Search results for: self-emulsifying drug delivery system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20349

Search results for: self-emulsifying drug delivery system

13359 Sensitivity Analysis for 14 Bus Systems in a Distribution Network with Distribution Generators

Authors: Lakshya Bhat, Anubhav Shrivastava, Shivarudraswamy

Abstract:

There has been a formidable interest in the area of Distributed Generation in recent times. A wide number of loads are addressed by Distributed Generators and have better efficiency too. The major disadvantage in Distributed Generation is voltage control- is highlighted in this paper. The paper addresses voltage control at buses in IEEE 14 Bus system by regulating reactive power. An analysis is carried out by selecting the most optimum location in placing the Distributed Generators through load flow analysis and seeing where the voltage profile rises. Matlab programming is used for simulation of voltage profile in the respective buses after introduction of DG’s. A tolerance limit of +/-5% of the base value has to be maintained.To maintain the tolerance limit , 3 methods are used. Sensitivity analysis of 3 methods for voltage control is carried out to determine the priority among the methods.

Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis

Procedia PDF Downloads 592
13358 Elucidation of Mechanism of Action of Antidepressant-Like Effect of Valeriana wallichii Maaliol Chemotype in Mice

Authors: Sangeeta Pilkhwal Sah, C. S. Mathela, Kanwaljit Chopra

Abstract:

Valeriana wallichii DC, an ayurvedic traditional medicine, popularly named as Indian valerian exist as three chemotypes. GC-MS analysis of V. wallichii essential oil in present study showed maaliol as the major constituent followed by the presence of β-gurjunene, acoradiene, guaiol and α-santalene. The results thus confirmed it to be a maaliol chemotype. Further, the antidepressant-like effect of root essential oil (10, 20 and 40 mg/kg p.o.) was investigated in both acute and chronic treatment study using forced swim test in mice. Single administration of different doses produced an inverted U shaped curve and significantly inhibited the immobility period (39.7% and 58%) at doses 10 and 40 mg/kg respectively. Standard drug imipramine significantly decreased immobility period (59.8%). None of the doses altered locomotor activity except a significant decrease of 44.9% was observed with 40 mg/kg (p < 0.05). Similarly, daily administration of essential oil for 14 days produced a dose dependent effect with significantly reduced immobility period (70.9%) at 40 mg/kg dose only whereas imipramine produced 86% decrease (p < 0.05). The neurotransmitter levels in mouse brain were estimated on day 14 after the behavioral study. Significant increase in the level of norepinephrine (10%) and dopamine (23%) (p < 0.05) was found at 40 mg/kg dose, while no change was observed at 10 and 20 mg/kg doses. The antidepressant-like effect of essential oil (40 mg/kg) was prevented by pretreatment of mice with L-arginine (750 mg/kg i.p.) and sildenafil (5 mg/kg i.p). On the contrary, pretreatment of mice with L-NAME (10 mg/kg i.p.) or methylene blue (10 mg/kg i.p.) potentiated the antidepressant action of essential oil (20 mg/kg). The findings thus demonstrated that nitric oxide pathway is involved in mediating antidepressant like effect of essential oil from this chemotype.

Keywords: Valeriana wallichii DC chemotype, essential oil, forced swim test, nitric oxide modulators, neurotransmitters

Procedia PDF Downloads 301
13357 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate

Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman

Abstract:

Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.

Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis

Procedia PDF Downloads 228
13356 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation

Authors: Deepanjali Gurav, Kun Qian

Abstract:

In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.

Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics

Procedia PDF Downloads 142
13355 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments

Authors: Shaikh Farhad Hossain, Liakot Ali

Abstract:

Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.

Keywords: ADL, SVM, TRIL , MEMS

Procedia PDF Downloads 400
13354 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method

Authors: Satyendra Pratap Singh, S. P. Singh

Abstract:

This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.

Keywords: gravitational search algorithm (GSA), law of motion, law of gravity, observability, phasor measurement unit

Procedia PDF Downloads 511
13353 Emergency Management of Poisoning Tracery Care Hospital in India

Authors: Rajiv Ratan Singh, Sachin Kumar Tripathi, Pradeep Kumar Yadav

Abstract:

The timely evaluation, diagnosis, and treatment of people who have been exposed to toxic chemicals is a crucial component of emergency poison management in the medical field. The various substances that can poison include chemicals, medications, and naturally occurring poisons. The toxicology of the particular drug involved, as well as the symptoms and indicators of poisoning, must be thoroughly understood to handle poisoning emergencies effectively. One of the most important aspects of emergency poison management in medicine is the prompt examination, diagnosis, and treatment of persons who have been exposed to dangerous substances. To properly manage poisoning crises, one must have a good understanding of the toxicology of the particular medication concerned, as well as the signs and indicators of poisoning. Emergency management of poisoning includes not only prompt medical attention but also patient education, follow-up care, and monitoring for any long-term consequences. To achieve the greatest results for patients, the management of poisoning is a complicated and dynamic process that calls for collaboration between medical professionals, first responders, and toxicologists. All poisoned patients who present to the emergency room are assessed and diagnosed based on a collection of symptoms and a biochemical diagnosis, and they are then provided targeted, specialized treatment for the toxin identified. This article focuses on the loxodromic strategy as the primary method of treatment for poisoned patients. The authors of this article conclude that mortality and morbidity can be reduced if patients visit the emergency room promptly and receive targeted treatment.

Keywords: antidotes, blood poisoning, emergency medicine, gastric lavage, medico-legal aspects, patient care

Procedia PDF Downloads 106
13352 Glutamine Supplementation and Resistance Traning on Anthropometric Indices, Immunoglobulins, and Cortisol Levels

Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi

Abstract:

Introduction: Exercise has contradictory effects on the immune system. Glutamine supplementation may increase the resistance of the immune system in athletes. The Glutamine is one of the most recognized immune nutrients that as a fuel source, substrate in the synthesis of nucleotides and amino acids and is also known to be part of the antioxidant defense. Several studies have shown that improving glutamine levels in plasma and tissues can have beneficial effects on the function of immune cells such as lymphocytes and neutrophils. This study aimed to investigate the effects of resistance training and training combined with glutamine supplementation to improve the levels of cortisol and immunoglobulin in untrained young men. The research shows that physical training can increase the cytokines in the athlete’s body of course; glutamine can counteract the negative effects of resistance training on immune function and stability of the mast cell membrane. Materials and methods: This semi-experimental study was conducted on 30 male non-athletes. They were randomly divided into three groups: control (no exercise), resistance training, resistance training and glutamine supplementation, respectively. Resistance training for 4 weeks and glutamine supplementation in 0.3 gr/kg/day after practice was applied. The resistance-training program consisted of eight exercises (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. Participants performed 3 sets of 10 repetitions at 60–75% 1-RM. Anthropometry indexes (weight, body mass index, and body fat percentage), oxygen uptake (VO2max) Maximal, cortisol levels of immunoglobulins (IgA, IgG, IgM) were evaluated Pre- and post-test. Results: Results showed four week resistance training with and without glutamine cause significant increase in body weight, BMI and significantly decreased (P < 0/001) in BF. Vo2max also increased in both groups of exercise (P < 0/05) and exercise with glutamine (P < 0/001), such as in both groups significant reduction in IgG (P < 0/05) was observed. But no significant difference observed in levels of cortisol, IgA, IgM in any of the groups. No significant change observed in either parameter in the control group. No significant difference observed between the groups. Discussion: The alterations in the hormonal and immunological parameters can be used in order to assess the effect overload on the body, whether acute or chronically. The plasmatic concentration of glutamine has been associated to the functionality of the immunological system in individuals sub-mitted to intense physical training. resistance training has destructive effects on the immune system and glutamine supplementation cannot neutralize the damaging effects of power exercise on the immune system.

Keywords: glutamine, resistance traning, immuglobulins, cortisol

Procedia PDF Downloads 484
13351 Statistical Analysis of Failure Cases in Aerospace

Authors: J. H. Lv, W. Z. Wang, S.W. Liu

Abstract:

The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.

Keywords: aerospace, disk, failure analysis, fatigue

Procedia PDF Downloads 336
13350 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 146
13349 Molecular Diagnosis of Influenza Strains Was Carried Out on Patients of the Social Security Clinic in Karaj Using the RT-PCR Technique

Authors: A. Ferasat, S. Rostampour Yasouri

Abstract:

Seasonal flu is a highly contagious infection caused by influenza viruses. These viruses undergo genetic changes that result in new epidemics across the globe. Medical attention is crucial in severe cases, particularly for the elderly, frail, and those with chronic illnesses, as their immune systems are often weaker. The purpose of this study was to detect new subtypes of the influenza A virus rapidly using a specific RT-PCR method based on the HA gene (hemagglutinin). In the winter and spring of 2022_2023, 120 embryonated egg samples were cultured, suspected of seasonal influenza. RNA synthesis, followed by cDNA synthesis, was performed. Finally, the PCR technique was applied using a pair of specific primers designed based on the HA gene. The PCR product was identified after purification, and the nucleotide sequence of purified PCR products was compared with the sequences in the gene bank. The results showed a high similarity between the sequence of the positive samples isolated from the patients and the sequence of the new strains isolated in recent years. This RT-PCR technique is entirely specific in this study, enabling the detection and multiplication of influenza and its subspecies from clinical samples. The RT-PCR technique based on the HA gene, along with sequencing, is a fast, specific, and sensitive diagnostic method for those infected with influenza viruses and its new subtypes. Rapid molecular diagnosis of influenza is essential for suspected people to control and prevent the spread of the disease to others. It also prevents the occurrence of secondary (sometimes fatal) pneumonia that results from influenza and pathogenic bacteria. The critical role of rapid diagnosis of new strains of influenza is to prepare a drug vaccine against the latest viruses that did not exist in the community last year and are entirely new viruses.

Keywords: influenza, molecular diagnosis, patients, RT-PCR technique

Procedia PDF Downloads 79
13348 A Research and Application of Feature Selection Based on IWO and Tabu Search

Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu

Abstract:

Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.

Keywords: intrusion detection, feature selection, iwo, tabu search

Procedia PDF Downloads 533
13347 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data

Procedia PDF Downloads 334
13346 Intercultural Intelligence: How to Turn Cultural Difference into a Key Added Value with Tree Lighting Design Project Examples

Authors: Fanny Soulard

Abstract:

Today work environment is more multicultural than ever: spatial limits have been blown out, encouraging people and ideas mobility all around the globe. Indeed, opportunities to design with culturally diverse team workers, clients, or end-users, have become within everyone's reach. We enjoy traveling to discover other civilizations, but when it comes to business, we often take for granted that our own work methodology will be generic enough to federate each party and cover the project needs. This paper aims to explore why, by skipping cultural awareness, we often create misunderstandings, frustration, and even counterproductive design. Tree lighting projects successively developed by a French lighting studio, a Vietnamese lighting studio, and an Australian Engineering company will be assessed from their concept stage to completion. All these study cases are based in Vietnam, where the construction market is equally led by local and international consultants. Core criteria such as lighting standard reference, service scope, communication tools, internal team organization, delivery package content, key priorities, and client relationship will help to spot and list when and how cultural diversity has impacted the design output and effectiveness. On the second hand, we will demonstrate through the same selected projects how intercultural intelligence tools and mindset can not only respond positively to previous situations and avoid major clashes but also turn cultural differences into a key added value to generate significant benefits for individuals, teams, and companies. By understanding the major importance of including a cultural factor within any design, intercultural intelligence will quickly turn out as a “must have” skill to be developed and acquired by any designer.

Keywords: intercultural intelligence, lighting design, work methodology, multicultural diversity

Procedia PDF Downloads 99
13345 Control of a Stewart Platform for Minimizing Impact Energy in Simulating Spacecraft Docking Operations

Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams

Abstract:

Three control algorithms: Proportional-Integral-Derivative, Linear-Quadratic-Gaussian, and Linear-Quadratic-Gaussian with the shift, were applied to the computer simulation of a one-directional dynamic model of a Stewart Platform. The goal was to compare the dynamic system responses under the three control algorithms and to minimize the impact energy when simulating spacecraft docking operations. Equations were derived for the control algorithms and the input and output of the feedback control system. Using MATLAB, Simulink diagrams were created to represent the three control schemes. A switch selector was used for the convenience of changing among different controllers. The simulation demonstrated the controller using the algorithm of Linear-Quadratic-Gaussian with the shift resulting in the lowest impact energy.

Keywords: controller, Stewart platform, docking operation, spacecraft

Procedia PDF Downloads 56
13344 Cluster-Based Exploration of System Readiness Levels: Mathematical Properties of Interfaces

Authors: Justin Fu, Thomas Mazzuchi, Shahram Sarkani

Abstract:

A key factor in technological immaturity in defense weapons acquisition is lack of understanding critical integrations at the subsystem and component level. To address this shortfall, recent research in integration readiness level (IRL) combines with technology readiness level (TRL) to form a system readiness level (SRL). SRL can be enriched with more robust quantitative methods to provide the program manager a useful tool prior to committing to major weapons acquisition programs. This research harnesses previous mathematical models based on graph theory, Petri nets, and tropical algebra and proposes a modification of the desirable SRL mathematical properties such that a tightly integrated (multitude of interfaces) subsystem can display a lower SRL than an inherently less coupled subsystem. The synthesis of these methods informs an improved decision tool for the program manager to commit to expensive technology development. This research ties the separately developed manufacturing readiness level (MRL) into the network representation of the system and addresses shortfalls in previous frameworks, including the lack of integration weighting and the over-importance of a single extremely immature component. Tropical algebra (based on the minimum of a set of TRLs or IRLs) allows one low IRL or TRL value to diminish the SRL of the entire system, which may not be reflective of actuality if that component is not critical or tightly coupled. Integration connections can be weighted according to importance and readiness levels are modified to be a cardinal scale (based on an analytic hierarchy process). Integration arcs’ importance are dependent on the connected nodes and the additional integrations arcs connected to those nodes. Lack of integration is not represented by zero, but by a perfect integration maturity value. Naturally, the importance (or weight) of such an arc would be zero. To further explore the impact of grouping subsystems, a multi-objective genetic algorithm is then used to find various clusters or communities that can be optimized for the most representative subsystem SRL. This novel calculation is then benchmarked through simulation and using past defense acquisition program data, focusing on the newly introduced Middle Tier of Acquisition (rapidly field prototypes). The model remains a relatively simple, accessible tool, but at higher fidelity and validated with past data for the program manager to decide major defense acquisition program milestones.

Keywords: readiness, maturity, system, integration

Procedia PDF Downloads 101
13343 Extraction of Dyes Using an Aqueous Two-Phase System in Stratified and Slug Flow Regimes of a Microchannel

Authors: Garima, S. Pushpavanam

Abstract:

In this work, analysis of an Aqueous two-phase (polymer-salt) system for extraction of sunset yellow dye is carried out. A polymer-salt ATPS i.e.; Polyethylene glycol-600 and anhydrous sodium sulfate is used for the extraction. Conditions are chosen to ensure that the extraction results in a concentration of the dye in one of the phases. The dye has a propensity to come to the Polyethylene glycol-600 phase. This extracted sunset yellow dye is degraded photo catalytically into less harmful components. The cloud point method was used to obtain the binodal curve of ATPS. From the binodal curve, the composition of salt and Polyethylene glycol -600 was chosen such that the volume of Polyethylene glycol-600 rich phase is low. This was selected to concentrate the dye from a dilute solution in a large volume of contaminated solution into a small volume. This pre-concentration step provides a high reaction rate for photo catalytic degradation reaction. Experimentally the dye is extracted from the salt phase to Polyethylene glycol -600 phase in batch extraction. This was found to be very fast and all dye was extracted. The concentration of sunset yellow dye in salt and polymer phase is measured at 482nm by ultraviolet-visible spectrophotometry. The extraction experiment in micro channels under stratified flow is analyzed to determine factors which affect the dye extraction. Focus will be on obtaining slug flow by adding nanoparticles in micro channel. The primary aim is to exploit the fact that slug flow will help improve mass transfer rate from one phase to another through internal circulation in dispersed phase induced by shear.

Keywords: aqueous two phase system, binodal curve, extraction, sunset yellow dye

Procedia PDF Downloads 362
13342 Efficacy of Ethanolic Extract of Aerva javanica Aerial Parts in the Amelioration of CCl4-Induced Hepatotoxicity and Oxidative Damage in Rats

Authors: Mohammad K. Parvez, Ahmed H. Arbab, Mohammed S. Al-Dosari, Adnan J. Al-Rehaily

Abstract:

We investigated ex vivo and in vivo antioxidative and hepatoprotective effect of Aerva javanica. Total ethanol extract of A. javanica aerial parts was prepared, and tested on DCFH-toxicated HepG2 cell in CCl4-injured Wistar rats. MTT-assay was used to determine cell viability, and serum biochemical markers of liver injury as well as histopathology were performed. In vitro DPPH and β-carotene free-radical scavenging assay and phytochemical screening of the extract was done. Furthermore, A. javanica total extract was standardized and validated by HPTLC method. While DCFH-injured cells were recovered to about 56.7% by 100 microg/ml of the extract, a 200 microg/ml dose resulted in hepatocytes recovery by about 90.2%. Oral administration of the extract (100 and 200 mg/kg.bw/day) significantly normalized the serum SGOT, SGPT, GGT, ALP, bilirubin, cholesterol, HDL, LDL, VLDL, TG and MDA levels, including tissue NP-SH and TP in CCl4-injured rats. In addition, the histopathology of dissected liver also revealed that A. javanica cured the tissue lesion compared to reference drug, Silymarin. In vitro assays revealed strong free-radical scavenging ability of the extract and presence of alkaloids, flavonoids, tannins, sterols and saponins where Rutin, a well-known antioxidant flavonoid was identified. Our finding therefore, suggests the therapeutic potential of A. javanica in various liver diseases. However, isolation of the active principles, their mechanism of action and other therapeutic contribution remain to be addressed.

Keywords: Aerva javanica, antioxidant, hepatoprotection, rutin

Procedia PDF Downloads 299
13341 Knowledge, Attitude and Practice of Pregnant Women toward Antenatal Care at Public Hospitals in Sana'a City-Yemen

Authors: Abdulfatah Al-Jaradi, Marzoq Ali Odhah, Abdulnasser A. Haza’a

Abstract:

Background: Antenatal care can be defined as the care provided by skilled healthcare professionals to pregnant women and adolescent girls to ensure the best health conditions for both mother and baby during pregnancy. The components of ANC include risk identification; prevention and management of pregnancy-related or concurrent diseases; and health education and health promotion. The aim of this study: to assess the knowledge, attitude, and practice of pregnant women regarding antenatal care. Methodology: A descriptive KAP study was conducting in public hospitals in Sana'a City-Yemen. The study population was included all pregnant women that intended to the prenatal department and clinical outpatient department, the final sample size was 371 pregnant women, a self-administered questionnaire was used to collect the data, statistical package for social sciences SPSS was used to data analysis. The results: Most (79%) of pregnant women were had correct answers in total knowledge regarding antenatal care, and about two-thirds (67%) of pregnant women were had performance practice regarding antenatal care and two-third (68%) of pregnant women were had a positive attitude. Conclusions & Recommendations: We concluded that a significant association between overall knowledge and practice level toward antenatal care and demographic characteristics of pregnant women, women (residence place, level of education, did your husband support you in attending antenatal care and place of delivery of the last baby), at (P-value ≤ 0.05). We recommended more education and training courses, lecturers and education sessions in clinical facilitators focused ANC, which relies on evidence-based interventions provided to women during pregnancy by skilled healthcare providers such as midwives, doctors, and nurses.

Keywords: antenatal care, knowledge, practice, attitude, pregnant women

Procedia PDF Downloads 199
13340 Survey to Assess the Feasibility of Executing the Web-Based Collaboration Process Using WBCS

Authors: Mohamed A. Sullabi

Abstract:

The importance of the formal specification in the software life cycle is barely concealing to anyone. Formal specifications use mathematical notation to describe the properties of information system precisely, without unduly constraining the way in how these properties are achieved. Having a correct and quality software specification is not easy task. This study concerns with how a group of rectifiers can communicate with each other and work to prepare and produce a correct formal software specification. WBCS has been implemented based mainly in the proposed supported cooperative work model and a survey conducted on the existing Webbased collaborative writing tools. This paper aims to assess the feasibility of executing the web-based collaboration process using WBCS. The purpose of conducting this test is to test the system as a whole for functionality and fitness for use based on the evaluation test plan.

Keywords: formal methods, formal specifications, collaborative writing, usability testing

Procedia PDF Downloads 403
13339 Problem Solving Courts for Domestic Violence Offenders: Duluth Model Application in Spanish-Speaking Offenders

Authors: I. Salas-Menotti

Abstract:

Problem-solving courts were created to assist offenders with specific needs that were not addressed properly in traditional courts. Problem-solving courts' main objective is to pursue solutions that will benefit the offender, the victim, and society as well. These courts were developed as an innovative response to deal with issues such as drug abuse, mental illness, and domestic violence. In Brooklyn, men who are charged with domestic violence related offenses for the first time are offered plea bargains that include the attendance to a domestic abuse intervention program as a condition to dismiss the most serious charges and avoid incarceration. The desired outcome is that the offender will engage in a program that will modify his behavior avoiding new incidents of domestic abuse, it requires accountability towards the victim and finally, it will hopefully bring down statistic related to domestic abuse incidents. This paper will discuss the effectiveness of the Duluth model as applied to Spanish-speaking men mandated to participate in the program by the specialized domestic violence courts in Brooklyn. A longitudinal study was conducted with 243 Spanish- speaking men who were mandated to participated in the men's program offered by EAC in Brooklyn in the years 2016 through 2018 to determine the recidivism rate of domestic violence crimes. Results show that the recidivism rate was less than 5% per year after completing the program which indicates that the intervention is effective in preventing new abuse allegations and subsequent arrests. It's recommended that comparative study with English-speaking participants is conducted to determine cultural and language variables affecting the program's efficacy.

Keywords: domestic violence, domestic abuse intervention programs, Problem solving courts, Spanish-speaking offenders

Procedia PDF Downloads 136
13338 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market

Authors: Cristian Păuna

Abstract:

In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.

Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex

Procedia PDF Downloads 134
13337 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation

Procedia PDF Downloads 203
13336 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 46
13335 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 180
13334 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands

Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi

Abstract:

The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.

Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid

Procedia PDF Downloads 212
13333 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 283
13332 A Design of Elliptic Curve Cryptography Processor based on SM2 over GF(p)

Authors: Shiji Hu, Lei Li, Wanting Zhou, DaoHong Yang

Abstract:

The data encryption, is the foundation of today’s communication. On this basis, how to improve the speed of data encryption and decryption is always a problem that scholars work for. In this paper, we proposed an elliptic curve crypto processor architecture based on SM2 prime field. In terms of hardware implementation, we optimized the algorithms in different stages of the structure. In finite field modulo operation, we proposed an optimized improvement of Karatsuba-Ofman multiplication algorithm, and shorten the critical path through pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit wide data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between affine coordinate system and Jacobi projective coordinate system. In the parallel scheduling of point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU(dual-core ARM Cortex-A9).

Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.

Procedia PDF Downloads 103
13331 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia PDF Downloads 387
13330 Anthelminthic Effect of Clitoria Ternatea on Paramphistomum Cervi in Buffalo (Bubalus Bubalis) of Udaipur, Rajasthan, India

Authors: Bhanupriya Sanger, Kiran Roat, Gayatri Swarnakar

Abstract:

Helminths including Paramphistomum Cervi (P. cervi) are a major cause of reduced production in livestock or domestic ruminant. Rajasthan is the largest state of India having a maximum number of livestock. The economy of rural people largely depends on livestock such as cow, buffalo, goat and sheep. The prevalence of P. cervi helminth parasite is extremely high in buffalo (Bubalus bubalis) of Udaipur, which causes the disease paramphistomiasis. This disease mainly affects milk, meat, wool production and loss of life of buffalo. Chemotherapy is the only efficient and effective tool to cure and control the helminth P. cervi infection, as efficacious vaccines against helminth have not been developed so far. Various veterinary drugs like Albendazole have been used as the standard drug for eliminating P. cervi from buffalo, but these drugs are unaffordable and inaccessible for poor livestock farmers. The fruits, leaves and seeds of Clitoria ternatea Linn. are known for their ethno-medicinal value and commonly known as “Aprajita” in India. Seed extract of Clitoria ternatea found to have a significant anthelmintic action against Paramphistomum cervi at the dose of 35 mg/ml. The tegument of treated P. cervi was compared with controlled parasites by light microscopy. Treated P. cervi showed extensive distortion and destruction of the tegument including ruptured parenchymal cells, disruption of musculature cells, swelling and vacuolization in tegumental and sub tegumental cells. As a result, it can be concluded that the seeds of Clitoria ternatea can be used as the anthelmintic agent. Key words: Paramphistomiasis, Buffalo, Alcoholic extract, Paramphistomum cervi, Clitoria ternatea.

Keywords: buffalo, Clitoria ternatea, Paramphistomiasis, Paramphistomum cervi

Procedia PDF Downloads 234