry, zinc oxide

Procedia PDF Downloads 128
19727 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae

Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres

Abstract:

Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.

Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays

Procedia PDF Downloads 124
19726 Use the Null Space to Create Starting Point for Stochastic Programming

Authors: Ghussoun Al-Jeiroudi

Abstract:

Stochastic programming is one of the powerful technique which is used to solve real-life problems. Hence, the data of real-life problems is subject to significant uncertainty. Uncertainty is well studied and modeled by stochastic programming. Each day, problems become bigger and bigger and the need for a tool, which does deal with large scale problems, increase. Interior point method is a perfect tool to solve such problems. Interior point method is widely employed to solve the programs, which arise from stochastic programming. It is an iterative technique, so it is required a starting point. Well design starting point plays an important role in improving the convergence speed. In this paper, we propose a starting point for interior point method for multistage stochastic programming. Usually, the optimal solution of stage k+1 is used as starting point for the stage k. This point has the advantage of being close to the solution of the current program. However, it has a disadvantage; it is not in the feasible region of the current program. So, we suggest to take this point and modifying it. That is by adding to it a vector in the null space of the matrix of the unchanged constraints because the solution will change only in the null space of this matrix.

Keywords: interior point methods, stochastic programming, null space, starting points

Procedia PDF Downloads 405
19725 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions

Authors: M. Y. Malik, Farzana Khan

Abstract:

In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.

Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity

Procedia PDF Downloads 404
19724 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment

Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau

Abstract:

TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.

Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance

Procedia PDF Downloads 214
19723 Numerical Simulation of High Strength Steel Hot-Finished Elliptical Hollow Section Subjected to Uniaxial Eccentric Compression

Authors: Zhengyi Kong, Xueqing Wang, Quang-Viet Vu

Abstract:

In this study, the structural behavior of high strength steel (HSS) hot-finished elliptical hollow section (EHS) subjected to uniaxial eccentric compression is investigated. A finite element method for predicting the cross-section resistance of HSS hot-finished EHS is developed using ABAQUS software, which is then verified by comparison with previous experiments. The validated finite element method is employed to carry out parametric studies for investigating the structural behavior of HSS hot-finished EHS under uniaxial eccentric compression and evaluate the current design guidance for HSS hot-finished EHS. Different parameters, such as the radius of the larger and smaller outer diameter of EHS, thickness of EHS, eccentricity, and material property, are considered. The resulting data from 84 finite element models are used to obtain the relationship between the cross-section resistance of HSS hot-finished EHS and cross-section slenderness. It is concluded that current design provisions, such as EN 1993-1-1, BS 5950-1, AS4100, and Gardner et al., are conservative for predicting the HSS hot-finished EHS under uniaxial eccentric compression.

Keywords: hot-finished, elliptical hollow section, uniaxial eccentric compression, finite element method

Procedia PDF Downloads 127
19722 Texture Observation of Bending by XRD and EBSD Method

Authors: Takashi Sakai, Yuri Shimomura

Abstract:

The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.

Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function

Procedia PDF Downloads 312
19721 A Novel Concept of Optical Immunosensor Based on High-Affinity Recombinant Protein Binders for Tailored Target-Specific Detection

Authors: Alena Semeradtova, Marcel Stofik, Lucie Mareckova, Petr Maly, Ondrej Stanek, Jan Maly

Abstract:

Recently, novel strategies based on so-called molecular evolution were shown to be effective for the production of various peptide ligand libraries with high affinities to molecular targets of interest comparable or even better than monoclonal antibodies. The major advantage of these peptide scaffolds is mainly their prevailing low molecular weight and simple structure. This study describes a new high-affinity binding molecules based immunesensor using a simple optical system for human serum albumin (HSA) detection as a model molecule. We present a comparison of two variants of recombinant binders based on albumin binding domain of the protein G (ABD) performed on micropatterned glass chip. Binding domains may be tailored to any specific target of interest by molecular evolution. Micropatterened glass chips were prepared using UV-photolithography on chromium sputtered glasses. Glass surface was modified by (3-aminopropyl)trietoxysilane and biotin-PEG-acid using EDC/NHS chemistry. Two variants of high-affinity binding molecules were used to detect target molecule. Firstly, a variant is based on ABD domain fused with TolA chain. This molecule is in vivo biotinylated and each molecule contains one molecule of biotin and one ABD domain. Secondly, the variant is ABD domain based on streptavidin molecule and contains four gaps for biotin and four ABD domains. These high-affinity molecules were immobilized to the chip surface via biotin-streptavidin chemistry. To eliminate nonspecific binding 1% bovine serum albumin (BSA) or 6% fetal bovine serum (FBS) were used in every step. For both variants range of measured concentrations of fluorescently labelled HSA was 0 – 30 µg/ml. As a control, we performed a simultaneous assay without high-affinity binding molecules. Fluorescent signal was measured using inverse fluorescent microscope Olympus IX 70 with COOL LED pE 4000 as a light source, related filters, and camera Retiga 2000R as a detector. The fluorescent signal from non-modified areas was substracted from the signal of the fluorescent areas. Results were presented in graphs showing the dependence of measured grayscale value on the log-scale of HSA concentration. For the TolA variant the limit of detection (LOD) of the optical immunosensor proposed in this study is calculated to be 0,20 µg/ml for HSA detection in 1% BSA and 0,24 µg/ml in 6% FBS. In the case of streptavidin-based molecule, it was 0,04 µg/ml and 0,07 µg/ml respectively. The dynamical range of the immunosensor was possible to estimate just in the case of TolA variant and it was calculated to be 0,49 – 3,75 µg/ml and 0,73-1,88 µg/ml respectively. In the case of the streptavidin-based the variant we didn´t reach the surface saturation even with the 480 ug/ml concentration and the upper value of dynamical range was not estimated. Lower value was calculated to be 0,14 µg/ml and 0,17 µg/ml respectively. Based on the obtained results, it´s clear that both variants are useful for creating the bio-recognizing layer on immunosensors. For this particular system, it is obvious that the variant based on streptavidin molecule is more useful for biosensing on glass planar surfaces. Immunosensors based on this variant would exhibit better limit of detection and wide dynamical range.

Keywords: high affinity binding molecules, human serum albumin, optical immunosensor, protein G, UV-photolitography

Procedia PDF Downloads 352
19720 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes

Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov

Abstract:

Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.

Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes

Procedia PDF Downloads 226
19719 A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar

Authors: Khanh D.Do, Loi V.Nguyen, Thanh N.Nguyen, Thang M.Nguyen, Vu T.Tran

Abstract:

Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure.

Keywords: multipath, secondary surveillance radar, digital signal processing, reflection

Procedia PDF Downloads 146
19718 Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas

Authors: Hamid Reza Pakzad

Abstract:

In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity.

Keywords: reductive perturbation method, dust ion acoustic shock wave, superthermal electron, dissipative plasmas

Procedia PDF Downloads 294
19717 A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity

Authors: Tamas Hartvanyi, Zoltan Andras Nagy, Miklos Szabo

Abstract:

The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application.

Keywords: warehouse, warehouse capacity, warehouse design method, warehouse optimization

Procedia PDF Downloads 118
19716 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges

Authors: V. Reyes, P. Ferreira

Abstract:

In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.

Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model

Procedia PDF Downloads 104
19715 Terrorist Financing through Ilegal Fintech Hacking: Case Study of Rizki Gunawan

Authors: Ishna Indika Jusi, Rifana Meika

Abstract:

Terrorism financing method in Indonesia is developing at an alarming rate, to the point, it is now becoming more complex than before. Terrorists traditionally use conventional methods like robberies, charities, and courier services to fund their activities; today terrorists are able to utilize modern methods in financing their activities due to the rapid development in financial technology nowadays; one example is by hacking an illegal Fintech Company. Therefore, this research is conducted in order to explain and analyze the consideration behind the usage of an illegal fintech company to finance terrorism activities and how to prevent it. The analysis in this research is done by using the theory that is coined by Michael Freeman about the reasoning of terrorists when choosing their financing method. The method used in this research is a case study, and the case that is used for this research is the terrorism financing hacking of speedline.com in 2011 by Rizki Gunawan. Research data are acquired from interviews with the perpetrators, experts from INTRAC (PPATK), Special Detachment 88, reports, and journals that are relevant to the research. As a result, this study found that the priority aspects in terms of terrorist financing are security, quantity, and simplicity while obtaining funds.

Keywords: Fintech, illegal, Indonesia, technology, terrorism financing

Procedia PDF Downloads 156
19714 Study of Electro-Chemical Properties of ZnO Nanowires for Various Application

Authors: Meera A. Albloushi, Adel B. Gougam

Abstract:

The development in the field of piezoelectrics has led to a renewed interest in ZnO nanowires (NWs) as a promising material in the nanogenerator devices category. It can be used as a power source for self-powered electronic systems with higher density, higher efficiency, longer lifetime, as well as lower cost of fabrication. Highly aligned ZnO nanowires seem to exhibit a higher performance compared with nonaligned ones. The purpose of this study was to develop ZnO nanowires and to investigate their electrical and chemical properties for various applications. They were grown on silicon (100) and glass substrates. We have used a low temperature and non-hazardous method: aqueous chemical growth (ACG). ZnO (non-doped) and AZO (Aluminum doped) seed layers were deposited using RF magnetron sputteringunder Argon pressure of 3 mTorr and deposition power of 180 W, the times of growth were selected to obtain thicknesses in the range of 30 to 125 nm. Some of the films were subsequently annealed. The substrates were immersed tilted in an equimolar solution composed of zinc nitrate and hexamine (HMTA) of 0.02 M and 0.05 M in the temperature range of 80 to 90 ᵒC for 1.5 to 2 hours. The X-ray diffractometer shows strong peaks at 2Ө = 34.2ᵒ of ZnO films which indicates that the films have a preferred c-axis wurtzite hexagonal (002) orientation. The surface morphology of the films is investigated by atomic force microscope (AFM) which proved the uniformity of the film since the roughness is within 5 nm range. The scanning electron microscopes(SEM) (Quanta FEG 250, Quanta 3D FEG, Nova NanoSEM 650) are used to characterize both ZnO film and NWs. SEM images show forest of ZnO NWs grown vertically and have a range of length up to 2000 nm and diameter of 20-300 nm. The SEM images prove that the role of the seed layer is to enhance the vertical alignment of ZnO NWs at the pH solution of 5-6. Also electrical and optical properties of the NWs are carried out using Electrical Force Microscopy (EFM). After growing the ZnO NWs, developing the nano-generator is the second step of this study in order to determine the energy conversion efficiency and the power output.

Keywords: ZnO nanowires(NWs), aqueous chemical growth (ACG), piezoelectric NWs, harvesting enery

Procedia PDF Downloads 310
19713 Effect of Installation Method on the Ratio of Tensile to Compressive Shaft Capacity of Piles in Dense Sand

Authors: A. C. Galvis-Castro, R. D. Tovar, R. Salgado, M. Prezzi

Abstract:

It is generally accepted that the shaft capacity of piles in the sand is lower for tensile loading that for compressive loading. So far, very little attention has been paid to the role of the influence of the installation method on the tensile to compressive shaft capacity ratio. The objective of this paper is to analyze the effect of installation method on the tensile to compressive shaft capacity of piles in dense sand as observed in tests on half-circular model pile tests in a half-circular calibration chamber with digital image correlation (DIC) capability. Model piles are either monotonically jacked, jacked with multiple strokes or pre-installed into the dense sand samples. Digital images of the model pile and sand are taken during both the installation and loading stages of each test and processed using the DIC technique to obtain the soil displacement and strain fields. The study provides key insights into the mobilization of shaft resistance in tensile and compressive loading for both displacement and non-displacement piles.

Keywords: digital image correlation, piles, sand, shaft resistance

Procedia PDF Downloads 255
19712 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and WOB are used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036m3/h and -2.374m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. Quantitatively calculate the best combination of funnel viscosity, final shear force and drilling time. The minimum loss rate of lost circulation wells in Shunbei area is 10m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: drilling and completion, drilling fluid, lost circulation, loss rate, main controlling factors, unmanned intervention algorithm

Procedia PDF Downloads 95
19711 The Effectiveness of Laughing Qigong for Women with Breast Cancer in Community

Authors: Chueh Chang, Chia-jung Hsieh, Fu-yu Yu, Yu-Hwa Lin

Abstract:

Background:The majority of women diagnosed with breast cancer undergo treatment involving surgery and radiotherapy or chemotherapy, or both. With these major advances in breast cancer management, many patients still have to deal with short or long-term side effects and psychological distress related to the disease and treatment, which have a substantial impact on their quality of life. The Laughing Qigong Program (LQP) is an interactive laughter program that combines the physical and physiological benefits of laughter with the mental benefits of Chinese qigong. Purpose: In order to improve the quality of life for breast cancer women in the community as well as echoing the WHO 2004 “Promoting Mental Health” for every one. This study focused on how to promote the positive mental health for women of breast cancer through the “laughter program” in Taiwan. During the presentation, how to practice Laughing Qigong will be demonstrated. Method: Using nonequivalent pretest-posttest design, ix-one breast cancer patients were volunteered to enroll in this study from the Taiwan Breast Cancer Alliance (TBCA). Thirty patients were assigned to the experimental group and the other 31 patients were assigned to the control group. The women who were assigned to the experimental group received laughter program one hour per session, once a week, totally 12 sessions. All subjects were tested before and after the intervention on the following: Self-Esteem scale (RSE), Face Scale (FS), Anxiety and pain experience were measured as psychological markers; saliva cortisol (CS) as an immunological marker; blood pressure (BP), heart rate (HR),and heart rate variability (HRV) as physiological markers of the body’s response to stress. Results: After comparing the experimental and control groups, the results revealed that those breast cancer women with “laughing program” their sense of humor were improved, less uncomfortable on self report physical conditions, more positive attitudes toward stress management by using laughter, and had emotional improvement according to the face scale.

Keywords: mental health promotion, breast cancer, laughing Qigong, women

Procedia PDF Downloads 474
19710 Parameter Selection and Monitoring for Water-Powered Percussive Drilling in Green-Fields Mineral Exploration

Authors: S. J. Addinell, T. Richard, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising downhole water powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barron cover. This system has shown superior rates of penetration in water-rich hard rock formations at depths exceeding 500 meters. Several key challenges exist regarding the deployment and use of these bottom hole assemblies for mineral exploration, and this paper discusses some of the key technical challenges. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process is presented and shows a strong power law relationship for particle size distributions. Several percussive drilling parameters such as RPM, applied fluid pressure and weight on bit have been shown to influence the particle size distributions of the cuttings generated. This has direct influence on other drilling parameters such as flow loop performance, cuttings dewatering, and solids control. Real-time, accurate knowledge of percussive system operating parameters will assist the driller in maximising the efficiency of the drilling process. The applied fluid flow, fluid pressure, and rock properties are known to influence the natural oscillating frequency of the percussive hammer, but this paper also shows that drill bit design, drill bit wear and the applied weight on bit can also influence the oscillation frequency. Due to the changing drilling conditions and therefore changing operating parameters, real-time understanding of the natural operating frequency is paramount to achieving system optimisation. Several techniques to understand the oscillating frequency have been investigated and presented. With a conventional top drive drilling rig, spectral analysis of applied fluid pressure, hydraulic feed force pressure, hold back pressure and drill string vibrations have shown the presence of the operating frequency of the bottom hole tooling. Unfortunately, however, with the implementation of a coiled tubing drilling rig, implementing a positive displacement downhole motor to provide drill bit rotation, these signals are not available for interrogation at the surface and therefore another method must be considered. The investigation and analysis of ground vibrations using geophone sensors, similar to seismic-while-drilling techniques have indicated the presence of the natural oscillating frequency of the percussive hammer. This method is shown to provide a robust technique for the determination of the downhole percussive oscillation frequency when used with a coiled tubing drill rig.

Keywords: cuttings characterization, drilling optimization, oscillation frequency, percussive drilling, spectral analysis

Procedia PDF Downloads 220
19709 Possible Sulfur Induced Superconductivity in Nano-Diamond

Authors: J. Mona, R. R. da Silva, C.-L.Cheng, Y. Kopelevich

Abstract:

We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites.

Keywords: nanodiamond, sulfur, superconductivity, Raman spectroscopy

Procedia PDF Downloads 476
19708 Mitigating Biofouling on Reverse Osmosis Membranes: Applying Greener Preservatives to Biofilm Treatment

Authors: Anna Curtin, Matthew Thibodeau, Heather Buckley

Abstract:

Water scarcity is characterized by a lack of access to clean and affordable drinking water, as well as water for hygienic and economic needs. The amount of people effected by water scarcity is expected to increase in the coming years due to climate change, population growth, and pollution, amongst other things. In response, scientists are pursuing cost effective drinking water treatment methods, often with a focus on alternative water sources. Desalination of seawater via reverse osmosis is one promising alternative method. Desalination of seawater via reverse osmosis, however, is limited significantly by biofouling of the filtration membrane. Biofouling is the buildup of microorganisms in a biofilm at the water-membrane interface. It clogs the membrane, decreasing the efficiency of filtration, consequently increasing operational and maintenance costs. Although effective, existing chemical treatment methods can damage the membrane, decreasing the lifespan of the membrane; create antibiotic resistance; and cause harm to humans and the environment if they pass through the membrane into the permeate. The current project focuses on applying safer preservatives used in home and personal care products to RO membranes to investigate the biofouling treatment efficacy. Currently, many of these safer preservatives have only been tested on cells in planktonic phase in suspension cultures, not on cells in biofilms. The results of suspension culture tests are not applicable to biofouling scenarios because organisms in planktonic phase in suspension cultures exhibit different morphological, chemical, and metabolic characteristics than those in a biofilm. Testing antifoulant efficacy of safer preservatives on biofilms will provide more applicable results to biofouling on RO membranes. To do this, biofilms will be grown on 96-well-plates and minimum inhibitory concentrations (MIC90) and log-reductions will be calculated for various safer preservatives. Results from these tests will be used to guide doses for tests of safer preservatives in a bench-scale RO system.

Keywords: reverse osmosis, biofouling, preservatives, antimicrobial, safer alternative, green chemistry

Procedia PDF Downloads 133
19707 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 157
19706 An Experimental Study of Scalar Implicature Processing in Chinese

Authors: Liu Si, Wang Chunmei, Liu Huangmei

Abstract:

A prominent component of the semantic versus pragmatic debate, scalar implicature (SI) has been gaining great attention ever since it was proposed by Horn. The constant debate is between the structural and pragmatic approach. The former claims that generation of SI is costless, automatic, and dependent mostly on the structural properties of sentences, whereas the latter advocates both that such generation is largely dependent upon context, and that the process is costly. Many experiments, among which Katsos’s text comprehension experiments are influential, have been designed and conducted in order to verify their views, but the results are not conclusive. Besides, most of the experiments were conducted in English language materials. Katsos conducted one off-line and three on-line text comprehension experiments, in which the previous shortcomings were addressed on a certain extent and the conclusion was in favor of the pragmatic approach. We intend to test the results of Katsos’s experiment in Chinese scalar implicature. Four experiments in both off-line and on-line conditions to examine the generation and response time of SI in Chinese "yixie" (some) and "quanbu (dou)" (all) will be conducted in order to find out whether the structural or the pragmatic approach could be sustained. The study mainly aims to answer the following questions: (1) Can SI be generated in the upper- and lower-bound contexts as Katsos confirmed when Chinese language materials are used in the experiment? (2) Can SI be first generated, then cancelled as default view claimed or can it not be generated in a neutral context when Chinese language materials are used in the experiment? (3) Is SI generation costless or costly in terms of processing resources? (4) In line with the SI generation process, what conclusion can be made about the cognitive processing model of language meaning? Is it a parallel model or a linear model? Or is it a dynamic and hierarchical model? According to previous theoretical debates and experimental conflicts, presumptions could be made that SI, in Chinese language, might be generated in the upper-bound contexts. Besides, the response time might be faster in upper-bound than that found in lower-bound context. SI generation in neutral context might be the slowest. At last, a conclusion would be made that the processing model of SI could not be verified by either absolute structural or pragmatic approaches. It is, rather, a dynamic and complex processing mechanism, in which the interaction of language forms, ad hoc context, mental context, background knowledge, speakers’ interaction, etc. are involved.

Keywords: cognitive linguistics, pragmatics, scalar implicture, experimental study, Chinese language

Procedia PDF Downloads 346
19705 Analysis of Composite Health Risk Indicators Built at a Regional Scale and Fine Resolution to Detect Hotspot Areas

Authors: Julien Caudeville, Muriel Ismert

Abstract:

Analyzing the relationship between environment and health has become a major preoccupation for public health as evidenced by the emergence of the French national plans for health and environment. These plans have identified the following two priorities: (1) to identify and manage geographic areas, where hotspot exposures are suspected to generate a potential hazard to human health; (2) to reduce exposure inequalities. At a regional scale and fine resolution of exposure outcome prerequisite, environmental monitoring networks are not sufficient to characterize the multidimensionality of the exposure concept. In an attempt to increase representativeness of spatial exposure assessment approaches, risk composite indicators could be built using additional available databases and theoretical framework approaches to combine factor risks. To achieve those objectives, combining data process and transfer modeling with a spatial approach is a fundamental prerequisite that implies the need to first overcome different scientific limitations: to define interest variables and indicators that could be built to associate and describe the global source-effect chain; to link and process data from different sources and different spatial supports; to develop adapted methods in order to improve spatial data representativeness and resolution. A GIS-based modeling platform for quantifying human exposure to chemical substances (PLAINE: environmental inequalities analysis platform) was used to build health risk indicators within the Lorraine region (France). Those indicators combined chemical substances (in soil, air and water) and noise risk factors. Tools have been developed using modeling, spatial analysis and geostatistic methods to build and discretize interest variables from different supports and resolutions on a 1 km2 regular grid within the Lorraine region. By example, surface soil concentrations have been estimated by developing a Kriging method able to integrate surface and point spatial supports. Then, an exposure model developed by INERIS was used to assess the transfer from soil to individual exposure through ingestion pathways. We used distance from polluted soil site to build a proxy for contaminated site. Air indicator combined modeled concentrations and estimated emissions to take in account 30 polluants in the analysis. For water, drinking water concentrations were compared to drinking water standards to build a score spatialized using a distribution unit serve map. The Lden (day-evening-night) indicator was used to map noise around road infrastructures. Aggregation of the different factor risks was made using different methodologies to discuss weighting and aggregation procedures impact on the effectiveness of risk maps to take decisions for safeguarding citizen health. Results permit to identify pollutant sources, determinants of exposure, and potential hotspots areas. A diagnostic tool was developed for stakeholders to visualize and analyze the composite indicators in an operational and accurate manner. The designed support system will be used in many applications and contexts: (1) mapping environmental disparities throughout the Lorraine region; (2) identifying vulnerable population and determinants of exposure to set priorities and target for pollution prevention, regulation and remediation; (3) providing exposure database to quantify relationships between environmental indicators and cancer mortality data provided by French Regional Health Observatories.

Keywords: health risk, environment, composite indicator, hotspot areas

Procedia PDF Downloads 237
19704 Designing Price Stability Model of Red Cayenne Pepper Price in Wonogiri District, Centre Java, Using ARCH/GARCH Method

Authors: Fauzia Dianawati, Riska W. Purnomo

Abstract:

Food and agricultural sector become the biggest sector contributing to inflation in Indonesia. Especially in Wonogiri district, red cayenne pepper was the biggest sector contributing to inflation on 2016. A national statistic proved that in recent five years red cayenne pepper has the highest average level of fluctuation among all commodities. Some factors, like supply chain, price disparity, production quantity, crop failure, and oil price become the possible factor causes high volatility level in red cayenne pepper price. Therefore, this research tries to find the key factor causing fluctuation on red cayenne pepper by using ARCH/GARCH method. The method could accommodate the presence of heteroscedasticity in time series data. At the end of the research, it is statistically found that the second level of supply chain becomes the biggest part contributing to inflation with 3,35 of coefficient in fluctuation forecasting model of red cayenne pepper price. This model could become a reference to the government to determine the appropriate policy in maintaining the price stability of red cayenne pepper.

Keywords: ARCH/GARCH, forecasting, red cayenne pepper, volatility, supply chain

Procedia PDF Downloads 172
19703 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery

Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang

Abstract:

As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.

Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping

Procedia PDF Downloads 78
19702 Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction

Authors: Junehyuck Lee, Dongmin Lee, Hunhee Cho, Kyung-In Kang

Abstract:

A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction.

Keywords: table form, tall building, automation, productivity

Procedia PDF Downloads 383
19701 Applying the Crystal Model to Different Nuclear Systems

Authors: A. Amar

Abstract:

The angular distributions of the nuclear systems under consideration have been analyzed in the framework of the optical model (OM), where the real part was taken in the crystal model form. A crystal model (CM) has been applied to deuteron elastically scattered by ⁶,⁷Li and ⁹Be. A crystal model (CM) + distorted-wave Born approximation (DWBA) + dynamic polarization potential (DPP) potential has been applied to deuteron elastically scattered by ⁶,⁷Li and 9Be. Also, a crystal model has been applied to ⁶Li elastically scattered by ¹⁶O and ²⁸Sn in addition to the ⁷Li+⁷Li system and the ¹²C(alpha,⁸Be) ⁸Be reaction. The continuum-discretized coupled-channels (CDCC) method has been applied to the ⁷Li+⁷Li system and agreement between the crystal model and the continuum-discretized coupled-channels (CDCC) method has been observed. In general, the models succeeded in reproducing the differential cross sections at the full angular range and for all the energies under consideration.

Keywords: optical model (OM), crystal model (CM), distorted-wave born approximation (DWBA), dynamic polarization potential (DPP), the continuum-discretized coupled-channels (CDCC) method, and deuteron elastically scattered by ⁶, ⁷Li and ⁹Be

Procedia PDF Downloads 59
19700 A Numerical Study on Micromechanical Aspects in Short Fiber Composites

Authors: I. Ioannou, I. M. Gitman

Abstract:

This study focused on the contribution of micro-mechanical parameters on the macro-mechanical response of short fiber composites, namely polypropylene matrix reinforced by glass fibers. In the framework of this paper, an attention has been given to the glass fibers length, as micromechanical parameter influences the overall macroscopic material’s behavior. Three dimensional numerical models were developed and analyzed through the concept of a Representative Volume Element (RVE). Results of the RVE-based approach were compared with analytical Halpin-Tsai’s model.

Keywords: effective properties, homogenization, representative volume element, short fiber reinforced composites

Procedia PDF Downloads 252
19699 Decision Analysis Module for Excel

Authors: Radomir Perzina, Jaroslav Ramik

Abstract:

The Analytic Hierarchy Process is frequently used approach for solving decision making problems. There exists wide range of software programs utilizing that approach. Their main disadvantage is that they are relatively expensive and missing intermediate calculations. This work introduces a Microsoft Excel add-in called DAME – Decision Analysis Module for Excel. Comparing to other computer programs DAME is free, can work with scenarios or multiple decision makers and displays intermediate calculations. Users can structure their decision models into three levels – scenarios/users, criteria and variants. Items on all levels can be evaluated either by weights or pair-wise comparisons. There are provided three different methods for the evaluation of the weights of criteria, the variants as well as the scenarios – Saaty’s Method, Geometric Mean Method and Fuller’s Triangle Method. Multiplicative and additive syntheses are supported. The proposed software package is demonstrated on couple of illustrating examples of real life decision problems.

Keywords: analytic hierarchy process, multi-criteria decision making, pair-wise comparisons, Microsoft Excel, scenarios

Procedia PDF Downloads 433