Search results for: algorithm techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9858

Search results for: algorithm techniques

2808 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 31
2807 Production Value, Constraints, and Opportunities in East African Freshwater Fisheries: Systematic Review

Authors: Alamrew Eyayu, Abebe Getahun, James Last Keyombe

Abstract:

Demand for fish continued to grow worldwide while production from capture fisheries has decreased. In the Eastern African Region (EAR), the open-access nature of capture fisheries has resulted in illegal fishing. Within communities engaged in fishing, small-scale fisheries support food security strategies and sustain livelihoods. Despite the role of fisheries in EAR, inland fisheries are vulnerable to loss, and management solutions authorized for inland fisheries are inadequate. This review investigates production potential, challenges, opportunities, and management of inland fisheries in the EAR. It is therefore expected that in aquaculture promising areas, the EAR will turn to depend more on aquaculture to meet the extended needs and supply gaps created as a result of capture fisheries shortfalls. However, aquaculture is still in its infant stage in the region, and there exists no adequate aquaculture policy framework and funds in some EAR (e.g., Ethiopia, Somalia). Stakeholders at all levels should entertain the importance of fishery-based activities for food security in EAR. As a result, easily implemented and community-oriented fisheries legislative documents need to be prepared for advancing sustainable fisheries management. Legislative documents might consider techniques of continual catch statistics (consider small water bodies as much as possible) of inland fisheries and enforcing existing laws to manage illegal fishing activities to accustom sustainable development of inland capture fisheries.

Keywords: aquaculture, capture fisheries, East Africa, fisheries management

Procedia PDF Downloads 25
2806 Gas Transmission Pipeline Integrity Management System Through Corrosion Mitigation and Inspection Strategy: A Case Study of Natural Gas Transmission Pipeline from Wafa Field to Mellitah Gas Plant in Libya

Authors: Osama Sassi, Manal Eltorki, Iftikhar Ahmad

Abstract:

Poor integrity is one of the major causes of leaks and accidents in gas transmission pipelines. To ensure safe operation, it is must to have efficient and effective pipeline integrity management (PIM) system. The corrosion management is one of the important aspects of successful pipeline integrity management program together design, material selection, operations, risk evaluation and communication aspects to maintain pipelines in a fit-for-service condition. The objective of a corrosion management plan is to design corrosion mitigation, monitoring, and inspection strategy, and for maintenance in a timely manner. This paper presents the experience of corrosion management of a gas transmission pipeline from Wafa field to Mellitah gas plant in Libya. The pipeline is 525.5 km long and having 32 inches diameter. It is a buried pipeline. External corrosion on pipeline is controlled with a combination of coatings and cathodic protection while internal corrosion is controlled with a combination of chemical inhibitors, periodic cleaning and process control. The monitoring and inspection techniques provide a way to measure the effectiveness of corrosion control systems and provide an early warning when changing conditions may be causing a corrosion problem. This paper describes corrosion management system used in Mellitah Oil & Gas BV for its gas transmission pipeline based on standard practices of corrosion mitigation and inspection.

Keywords: corrosion mitigation on gas transmission pipelines, pipeline integrity management, corrosion management of gas pipelines, prevention and inspection of corrosion

Procedia PDF Downloads 77
2805 A Supervised Approach for Detection of Singleton Spam Reviews

Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim

Abstract:

In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.

Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine

Procedia PDF Downloads 309
2804 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 117
2803 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting

Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos

Abstract:

Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.

Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning

Procedia PDF Downloads 107
2802 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 152
2801 Entrepreneurship, Institutional Quality, and Macroeconomic Performance: Evidence from Nigeria

Authors: Cleopatra Oluseye Ibukun

Abstract:

Following the endogenous growth theory, entrepreneurship has been considered pivotal to economic growth and development, particularly in developing countries like Nigeria. Meanwhile, efforts to reduce unemployment has yielded minimal result with over 36% of youth unemployment and a dwindling economic growth despite the country’s natural and human resource endowment. This study, therefore, investigates the effects of entrepreneurship and institutional quality on economic growth and unemployment in Nigeria over the period 1996 to 2018. The data is obtained from the National Bureau of Statistics (NBS), World Bank’s World Development Indicators (WDI), and the World Bank’s World Governance Indicators (WGI). The study period is guided by the availability of data, and the study employs both descriptive and econometric techniques of analysis (specifically, the Auto-regressive Distributed Lag Approach). This approach is preferable given that the variables are stationary at the first difference, while the bounds test suggests the existence of co-integration among the variables. By implication, an increase in entrepreneurship significantly improves economic growth, and it reduces unemployment in both the short-run and the long-run. Besides, institutional quality proxied by the control of corruption, political stability, and government effectiveness significantly mediates the interaction between entrepreneurship and macroeconomic performance. This study concludes that improved institutional quality enhances the effect of entrepreneurship on economic growth and unemployment in Nigeria, and it recommends an improvement in Nigeria’s institutional quality because it can jeopardise or augment the effect of entrepreneurship on macroeconomic performance.

Keywords: entrepreneurship, institutional quality, unemployment, gross domestic product, Nigeria

Procedia PDF Downloads 136
2800 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
2799 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 73
2798 Flipped Classroom Instruction: Reflecting on the Experiences of Teachers and Students at Undergraduate University Level

Authors: Mubeshera Tufail

Abstract:

The purpose of the study was to explore the experiences and challenges faced by teachers and students with Flipped Classroom Instruction (FCI) for an undergraduate course at university level. The Flipped Classroom lesson plan consisted of two components: one was out-of-class component consisting of learning material for reading for students and other was within-class component involving a class quiz, class activity and the feedback/further reading task. Besides, experiences, the research study also covered the adaptations made to improve their experiences with Flipped Classroom during the study. The phenomenological research strategy was used for this research study. The data consisted of weekly reflective journals documented by class teacher and students. The reflective journals were recorded by teacher and students while working in Flipped Classroom for an undergraduate course at university level. The main challenges highlighted by teacher were related to effort and time required for planning, time management and students' guidance for shift of their role from passive to independent learner. The main challenges found in reflective journals of students were personal computers issue, electricity and internet speed issue. It is recommended to adapt to some locally useful lesson planning and classroom management techniques to enhance the effectiveness of Flipped Classroom Instruction in an undergraduate university level course.

Keywords: flipped classroom instruction, undergraduate students, independent learner, technology-integrated classroom

Procedia PDF Downloads 162
2797 The Biofertilizer Effect of Pseudomonas of Salt Soils of the North-West Algerian, Study of Comportment of Bean (Vicia Faba)

Authors: Djoudi Abdelhak, Djibaoui Rachid, Reguieg Yassaad Houcine

Abstract:

Our study focuses on the identification of some species of Pseudomonas (P4, P5, P7 and P8) isolated from saline soils in northwestern Algeria and the effect of their metabolites on the growth of Alternaria alternata the causative agent of the blight of the bean disease (Vicia faba). We are also interested in stimulating the growth of this plant species in saline conditions (60 mM/l NaCl) and the absence of salts. The analysis focuses on rates of inhibition of mycelial growth of Alternaria alternata strain and the rate of growth of plants inoculated with strains of Pseudomonas expressed by biometrics. According to the results of the in-vitro test, P5 and P8 species and their metabolites showed a significant effect on mycelia growth and production of spores of Alternaria alternata. The in-vivo test shows that the species P8 and P5 were significantly and positively influencing the growth in biometric parameters of the bean in saline and salt-free condition. Inoculation with strain P5 has promoted the growth of the bean in stem height, stem fresh weight and dry weight of stems of 108.59%, 115.28%, 104.33%, respectively, in the presence of salt Inoculation with strain P5 has fostered the growth of the bean stem fresh weight of 112.47% in the presence of salt The effect of Pseudomonas species on the development of Vicia faba and the growth of Alternaria alternata is considering new techniques and methods of biological production and crop protection.

Keywords: pseudomonas, vicia faba, alternaria alternata, promoting of plant growth

Procedia PDF Downloads 392
2796 Controlling the Oxygen Vacancies in the Structure of Anode Materials for Improved Electrochemical Performance in Lithium-Ion Batteries

Authors: Moustafa M. S. Sanad

Abstract:

The worsening of energy supply crisis and the exacerbation of climate change by environmental pollution problems have become the greatest threat to human life. One of the ways to confront these problems is to rely on renewable energy and its storage systems. Nowadays, huge attention has been directed to the development of lithium-ion batteries (LIBs) as efficient tools for storing the clean energy produced by green sources like solar and wind energies. Accordingly, the demand for powerful electrode materials with excellent electrochemical characteristics has been progressively increased to meet fast and continuous growth in the market of energy storage systems. Therefore, the electronic and electrical properties of conversion anode materials for rechargeable lithium-ion batteries (LIBs) can be enhanced by introducing lattice defects and oxygen vacancies in the crystal structure. In this regard, the intended presentation will demonstrate new insights and effective ways for enhancing the electrical conductivity and improving the electrochemical performance of different anode materials such as MgFe₂O₄, CdFe₂O₄, Fe₃O₄, LiNbO₃ and Nb₂O₅. The changes in the physicochemical and morphological properties have been deeply investigated via structural and spectroscopic analyses (e.g., XRD, FESEM, HRTEM, and XPS). Moreover, the enhancement in the electrochemical properties of these anode materials will be discussed through Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) techniques.

Keywords: structure modification, cationic substitution, non-stoichiometric synthesis, plasma treatment, lithium-ion batteries

Procedia PDF Downloads 59
2795 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: latent dirichlet allocation, R program, text mining, topic model, user generated contents, visualization

Procedia PDF Downloads 187
2794 A General Form of Characteristics Method Applied on Minimum Length Nozzles Design

Authors: Merouane Salhi, Mohamed Roudane, Abdelkader Kirad

Abstract:

In this work, we present a new form of characteristics method, which is a technique for solving partial differential equations. Typically, it applies to first-order equations; the aim of this method is to reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data. This latter developed under the real gas theory, because when the thermal and the caloric imperfections of a gas increases, the specific heat and their ratio do not remain constant anymore and start to vary with the gas parameters. The gas doesn’t stay perfect. Its state equation change and it becomes for a real gas. The presented equations of the characteristics remain valid whatever area or field of study. Here we need have inserted the developed Prandtl Meyer function in the mathematical system to find a new model when the effect of stagnation pressure is taken into account. In this case, the effects of molecular size and intermolecular attraction forces intervene to correct the state equation, the thermodynamic parameters and the value of Prandtl Meyer function. However, with the assumptions that Berthelot’s state equation accounts for molecular size and intermolecular force effects, expressions are developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The supersonic parameters depend directly on the stagnation parameters of the combustion chamber. The resolution has been made by the finite differences method using the corrector predictor algorithm. As results, the developed mathematical model used to design 2D minimum length nozzles under effect of the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high temperature models on the one hand and our results by the real gas theory on the other of nozzles shapes and characteristics are made.

Keywords: numerical methods, nozzles design, real gas, stagnation parameters, supersonic expansion, the characteristics method

Procedia PDF Downloads 243
2793 Aerodynamic Modelling of Unmanned Aerial System through Computational Fluid Dynamics: Application to the UAS-S45 Balaam

Authors: Maxime A. J. Kuitche, Ruxandra M. Botez, Arthur Guillemin

Abstract:

As the Unmanned Aerial Systems have found diverse utilities in both military and civil aviation, the necessity to obtain an accurate aerodynamic model has shown an enormous growth of interest. Recent modeling techniques are procedures using optimization algorithms and statistics that require many flight tests and are therefore extremely demanding in terms of costs. This paper presents a procedure to estimate the aerodynamic behavior of an unmanned aerial system from a numerical approach using computational fluid dynamic analysis. The study was performed using an unstructured mesh obtained from a grid convergence analysis at a Mach number of 0.14, and at an angle of attack of 0°. The flow around the aircraft was described using a standard k-ω turbulence model. Thus, the Reynold Averaged Navier-Stokes (RANS) equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45 designed and manufactured by Hydra Technologies in Mexico. The lift, the drag, and the pitching moment coefficients were obtained at different angles of attack for several flight conditions defined in terms of altitudes and Mach numbers. The results obtained from the Computational Fluid Dynamics analysis were compared with the results obtained by using the DATCOM semi-empirical procedure. This comparison has indicated that our approach is highly accurate and that the aerodynamic model obtained could be useful to estimate the flight dynamics of the UAS-S45.

Keywords: aerodynamic modelling, CFD Analysis, ANSYS FLUENT, UAS-S45

Procedia PDF Downloads 375
2792 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data

Authors: J. Bahrawi, M. Elhag

Abstract:

Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.

Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta

Procedia PDF Downloads 259
2791 A Fresh Look at Tense System of Qashqaie Dialect of Turkish Language

Authors: Mohammad Sharifi Bohlouli

Abstract:

Turkish language with many dialects is native or official language of great number of people all around the world. The Qashqaie dialect of Turkish language is spoken by the Qashqaie tribe mostly scattered in the southern part of Iran. This paper aims at analyzing the tense system of this dialect to detect the type and number of tense and aspects available to its speakers. To collect a reliable data, a group of 50 old native speakers were randomly chosen as the informants and different techniques such as; Shuy et al interviews, selective listening ,and eavesdropping were used. The results of data analysis showed that the tense system in the Qashqaie dialect of Turkish language includes 3 absolute tenses , 6 aspectual , and 2 subjunctive ones. The interesting part of the study is that Qashqaie dialect enables its speakers to make a kind of aspectual opposition through verb structure which seems to be almost impossible through verb forms in any other nonturkish languages. For example in the following examples sentences 1 &2 and 3&4 have the same translation In English although they are different in both meaning and structure. 1. Ali ensha yazirdi. 2. Ali ensha yazirmush. (Ali was writing a composition.) 3. Ali yadmishdi. 4. Ali yadmishimish. ( Ali had slept.) The changes in the verb structure in Qashqaie dialect enables its speakers to say that whether the doer of the action remembers the process of doing the action or not. So, it presents a new aspectual opposition as Observed /nonobserved. The research findings reveal many other regularities and linguistic features that can be useful for linguists interested in Turkish in general and for those interested in tense and aspect and also they can be helpful for different pedagogical purposes including teaching and translating.

Keywords: qashqaie dialect, tense, aspect, linguistics, Turkish Language

Procedia PDF Downloads 362
2790 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data

Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard

Abstract:

Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.

Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset

Procedia PDF Downloads 6
2789 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications

Authors: Badr M. Thamer

Abstract:

The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.

Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment

Procedia PDF Downloads 147
2788 Sustainable and Aesthetic Features of Traditional Architectures in Central Part of Iran

Authors: Azadeh Rezafar

Abstract:

Iran is one of the oldest countries with traditional culture in the world. All over the history Iranians had traditional architectural designs, which were at the same time sustainable, ecological, functional and environmental consistent. These human scale architectures were built for maximum use, comfort, climate adaptation with available resources and techniques. Climate variability of the country caused developing of variety design methods. More of these methods such as windcatchers in Yazd City or Panam (Insulation) were scientific solutions at the same time. Renewable energy resources were used in these methods that featured in them. While climate and ecological issues were dominant parts of these traditional designs, aesthetic and beauty issues were not ignored. Conformity with the community’s culture caused more compact designs that the visual aesthetics of them can be seen inside of them. Different organizations of space were used for these visual aesthetic issues inside the houses as well as historical urban designs. For example dry and hot climates in central parts of the country designed with centralized organization. Most central parts of these designs functioned as a courtyard for temperate the air in the summer. This paper will give summary descriptive information about traditional Iranian architectural style by figures all around the country with different climate conditions, while focus of the paper is traditional architectural design of the central part of the country, with dry and hot climate condition. This information may be useful for contemporary architectural designs, which are designed without noticing to the vernacular condition and caused cities look like each other.

Keywords: architectural design, traditional design, Iran, sustainability

Procedia PDF Downloads 223
2787 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator

Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain

Abstract:

Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.

Keywords: percent depth dose, flatness, symmetry, golden beam data

Procedia PDF Downloads 489
2786 Theoretical Study of Electronic Structure of Erbium (Er), Fermium (Fm), and Nobelium (No)

Authors: Saleh O. Allehabi, V. A. Dzubaa, V. V. Flambaum, Jiguang Li, A. V. Afanasjev, S. E. Agbemava

Abstract:

Recently developed versions of the configuration method for open shells, configuration interaction with perturbation theory (CIPT), and configuration interaction with many-body perturbation theory (CI+MBPT) techniques are used to study the electronic structure of Er, Fm, and No atoms. Excitation energies of odd states connected to the even ground state by electric dipole transitions, the corresponding transition rates, isotope shift, hyperfine structure, ionization potentials, and static scalar polarizabilities are calculated. The way of extracting parameters of nuclear charge distribution beyond nuclear root mean square (RMS) radius, e.g., a parameter of quadrupole deformation β, is demonstrated. In nuclei with spin > 1/2, parameter β is extracted from the quadrupole hyperfine structure. With zero nuclear spin or spin 1/2, it is impossible since quadrupole zero, so a different method was developed. The measurements of at least two atomic transitions are needed to disentangle the contributions of the changes in deformation and nuclear RMS radius into field isotopic shift. This is important for testing nuclear theory and for searching for the hypothetical island of stability. Fm and No are heavy elements approaching the superheavy region, for which the experimental data are very poor, only seven lines for the Fm element and one line for the No element. Since Er and Fm have similar electronic structures, calculations for Er serve as a guide to the accuracy of the calculations. Twenty-eight new levels of Fm atom are reported.

Keywords: atomic spectra, electronic transitions, isotope effect, electron correlation calculations for atoms

Procedia PDF Downloads 155
2785 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array

Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.

Keywords: acoustic sensing, direction of arrival, drone detection, microphone array

Procedia PDF Downloads 160
2784 Endoscopic Treatment of Patients with Large Bile Duct Stones

Authors: Yuri Teterin, Lomali Generdukaev, Dmitry Blagovestnov, Peter Yartcev

Abstract:

Introduction: Under the definition "large biliary stones," we referred to stones over 1.5 cm, in which standard transpapillary litho extraction techniques were unsuccessful. Electrohydraulic and laser contact lithotripsy under SpyGlass control have been actively applied for the last decade in order to improve endoscopic treatment results. Aims and Methods: Between January 2019 and July 2022, the N.V. Sklifosovsky Research Institute of Emergency Care treated 706 patients diagnosed with choledocholithiasis who underwent biliary stones removed from the common bile duct. Of them, in 57 (8, 1%) patients, the use of a Dormia basket or Biliary stone extraction balloon was technically unsuccessful due to the size of the stones (more than 15 mm in diameter), which required their destruction. Mechanical lithotripsy was used in 35 patients, and electrohydraulic and laser lithotripsy under SpyGlass direct visualization system - in 26 patients. Results: The efficiency of mechanical lithotripsy was 72%. Complications in this group were observed in 2 patients. In both cases, on day one after lithotripsy, acute pancreatitis developed, which resolved on day three with conservative therapy (Clavin-Dindo type 2). The efficiency of contact lithotripsy was in 100% of patients. Complications were not observed in this group. Bilirubin level in this group normalized on the 3rd-4th day. Conclusion: Our study showed the efficacy and safety of electrohydraulic and laser lithotripsy under SpyGlass control in a well-defined group of patients with large bile duct stones.

Keywords: contact lithotripsy, choledocholithiasis, SpyGlass, cholangioscopy, laser, electrohydraulic system, ERCP

Procedia PDF Downloads 80
2783 In Vitro Antibacterial Effect of Hydroalcoholic Extract of Lawsonia Inermis, Malva Sylvestris and Boswellia Serrata on Aggregatibacter Actinomycetemcomitans

Authors: Surena V.

Abstract:

Background and Aim: Periodontal diseases are among the most common infectious diseases all around the world, even in developed countries. Considering the increased rate of microbial resistance to antibiotics and the chemical side effects of antibiotics and antiseptics used for the treatment of periodontal disease, there is a need for an alternative antimicrobial agent with fewer complications. Medicinal herbs have recently become popular as antimicrobial and preventive agents. This study aimed to assess the antibacterial effects of hydroalcoholic extracts of Lawsonia inermis, Malva sylvestris and Boswellia serrata on Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Materials and Methods: Hydroalcoholic extracts of the three medicinal plants were obtained by the maceration technique and A. actinomycetemcomitans was cultured. The antimicrobial efficacy of the three medicinal plants was compared with that of 0.2% chlorhexidine (CHX) according to the CLSI protocol using agar disc diffusion and broth microdilution techniques. All tests were repeated three times. Results: Hydroalcoholic extracts of all three plants had antimicrobial activity against A. actinomycetemcomitans. The minimum inhibitory concentration (MIC) of Lawsonia inermis, Malva sylvestris, and Boswellia serrata was 78.1, 156.2, and 1666 µg/mL with no significant difference between them. The MIC of CHX was 3.33 µg/mL, which was significantly higher than that of Boswellia serrata extract. Conclusion: Given that, further in vivo studies confirm other properties of these extracts and their safety in terms of cytotoxicity and mutagenicity, hydroalcoholic extracts of Lawsonia inermis and Malva sylvestris may be used in mouthwashes or local delivery systems to affect periodontal biofilm.

Keywords: actinobacilus actinomycetem commitans, lawsonia inermis, malva sylvestris, boswellia serrata

Procedia PDF Downloads 59
2782 Developing A Novel Fluorescent Sensor For Detecting Analytes In An Aqueous Medium

Authors: Varshith Kotagiri, Lei Li

Abstract:

Fluorescent sensors are organic fluorophores that detect specific analytes with quantitative fluorescence intensity changes. They have offered impressive benefits compared with instrumental techniques, such as low cost, high selectivity, and rapid responses. One issue that limits the fluorescent sensors for further application is their poor solubility in the aqueous medium, where most targeted analytes, including metal ions, inorganic anions, and neutral biomolecules, are readily soluble. When fluorescent sensors are utilized to detect these analytes, a heterogeneous phase is formed. In most cases, an extra water-miscible organic solvent is needed as an additive to facilitate the sensing process, which complicates the measurement operations and produces more organic waste. We aim to resolve this issue by skillful molecular design to introduce a hydrophilic side chain to the fluorescent sensor, increasing its water solubility and facilitating its sensing process to analytes, like various protons, fluoride ions, and copper ions, in an aqueous medium. Simultaneously, its sensitivity and selectivity will be retained. This work will simplify the sensing operations and reduce the amount of organic waste produced during the measurement. This strategy will additionally be of broad interest to the chemistry community, as it introduces the idea of modifying the molecular structure to apply an initial hydrophobic compound under hydrophilic conditions in a feasible way.

Keywords: organic fluorescent sensor, analytes, sensing, aqueous medium, phenanthroimidazole, hydrophilic side chain

Procedia PDF Downloads 3
2781 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
2780 A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles

Authors: Dipak Sen, Rajdeep Ghosh

Abstract:

This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-ɛ model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics.

Keywords: friction factor, heat transfer, turbulent flow, circular duct, baffle, pitch ratio

Procedia PDF Downloads 372
2779 The Colombian Linguistic Landscape: A Study of Commercial Signs

Authors: Francia Martinez

Abstract:

This study documents and demonstrates the profound impact of the high status of American English and culture in Colombian commercial landscape due to the globalization and commodification of English. It also documents and describes how Colombian advertisers make use of various language and visual mechanisms in the commercial linguistic landscape to convey messages, create an image with which the target audience can identify, and build a relationship with that target audience. The data (in the form of pictures) were collected in different cities in Colombia and were classified and organized into different categories for the reliability and validity of the analysis. The research questions were: do the ubiquity and high status of American English and culture play a major role in the Colombian commercial linguistic landscape? If so, how?, what roles do national and local culture and language (Spanish) play in the commercial linguistic landscape?, and what different linguistic and visual strategies do Colombian advertisers employ to reach their target audience? Based on data analysis and results, American and local culture and icons play a major role when Colombian advertisers create and design their commercial logos and ads to get consumers’ attention and establish a rapport with them in a successful way. In order to achieve their objectives, Colombian advertisers rely on creative linguistic and visual techniques in their ads, such as puns, humor, irony, comparisons, metaphors, mocking, exaggeration, parody, personification, sarcasm, satire, allusion, onomatopoeias, and imitation (copycat or cloning).

Keywords: Colombian ads, linguistic landscape, rhetorical devices, sociolinguistics

Procedia PDF Downloads 310