Search results for: algorithm techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9587

Search results for: algorithm techniques

2537 Extraction and Uses of Essential Oil

Authors: Ram Prasad Baral

Abstract:

A large number of herb materials contain Essential Oils with extensive bioactivities. Acknowledging the importance of plants and its medicinal value, extraction of Essential Oil had been done using Steam Distillation method. In this project, Steam Distillation was used to extract oil from different plant materials like Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha Arvensia, Nardostachys Jatamansi, Wintergreen Essential Oil, and Valeriana Officinalis. Research has confirmed centuries of practical use of essential oils, and we now know that the 'fragrant pharmacy' contains compounds with an extremely broad range of biochemical effects. Essential oils are so termed as they are believed to represent the very essence of odor and flavor. The recovery of Essential Oil from the raw botanical starting material is very important since the quality of the oil is greatly influenced during this step. There is a variety of methods for obtaining volatile oils from plants. Steam distillation method was found to be one of the promising techniques for the extraction of essential oil from plants as reputable distiller will preserve the original qualities of the plant. The distillation was conducted in Clevenger apparatus in which boiling, condensing, and decantation was done. Analysis of essential oil was done using Gas Chromatography-Mass Spectrometer apparatus, which gives evaluates essential oil qualitatively and quantitatively. The volume of essential oil obtained was changing with respect to temperature and time of heating.

Keywords: Chamomilla recutita (L.) Rauschert, Artemisia Vulgaris L, Rhododendron anthopogon D. Don, Cymbopogon nardus L, Andropogon nardus, Cinnamomum tamala, Juniperus spp, Cymbopohonflexuosus flexuous, Mantha

Procedia PDF Downloads 304
2536 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 91
2535 An Appraisal of the Relationship between Socio-Economic Status and Mental Toughness of Cricketers

Authors: Punam Shaw

Abstract:

Relationship often refers to the acquaintance or association between two or more things, which are interrelated and interdependent. The socio-economic status is obviously a blending of two states, would, therefore, be a ranking of an individual by the society he or she lives in, and in terms of his/her material belonging, cultural possessions along with the degree of respect, power and influence wield. Hence, education, income and occupation of an individual play a significant role in society. Positive mental attitude leads to achieve the set goal, and improve performance particularly in team cohesiveness, which may be determined by various interrelated aspects, which can predict the future assessment in their respective field accordingly. The study intended to examine and explore the relationship between Socio-economic Status and Mental Toughness of cricketers. For the present study descriptive survey research method was used and selected 40 (male=20 female=20) U-17 years registered players under Cricket Association of Bengal (CAB), as the sample population. Modified Socio-Economic Status Scale was used to collect the data regarding players, socioeconomic Status and to assess the mental toughness; Scott Barry Kaufman questionnaire was used. The data had been analysed through applying Pearson’s Correlation Coefficient and t-test as statistical techniques. The findings of the study showed that there is a positive correlation between socioeconomic Status and Mental Toughness among cricketers, it was found that significant difference was presented between male and female SES group. It was further revealed that there is no significant difference between male and female cricketers and in their different socioeconomic class with respect to their mental toughness.

Keywords: cricketers, mental toughness, relationship, socio-economic status

Procedia PDF Downloads 107
2534 Generation of Medical Waste in Hospitals in Interior of São Paulo, Brazil

Authors: Silvia Carla Da Silva André, Angela Maria Magosso Takayanagui

Abstract:

Introduction: The Medical Waste (MW) are responsible per 2% of total waste generated for a city and has merited attention due the risks that offers to the public health and environment, representing an important aspect in waste management. In Brazil, the Resolution 306/04 of the National Health Surveillance Agency classifies the MW into 5 groups as follows: Group A (GA) biological, Group B (GB) chemical, Group C (GC) radioactive waste, Group D (GD) common, and Group E (GE) sharps. Objective: This study aimed to determine the amount of waste generated in hospitals of Ribeirão Preto, São Paulo, Brazil. Material and Methods: This is a field research, exploratory, using quantitative variables. The survey was conducted in 11 hospitals in Ribeirão Preto, located in the State of São Paulo, Brazil. It is noted that the study sample included general hospitals, skilled, university, maternity, and psychiatric; public, private, and philanthropic; and large, medium, and small. To quantify the MW, the weighing of the waste was held for six days, following methodology adapted from PAHO. Data were analyzed using descriptive statistics, determining the average global generation of MW and for each group. This research was carried out after approval by the Ethics in Research of the University of São Paulo. Thus, in order to comply with the ethical principles of research, to present the results hospitals were numbered from 1 to 11. Results: The data revealed a greater generation of biological waste among teaching hospitals, which can be justified by the use of materials for the realization of techniques.

Keywords: environmental health, management of medical waste, medical waste, public health

Procedia PDF Downloads 353
2533 Investigation and Research on Construction Technology of Tenon and Mortise in Traditional Chinese Architecture

Authors: Liang Zhang

Abstract:

Chinese traditional architecture has developed a school of its own in the world. It has a different structure and construction technology from western architecture. Tenon and mortise structure and construction technology, as the key to the construction of traditional Chinese architecture, have been inherited for thousands of years by traditional craftsmen in various regions of China. However, the traditional architecture varies greatly in different times and regional cultures in China. It is still a lack of research whether this difference extends to mortise and tenon technology. In this study, we measured the mortise and tenon of traditional buildings in Fujian province, Yunnan province, and Northern China; Interviewed some old craftsmen about their traditional construction methods, And compared the today's traditional mortise and tenon technology with that of Song and Qing Dynasties. The results showed that although Chinese traditional architecture has the same origin, the mortise and tenon construction technology systems have been developed at different times, regions, and cultures. For example, tenon and mortise technology in Yunnan Province needs to ensure the ability of buildings to resist earthquakes, while that in Fujian Province needs to ensure the ability of buildings to withstand typhoons. People in different regions, cultures, and times have a different understanding of architectural aesthetics, and the evolution of tools also has different effects on mortise and tenon technology. This study explains the manifestations and causes of these differences. At the same time, due to the impact of modern architectural technology, mortise, and tenon, traditional technology is also rapidly disappearing. As a sorting and collection of mortise and tenon techniques of traditional Chinese architecture, this paper puts forward the corresponding traditional technology protection strategy, to guide the protection and maintenance of local traditional buildings.

Keywords: tenon and mortise, traditional Chinese architecture, traditional craftsmen, construction technology

Procedia PDF Downloads 135
2532 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics

Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim

Abstract:

A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.

Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic

Procedia PDF Downloads 116
2531 Ankle Arthroscopy: Indications, Patterns of Admissions, Surgical Outcomes, and Associated Complications Among Saudi Patients at King Abdul-Aziz Medical City in Riyadh

Authors: Mohammad Abdullah Almalki

Abstract:

Background: Despite the frequent usage of ankle arthroscopy, there is limited medical literature regarding its indications, patterns of admissions, surgical outcomes, and associated complicated at Saudi Arabia. Hence, this study would highlight the surgical outcomes of such surgical approach that will assist orthopedic surgeons to detect which surgical procedure needs to be done as well as to help them regarding their diagnostic workups. Methods: At the Orthopedic Division of King Abdul‑Aziz Medical City in Riyadh and through a cross‑sectional design and convenient sampling techniques, the present study had recruited 20 subjects who fulfill the inclusion and exclusion criteria between 2016 and 2018. Data collection was carried out by a questionnaire designed and revised by an expert panel of health professionals. Results: Twenty patients were reviewed (11M and 9F) with an average age of 40.1 ± 12.2. Only 30% of the patients (5M, 1F) have no comorbidity, but 70% of patients (7M, 8F) were having at least one comorbidity. The most common indications were osteochondritis dissecans (n = 7, 35%), ankle fracture without dislocation (n = 4, 20%), and tibiotalar impingement (n = 3, 15%). Patients recorded pain in all cases (100%). The top four symptoms after pain were instability (30%, n = 6), muscle weakness (15%, n = 3) swelling (15%, n = 3), and stiffness (5%, n = 1). Two‑third of cases reached to their full healthy status and toe‑touch weight‑bearing was seen in two patients (10%). Conclusion: Ankle arthroscopy improved the rehabilitation rates in our tertiary care center. In addition, the surgical outcomes are favorable in our hospital since it has a very short length of stay, unexpended surgery, and fewest physiotherapy sessions.

Keywords: ankle, arthroscopy, indications, patterns

Procedia PDF Downloads 69
2530 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers

Authors: Jacqueline Michella Anak Nathen

Abstract:

Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.

Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser

Procedia PDF Downloads 79
2529 Investigation of an Approach in Drug Delivery: Orally Fast Disintegrating Tablets

Authors: Tansel Comoglu

Abstract:

Orally fast disintegrating tablets (FDTs or ODTs) have become popular during the last decade, and manufacturing of ODTs is getting a rapidly growing area in the pharmaceutical industry. The concept of ODTs has emerged from the desire to provide patients with more conventional means of taking their medication. Drugs, that have satisfactory absorption from the oral mucosa or aimed for immediate therapeutic activity can be formulated in ODTs. After placing the ODT into the mouth, these tablets dissolve or disintegrate in the mouth usullay less than a minute, in the absence of additional water. Even though the ODT technology has taken an important path, as proved by a large group of commercial products on the drug market, there are so many problems to be solved in ODT formulations such as; formulation of hydrophobic drugs is stil a challenge, especially when the amount of drug is high. As these tablets dissolve or disintegrate in the mouth without the need of additional water, taste masking of active ingredients becomes essential in these systems because the drug is entirely released in the mouth. In ODT technology, coping with the taste of drugs is still a challenge. Resins or sweeteners or other techniques are also used in the formulation to aid taste-masking of the API. Another important factor to consider is whether they can be manufactured using conventional equipment and processes, as this will have a positive influence on manufacturing costs. Some products, however, may require a more costly, special unitdose packaging if the dosage form is fragile. In this overview, benefits, various formulation technologies, clinical studies and some future research trends of ODTs will be discussed.

Keywords: orally fast disintegrating tablets, benefits, formulation technologies, future research trends

Procedia PDF Downloads 347
2528 Combined Synchrotron Radiography and Diffraction for in Situ Study of Reactive Infiltration of Aluminum into Iron Porous Preform

Authors: S. Djaziri, F. Sket, A. Hynowska, S. Milenkovic

Abstract:

The use of Fe-Al based intermetallics as an alternative to Cr/Ni based stainless steels is very promising for industrial applications that use critical raw materials parts under extreme conditions. However, the development of advanced Fe-Al based intermetallics with appropriate mechanical properties presents several challenges that involve appropriate processing and microstructure control. A processing strategy is being developed which aims at producing a net-shape porous Fe-based preform that is infiltrated with molten Al or Al-alloy. In the present work, porous Fe-based preforms produced by two different methods (selective laser melting (SLM) and Kochanek-process (KE)) are studied during infiltration with molten aluminum. In the objective to elucidate the mechanisms underlying the formation of Fe-Al intermetallic phases during infiltration, an in-house furnace has been designed for in situ observation of infiltration at synchrotron facilities combining x-ray radiography (XR) and x-ray diffraction (XRD) techniques. The feasibility of this approach has been demonstrated, and information about the melt flow front propagation has been obtained. In addition, reactive infiltration has been achieved where a bi-phased intermetallic layer has been identified to be formed between the solid Fe and liquid Al. In particular, a tongue-like Fe₂Al₅ phase adhering to the Fe and a needle-like Fe₄Al₁₃ phase adhering to the Al were observed. The growth of the intermetallic compound was found to be dependent on the temperature gradient present along the preform as well as on the reaction time which will be discussed in view of the different obtained results.

Keywords: combined synchrotron radiography and diffraction, Fe-Al intermetallic compounds, in-situ molten Al infiltration, porous solid Fe preforms

Procedia PDF Downloads 211
2527 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 384
2526 Efficient Depolymerization of Polyethylene terephthalate (PET) Using Bimetallic Catalysts

Authors: Akmuhammet Karayev, Hassam Mazhar, Mamdouh Al Harthi

Abstract:

Polyethylene terephthalate (PET) recycling stands as a pivotal solution in combating plastic pollution and fostering a circular economy. This study addresses the catalytic glycolysis of PET, a key step in its recycling process, using synthesized catalysts. Our focus lies in elucidating the catalytic mechanism, optimizing reaction kinetics, and enhancing reactor design for efficient PET conversion. We synthesized anionic clays tailored for PET glycolysis and comprehensively characterized them using XRD, FT-IR, BET, DSC, and TGA techniques, confirming their suitability as catalysts. Through systematic parametric studies, we optimized reaction conditions to achieve complete PET conversion to bis hydroxy ethylene terephthalate (BHET) with over 75% yield within 2 hours at 200°C, employing a minimal catalyst concentration of 0.5%. These results underscore the catalysts' exceptional efficiency and sustainability, positioning them as frontrunners in catalyzing PET recycling processes. Furthermore, we demonstrated the recyclability of the obtained BHETs by repolymerizing them back to PET without the need for a catalyst. Heating the BHETs in a distillation unit facilitated their conversion back to PET, highlighting the closed-loop potential of our recycling approach. Our work embodies a significant leap in catalytic glycolysis kinetics, driven by sustainable catalysts, offering rapid and high-impact PET conversion while minimizing environmental footprint. This breakthrough not only sets new benchmarks for efficiency in PET recycling but also exemplifies the pivotal role of catalysis and reaction engineering in advancing sustainable materials management.

Keywords: polymer recycling, catalysis, circular economy, glycolysis

Procedia PDF Downloads 17
2525 Entry, Descent and Landing System Design and Analysis of a Small Platform in Mars Environment

Authors: Daniele Calvi, Loris Franchi, Sabrina Corpino

Abstract:

Thanks to the latest Mars mission, the planetary exploration has made enormous strides over the past ten years increasing the interest of the scientific community and beyond. These missions aim to fulfill many complex operations which are of paramount importance to mission success. Among these, a special mention goes to the Entry, Descent and Landing (EDL) functions which require a dedicated system to overcome all the obstacles of these critical phases. The general objective of the system is to safely bring the spacecraft from orbital conditions to rest on the planet surface, following the designed mission profile. For this reason, this work aims to develop a simulation tool integrating the re-entry trajectory algorithm in order to support the EDL design during the preliminary phase of the mission. This tool was used on a reference unmanned mission, whose objective is finding bio-evidence and bio-hazards on Martian (sub)surface in order to support the future manned mission. Regarding the concept of operations (CONOPS) of the mission, it concerns the use of Space Penetrator Systems (SPS) that will descend on Mars surface following a ballistic fall and will penetrate the ground after the impact with the surface (around 50 and 300 cm of depth). Each SPS shall contain all the instrumentation required to sample and make the required analyses. Respecting the low-cost and low-mass requirements, as result of the tool, an Entry Descent and Impact (EDI) system based on inflatable structure has been designed. Hence, a solution could be the one chosen by Finnish Meteorological Institute in the Mars Met-Net mission, using an inflatable Thermal Protection System (TPS) called Inflatable Braking Unit (IBU) and an additional inflatable decelerator. Consequently, there are three configurations during the EDI: at altitude of 125 km the IBU is inflated at speed 5.5 km/s; at altitude of 16 km the IBU is jettisoned and an Additional Inflatable Braking Unit (AIBU) is inflated; Lastly at about 13 km, the SPS is ejected from AIBU and it impacts on the Martian surface. Since all parameters are evaluated, it is possible to confirm that the chosen EDI system and strategy verify the requirements of the mission.

Keywords: EDL, Mars, mission, SPS, TPS

Procedia PDF Downloads 152
2524 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 601
2523 Risk Assessment in Construction of K-Span Buildings in United Arab Emirates (UAE)

Authors: Imtiaz Ali, Imam Mansoor

Abstract:

Investigations as a part of the academic study were undertaken to identify and evaluate the significant risks associated with the construction of K-span buildings in the region of UAE. Primary field data was collected through questionnaires obtaining specific open and close-ended questions from carefully selected construction firms, civil engineers and, construction manager regarding risks associated to K-span building construction. Historical data available for other regions of the same construction technique was available which was compared for identifying various non-critical and critical risk parameters by comparative evaluation techniques to come up with important risks and potential sources for their control and minimization in K-Span buildings that is increasing in the region. The associated risks have been determined with their Relative Importance Index (RII) values of which Risk involved in Change of Design required by Owners carries the highest value (RII=0.79) whereas, Delayed Payment by Owner to Contractor is one of the least (RII=0.42) value. The overall findings suggest that most relative risks as quantified originate or associated with the contractors. It may be concluded that project proponents undertaking K-span projects in planning and budgeting the cost and delays should take into account of risks on high account if changes in design are also required any delays in the material by the supplier would then be a major risk in K-span project delay. Since projects are, less costly, so owners have limited budgets, then they hire small contractors, which are not highly competent contractors. So study suggests that owner should be aware of these types of risks associated with the construction of K-span buildings in order to make it cost effective.

Keywords: k-span buildings, k-span construction, risk management, relative improvement index (RII)

Procedia PDF Downloads 364
2522 Capture-recapture to Estimate Completeness of Pulmonary Tuberculosis with Two Sources

Authors: Ratchadaporn Ungcharoen, Lily Ingsrisawang

Abstract:

Capture-recapture methods are popular techniques for indirect estimation the size of wildlife populations and the completeness of cases in epidemiology and social sciences. The aim of this study was to estimate the completeness of pulmonary tuberculosis cases confirmed by two sources of hospital registrations and surveillance systems in 2013 in Nakhon Pathom province, Thailand. Several estimators of population size were considered: the Lincoln-Petersen estimator, the Chapman estimator, the Chao’s lower bound estimator, the Zelterman’s estimator, etc. We focus on the Chapman and Chao’s lower bound estimators for estimating the completeness of pulmonary tuberculosis from two sources. The retrieved pulmonary tuberculosis data from two sources were analyzed and bootstrapped for 30 samples, with 241 observations from source 1 and 305 observations from source 2 per sample, for additional exploration of the completeness of pulmonary tuberculosis. The results from the original data show that the Chapman’s estimator gave the estimation of a total 360 (95% CI: 349-371) pulmonary tuberculosis cases, resulting in 57% estimated completeness cases. But the Chao’s lower bound estimator estimated the total of 365 (95% CI: 354-376) pulmonary tuberculosis cases and its estimated completeness cases was 55.9%. For the results from bootstrap samples, the Chapman and the Chao’s lower bound estimators gave an estimated 347 (95% CI: 309-385) and 353 (95% CI: 315-390) pulmonary tuberculosis cases, respectively. If for two sources recoding systems are available, record-linkage and capture-recapture analysis can be useful for estimating the completeness of different registration system. Both Chapman and Chao’s lower bound estimator approaches produce very close estimates.

Keywords: capture-recapture, Chao, Chapman, pulmonary tuberculosis

Procedia PDF Downloads 507
2521 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling

Authors: Bavneet Kaur Sidhu, Manoj Tiwari

Abstract:

Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.

Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling

Procedia PDF Downloads 117
2520 The Materiality of Noise Barriers: Sustainability Approach

Authors: Mostafa Gabr, Rania Abdul Galil, Nihal Salim

Abstract:

Various interventions are applied in cities with the aim to improve living and acoustic environmental conditions. Noise is one of the most influential and critical factors in the environment that has an effect on the QOL (quality of life) and urban environment. It ranks second among environmental pollution issues according to EEAA. Traffic noise is a major source of noise. Noise barriers are one of the physical techniques in landscape design used to reduce the impact of noise pollution in urban areas. Roadways noise pollution can be best controlled by a noise barrier. The aim of this paper is to consider all facets of sustainability when designing a comfortable acoustic environment in roadways, through different strategies related to planning and the design process. The study focuses on the relation between the design of noise barriers as a landscape noise mitigation installation and their materiality in so far as it influences the sustainability of the open space and the acceptability of users. According to previous studies, design of noise barrier mainly depends on cost as a decisive factor. This study asserts that environmental and socioeconomic costs associated are equally important. Hence, the paper presents a strategy for sustainable soundscape design. It builds a framework focusing on materiality considering the environmental and socioeconomic impact of noise barriers shaping urban open space around the road ways, and the different academic and market positions on noise barrier types and materials. Finally, it concludes with a matrix of the relation between the noise barrier design consideration and the three pillars of sustainability (social, economic and environmental).

Keywords: traffic noise level, acoustic sustainability, noise barrier, noise reduction, noise control, acoustical level

Procedia PDF Downloads 465
2519 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method

Authors: Raju Murugan, Pankaj S. Kolhe

Abstract:

The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.

Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio

Procedia PDF Downloads 198
2518 Green Electrochemical Nitration of Bioactive Compounds: Biological Evaluation with Molecular Modelling

Authors: Sara Torabi, Sadegh Khazalpour, Mahdi Jamshidi

Abstract:

Nitro aromatic compounds are valuable materials because of their applications in the preparation of chemical intermediates for the synthesis of dyes, plastics, perfumes, energetic materials, and pharmaceuticals. Chemical and electrochemical procedures are reported for nitration of aromatic compounds. Flavonoid derivatives are present in many vegetables and fruits and are constituent of many common pharmaceuticals and dietary supplements. Electrochemistry provides very versatile means for the electrosynthesis, mechanistic and kinetic studies. To the best of our knowledge, and despite the importance of these compounds in numerous scientific fields, there are no reports on the electrochemical nitration of Quercetin derivatives. Herein, we describe a green electrochemical synthesis of a nitro compound. In this work, electrochemical oxidation of Quercetin has been studied in the presence of nitrite ion as a nucleophile in acetate buffer solution (c = 0.2 M, pH = 6.0), by means of cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of produced o-benzoquinones in Michael reaction with nitrite ion (in the divided cell) to form the corresponding nitro diol (EC mechanism). The purity of product and characterization was done using ¹H NMR, ¹³C NMR, FTIR spectroscopic techniques. The presented strategies use a water/ethanol mixture as solvent. Ethanol as cosolvent was also used in the previous studies because of its low cost, safety, easy availability, recyclability, bioproductability, and biodegradability. These strategies represent a one-pot and facile process for the synthesis of nitro compound in high yield and purity under green conditions.

Keywords: electrochemical synthesis, green chemistry, cyclic voltammetry, molecular docking

Procedia PDF Downloads 128
2517 Flow Reproduction Using Vortex Particle Methods for Wake Buffeting Analysis of Bluff Structures

Authors: Samir Chawdhury, Guido Morgenthal

Abstract:

The paper presents a novel extension of Vortex Particle Methods (VPM) where the study aims to reproduce a template simulation of complex flow field that is generated from impulsively started flow past an upstream bluff body at certain Reynolds number Re-Vibration of a structural system under upstream wake flow is often considered its governing design criteria. Therefore, the attention is given in this study especially for the reproduction of wake flow simulation. The basic methodology for the implementation of the flow reproduction requires the downstream velocity sampling from the template flow simulation; therefore, at particular distances from the upstream section the instantaneous velocity components are sampled using a series of square sampling-cells arranged vertically where each of the cell contains four velocity sampling points at its corner. Since the grid free Lagrangian VPM algorithm discretises vorticity on particle elements, the method requires transformation of the velocity components into vortex circulation, and finally the simulation of the reproduction of the template flow field by seeding these vortex circulations or particles into a free stream flow. It is noteworthy that the vortex particles have to be released into the free stream exactly at same rate of velocity sampling. Studies have been done, specifically, in terms of different sampling rates and velocity sampling positions to find their effects on flow reproduction quality. The quality assessments are mainly done, using a downstream flow monitoring profile, by comparing the characteristic wind flow profiles using several statistical turbulence measures. Additionally, the comparisons are performed using velocity time histories, snapshots of the flow fields, and the vibration of a downstream bluff section by performing wake buffeting analyses of the section under the original and reproduced wake flows. Convergence study is performed for the validation of the method. The study also describes the possibilities how to achieve flow reproductions with less computational effort.

Keywords: vortex particle method, wake flow, flow reproduction, wake buffeting analysis

Procedia PDF Downloads 294
2516 Geophysical Mapping of the Groundwater Aquifer System in Gode Area, Northeastern Hosanna, Ethiopia

Authors: Esubalew Yehualaw Melaku

Abstract:

In this study, two basic geophysical methods are applied for mapping the groundwater aquifer system in the Gode area along the Guder River, northeast of Hosanna town, near the western margin of the Central Main Ethiopian Rift. The main target of the study is to map the potential aquifer zone and investigate the groundwater potential for current and future development of the resource in the Gode area. The geophysical methods employed in this study include, Vertical Electrical Sounding (VES) and magnetic survey techniques. Electrical sounding was used to examine and map the depth to the potential aquifer zone of the groundwater and its distribution over the area. On the other hand, a magnetic survey was used to delineate contact between lithologic units and geological structures. The 2D magnetic modeling and the geoelectric sections are used for the identification of weak zones, which control the groundwater flow and storage system. The geophysical survey comprises of twelve VES readings collected by using a Schlumberger array along six profile lines and more than four hundred (400) magnetic readings at about 10m station intervals along four profiles and 20m along three random profiles. The study result revealed that the potential aquifer in the area is obtained at a depth range from 45m to 92m. This is the response of the highly weathered/ fractured ignimbrite and pumice layer with sandy soil, which is the main water-bearing horizon. Overall, in the neighborhood of four VES points, VES- 2, VES- 3, VES-10, and VES-11, shows good water-bearing zones in the study area.

Keywords: vertical electrical sounding, magnetic survey, aquifer, groundwater potential

Procedia PDF Downloads 107
2515 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 236
2514 An Investigation on Physics Teachers’ Views Towards Context Based Learning Approach

Authors: Medine Baran, Abdulkadir Maskan, Mehmet Ikbal Yetişir, Mukadder Baran, Azmi Türkan, Şeyma Yaşar

Abstract:

The purpose of this study was to determine the views of physics teachers from several secondary schools in Turkey towards context-based learning approach. In the study, the context-based learning opinion questionnaire developed by the researchers for use as the data collection tool was piloted with 250 physics teachers. The questionnaire examined by the researchers and field experts was initially made up of 53 items. Following the evaluation process of the questionnaire, it included 37 items. In this way, the reliability and validity process of the measurement tool was completed. In the end, the finalized questionnaire was applied to 144 physics teachers from several secondary schools in different cities in Turkey (F:73, M:71). In the study, the participants were determined based on ease of reaching them. The results revealed no remarkable difference between the views of the physics teachers with respect to their gender, region and school. However, when the items in the questionnaire were considered, it was found that the participants interestingly agreed on some of the choices in the items. Depending on this, it was found that there were high levels of differences between the frequencies of those who agreed and those who disagreed with the 16 items in the questionnaire. Therefore, as the following phase of the present study, further research has been planned using the same questions. Based on these questions, which received opposite responses, physics teachers will be asked for their views about the results of the study using the interview technique, one of qualitative research techniques. In this way, the results will be evaluated both by the researchers and by the participants, and the problems and difficulties will be determined. As a result, related suggestions can be put forward.

Keywords: context bases learning, physics teachers, views

Procedia PDF Downloads 357
2513 Growth Inhibition of Candida Albicans Strains Co-Cultured with Lactobacillus Strains in a Cereal Medium

Authors: Richard Nyanzi, Maupi E. Letsoalo, Jacobus N. Eloff, Piet J. Jooste

Abstract:

Candida albicans naturally occurs in the gastrointestinal tract (GIT) of more than 50% of humans. Overgrowth of the fungus causes several forms of candidiasis including oral thrush. Overgrowth tends to occur in immunocompromised humans such as diabetic, cancer and HIV patients. Antifungal treatment is available, but not without shortcomings. In this study, inhibitory activity of five probiotic Lactobacillus strains was demonstrated against the growth of seven clinical strains of Candida albicans by co-culturing of the organisms in a maize gruel (MG) medium. Phenotypic tests, molecular techniques and phylogenetic analysis have enabled precise identification of the organisms used in the study. The quantitative pour plate technique was used to enumerate colonies of the yeasts and the lactobacilli and the Kruskal-Wallis test and ANOVA tests were employed to compare the distributions of the colonies of the organisms. The cereal medium, containing added carbon sources, was inoculated with a Candida and a Lactobacillus strain in combination and incubated at 37 °C for 168 h. Aliquots were regularly taken and subjected to pH determination and colony enumeration. Certain Lactobacillus strains proved to be inhibitory and also lethal to some Candida albicans strains. A low pH due to Lactobacillus acid production resulted in significant low Candida colony counts. Higher Lactobacillus colony counts did not necessarily result in lower Candida counts suggesting that inhibitory factors besides low pH and competitive growth by lactobacilli contributed to the reduction in Candida counts. Such anti-Candida efficacy however needs to be confirmed by in vivo studies.

Keywords: candida albicans, oral thrush, candidiasis, lactobacillus, probiotics

Procedia PDF Downloads 388
2512 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions

Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong

Abstract:

A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.

Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition

Procedia PDF Downloads 132
2511 Sheathed Cotton Fibers: Material for Oil-Spill Cleanup

Authors: Benjamin M Dauda, Esther Ibrahim, Sylvester Gadimoh, Asabe Mustapha, Jiyah Mohammed

Abstract:

Despite diverse optimization techniques on natural hydrophilic fibers, hydrophobic synthetic fibers are still the best oil sorption materials. However, these hydrophobic fibers are not biodegradable, making their disposal problematic. To this end, this work sets out to develop Nonwoven sorbents from epoxy-coated Cotton fibers. As a way of improving the compatibility of the crude oil and reduction of moisture absorption, cotton fibers were coated with epoxy resin by immersion in acetone-thinned epoxy solution. A needle-punching machine was used to convert the fibers into coherent nonwoven sheets. An oil sorption experiment was then carried out. The result indicates that the developed epoxy-modified sorbent has a higher crude oil-sorption capacity compared with those of untreated cotton and commercial polypropylene sorbents. Absorption Curves show that the coated fiber and polypropylene sorbent saturated faster than the uncoated cotton fiber pad. The result also shows that the coated cotton sorbent adsorbed crude faster than the polypropylene sorbent, and the equilibrium exhaustion was also higher. After a simple mechanical squeezing process, the Nonwoven pads could be restored to their original form and repeatedly recycled for oil/water separation. The results indicate that the cotton-coated non-woven pads hold promise for the cleanup of oil spills. Our data suggests that the sorption behaviors of the epoxy-coated Nonwoven pads and their crude oil sorption capacity are relatively stable under various environmental conditions compared to the commercial sheet.

Keywords: oil spill, adsorption, cotton, epoxy, nonwoven

Procedia PDF Downloads 34
2510 In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice

Authors: Deepika Saini, Sandeep Jain, Ajay Kumar

Abstract:

The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia.

Keywords: antimalarial activity, chalcone, docking, quinoline

Procedia PDF Downloads 393
2509 The Therapeutic Rise of Turmeric: From Spice to Medicine

Authors: Merzak Siham, Benguerine Zohra, Si Tayeb Fatima, Bouzian Chaimaa Affaf, Jou Siham, Belkessam Nafissa

Abstract:

Introduction: Medicinal plants, particularly spices, are essential for pharmacological research due to their health benefits. This study focuses on Curcuma longa, a spice recognized for its therapeutic properties. Materials and Methods: This study is based on a thorough search conducted on Google Scholar, PubMed, and ScienceDirect. From an initial selection of 25 articles, five were chosen to extract relevant information on Curcuma longa. Results and Discussions: Clinical studies have indicated that curcumin is well tolerated at doses up to 12 g/day. Its anti-rheumatic efficacy was compared to phenylbutazone in 18 individuals. Each participant received a daily dose of either 1200 mg of curcumin or 300 mg of phenylbutazone for 2 weeks. Curcumin was well tolerated at this dose and demonstrated activity comparable to phenylbutazone. Additionally, a study on 62 patients showed that curcumin sustainably relieved symptoms without toxicity. Its effects included reduced itching, lesions, and pain. In ten volunteers, administering 500 mg of curcumin for seven days resulted in a 33% decrease in lipid peroxidation, a 29% increase in HDL cholesterol, and a 12% decrease in total cholesterol. It is important to note that curcumin is a potent, selective inhibitor of phosphorylase kinase, an increased marker in psoriasis. Conclusion: Curcumin is promising as a future drug for various diseases, but its bioavailability must be improved through techniques such as nano encapsulation. Additionally, exploring chemical derivatives of curcumin could lead to more potent and targeted molecules.

Keywords: turmeric, spice, medicinal plants, pharmacological activities.

Procedia PDF Downloads 15
2508 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 125