Search results for: citizens design science
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15282

Search results for: citizens design science

8382 Experimental Determination of Water Productivity of Improved Cassava Varieties Propagation under Rain-Fed Condition in Tropical Environment

Authors: Temitayo Abayomi Ewemoje, Isaac Olugbemiga Afolayan, Badmus Alao Tayo

Abstract:

Researchers in developing countries have worked on improving cassava resistance to diseases and pests, high yielding and early maturity However, water management has received little or no attention as cassava cultivation in Sub-Saharan Africa depended on available precipitation (rain-fed condition). Therefore the need for water management in Agricultural crop production cannot be overemphasized. As other sectors compete with agricultural sector for fresh water (which is not readily available), there is need to increase water productivity in agricultural production. Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had highest number of nodes. Tuber stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions.Experimentation was conducted to examine water use, growth and yield of improved cassava varieties under rain fed condition using Latin- square design with four replications. Four improved disease free stem cassava varieties TMS (30572, 980505, 920326 and 090581) were planted and growth parameters of the varieties were monitored for 90 and 120 days after planting (DAP). Effective rainfall useful for the plant growth was calculated using CROPWAT8 for Windows. Results indicated TMS090581 was having the highest tuber yield and plant height while TMS30572 had the highest number of nodes. Tuber, stem and leaf water productivities at 90 and 120 DAP of TMS (30572, 980505, 920326 and 090581) are (1.27 and 3.58, 1.44 and 2.35, 0.89 and 1.86, 1.64 and 3.77) kg/m3 (1.56 and 2.59, 1.95 and 2.02, 1.98 and 2.05, 1.95 and 2.18) kg/m3, and (1.34 and 2.32, 1.94 and 2.16, 1.57 and 1.40, 1.27 and 1.80) kg/m3 respectively. Based on tuber water productivity TMS090581 are recommended while TMS30572 are recommended based on leaf and stem productivity in water scarce regions

Keywords: improved TMS varieties, leaf productivity, rain-fed cassava production, stem productivity, tuber productivity

Procedia PDF Downloads 337
8381 Impact of Twin Therapeutic Approaches on Certain Biophysiological Parameters among Breast Cancer Patients after Breast Surgery at Selected Hospital

Authors: Selvia Arokiya Mary

Abstract:

Introduction: Worldwide, breast cancer comprises 10.4% of all cancer incidence among women. In 2004, breast cancer caused 519,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). Many women who undergo breast surgery suffer from ill-defined pain syndromes. STATEMENT OF THE PROBLEM: A study to assess the effectiveness of twin therapeutic approaches on certain bio-physiological parameters in breast cancer patients after breast surgery at selected hospital, Chennai. Objectives: This study is to 1. assess the level of certain biophysiological parameters in women after mastectomy. 2. assess the effectiveness of twin therapeutic approaches on certain biophysiological parameters in women after mastectomy. 3. correlate the practice of twin therapeutic approaches with certain biophysiological parameters. 4. associate the selected demographic variables with certain biophysiological parameters in women after mastectomy Research Design and Method: Pre experimental research design was used. Fifty women were selected by using convenient sampling technique at government general hospital, Chennai. Results: The Level of pain shows, in the study group 49(98%) of them had moderate in the pre test and after the intervention all of them had mild pain in the post test. In relation to level of shoulder function before the intervention shows that in the study group 49(98%) of them had movement towards gravity and after intervention 24 (48%) of them had movement against gravity maximum resistance. There was a significant reduction in pain and shoulder stiffness level at a ‘P’ level of < 0.001. There was a negative correlation between the pranayama practice and the level of pain, there was a positive correlation between the arm exercise practice and the level of shoulder function. There was no significant association between demographic and clinical variables with the level of pain and shoulder function in the study. Hypothesis: There is a significant difference in level of pain and shoulder function among women following breast surgery who receive pranayama & arm exercise programme. The pranayama had effect in terms of reduction of pain, arm exercise programme had effect in prevention of arm stiffness among post operative women following breast surgery. Thus the stated hypothesis was accepted. Conclusion: On the basis of the findings of the present study there was Advancing age related to increasing risk of breast cancer, level of pain also the type of surgery was associated with level of pain and shoulder function, There fore it is to be concluded that the study participants may get benefited by practice of pranayama and arm exercise program.

Keywords: biophysiological parameters breast surgery, lumpectomy , mastectomy, radical mastectomy, twin therapeutic approach, pranayama, arm exercise

Procedia PDF Downloads 242
8380 Investigating Mathematical Knowledge of Teaching for Secondary Preservice Teachers in Papua New Guinea Based on Probabilities

Authors: Murray Olowa

Abstract:

This article examines the studies investigating the Mathematical Knowledge for Teaching (MKT) of secondary preservice teachers in Papua New Guinea based on probabilities. This research was conducted due to the continuous issues faced in the country in both primary and secondary education, like changes in curriculum, emphasis on mathematics and science education, and a decline in mathematics performance. Moreover, the mathematics curriculum doesn’t capture Pedagogical Content Knowledge (PCK) or Subject Matter Knowledge (SMK). The two main domains that have been identified are SMK and PCK, which have been further sub-divided into Common Content Knowledge (CCK), Specialised Content Knowledge (SCK) and Horizon Content Knowledge (HCK), and Knowledge of Content and Students (KCS), Knowledge of Content and Teaching (KCT) and Knowledge of Content and Curriculum (KCC), respectively. The data collected from 15-_year-_ ones and 15-_year-_fours conducted at St Peter Chanel Secondary Teachers College revealed that there is no significant difference in subject matter knowledge between year one and year four since the P-value of 0.22>0.05. However, it was revealed that year fours have higher pedagogical content knowledge than year one since P-value was 0.007<0.05. Finally, the research has proven that year fours have higher MKT than year one. This difference occurred due to final year preservice teachers’ hard work and engagement in mathematics curriculum and teaching practice.

Keywords: mathematical knowledge for teaching, subject matter knowledge, pedagogical content knowledge, Papua New Guinea, preservice teachers, probability

Procedia PDF Downloads 104
8379 Clustering-Based Computational Workload Minimization in Ontology Matching

Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris

Abstract:

In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.

Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching

Procedia PDF Downloads 243
8378 Review of Transportation Modeling Software

Authors: Hassan M. Al-Ahmadi, Hamad Bader Almobayedh

Abstract:

Planning for urban transportation is essential for developing effective and sustainable transportation networks that meet the needs of various communities. Advanced modeling software is required for effective transportation planning, management, and optimization. This paper compares PTV VISUM, Aimsun, TransCAD, and Emme, four industry-leading software tools for transportation planning and modeling. Each software has strengths and limitations, and the project's needs, financial constraints, and level of technical expertise influence the choice of software. Transportation experts can design and improve urban transportation systems that are effective, sustainable, and meet the changing needs of their communities by utilizing these software tools.

Keywords: PTV VISUM, Aimsun, TransCAD, transportation modeling software

Procedia PDF Downloads 25
8377 Educational Innovation and ICT: Before and during 21st Century

Authors: Carlos Monge López, Patricia Gómez Hernández

Abstract:

Educational innovation is a quality factor of teaching-learning processes and institutional accreditation. There is an increasing of these change processes, especially after 2000. However, the publications about this topic are more associated with ICTs in currently century. The main aim of the study was to determine the tendency of educational innovations around ICTs. The used method was mixed research design (content analysis, review of scientific literature and descriptive, comparative and correlation study) with 649 papers. In summary, the results indicated that, progressively, the educational innovation is associated with ICTs, in comparison with this type of change processes without ICTs. In conclusion, although this tendency, scientific literature must divulgate more kinds of pedagogical innovation with the aim of deepening in other new resources.

Keywords: descriptive study, knowledge society, pedagogical innovation, technologies

Procedia PDF Downloads 483
8376 A User-Directed Approach to Optimization via Metaprogramming

Authors: Eashan Hatti

Abstract:

In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant.

Keywords: optimization, metaprogramming, logic programming, abstraction

Procedia PDF Downloads 82
8375 Characterizing Content Language Integrated Learning (CLIL) Teaching in an EFL Primary School: A Case Study

Authors: Alfia Sari

Abstract:

The implementation of the Content Language Integrated Learning (CLIL) approach in Indonesia has shown positive impacts in several educational institutions. Several studies have proven the benefits of implementing the CLIL approach, including the development of students’ language and content subject knowledge. Interestingly, one primary school in Surabaya, Indonesia, has been successfully implementing the CLIL approach. The students achieved high content and language subject scores, and the school was accredited A. A study on how the CLIL approach was practiced is important to investigate how teachers implemented it and how students benefited from it. Therefore, this present study attempted to investigate the implementation of the CLIL approach in this school to characterize good practices that can be implemented in other schools. A case study was conducted to observe its implementation in the third-grade classes (English, Science, and Math) by using the Protocol for Language Arts Teaching Observation (PLATO). The findings indicated that the CLIL teaching in this school accommodated the content and language well (scores 3-4). The content and language were clearly integrated, and the teachers successfully carried out the subjects in English. Teachers offered students opportunities to listen, speak, read, and write using the target language. This study described some characteristics of CLIL teaching in primary school that can be used as examples for future CLIL teachers to integrate the content and language in their teaching practices.

Keywords: CLIL, ELT, young learners, case study

Procedia PDF Downloads 42
8374 Human Resource Management Functions; Employee Performance; Professional Health Workers In Public District Hospitals

Authors: Benjamin Mugisha Bugingo

Abstract:

Healthcare staffhas been considered as asignificant pillar to the health care system. However, the contest of human resources for health in terms of the turnover of health workers in Uganda has been more distinct in the latest years. The objective of the paper, therefore, were to investigate the influence Role Human resource management functions in on employeeperformance of professional health workers in public district hospitals in Kampala. The study objectives were: to establish the effect of performance management function, financialincentives, non-financial incentives, participation, and involvement in the decision-making on the employee performance of professional health workers in public district hospitals in Kampala. The study was devised in the social exchange theory and the equity theory. This study adopted a descriptive research design using quantitative approaches. The study used a cross-sectional research design with a mixed-methods approach. With a population of 402 individuals, the study considered a sample of 252 respondents, including doctors, nurses, midwives, pharmacists, and dentists from 3 district hospitals. The study instruments entailed a questionnaire as a quantitative data collection tool and interviews and focus group discussions as qualitative data gathering tools. To analyze quantitative data, descriptive statistics were used to assess the perceived status of Human resource management functions and the magnitude of intentions to stay, and inferential statistics were used to show the effect of predictors on the outcome variable by plotting a multiple linear regression. Qualitative data were analyzed in themes and reported in narrative and verbatim quotes and were used to complement descriptive findings for a better understanding of the magnitude of the study variables. The findings of this study showed a significant and positive effect of performance management function, financialincentives, non-financial incentives, and participation and involvement in decision-making on employee performance of professional health workers in public district hospitals in Kampala. This study is expected to be a major contributor for the improvement of the health system in the country and other similar settings as it has provided the insights for strategic orientation in the area of human resources for health, especially for enhanced employee performance in relation with the integrated human resource management approach

Keywords: human resource functions, employee performance, employee wellness, profecial workers

Procedia PDF Downloads 89
8373 Method Comprising One to One Web Based Real Time Communications

Authors: Lata Kiran Dey, Rajendra Kumar, Biren Karmakar

Abstract:

Web Real Time Communications is a collection of standards, protocols, which provides real-time communications capabilities between web browsers and devices. This paper outlines the design and further implementation of web real-time communications on secure web applications having audio and video call capabilities. This proposed application may put up a system that will be able to work over both desktops as well as the mobile browser. Though, WebRTC also gives a set of JavaScript standard RTC APIs, which primarily works over the real-time communication framework. This helps to build a suitable communication application, which enables the audio, video, and message transfer in between the today’s modern browsers having WebRTC support.

Keywords: WebRTC, SIP, RTC, JavaScript, SRTP, secure web sockets, browser

Procedia PDF Downloads 141
8372 Using Signature Assignments and Rubrics in Assessing Institutional Learning Outcomes and Student Learning

Authors: Leigh Ann Wilson, Melanie Borrego

Abstract:

The purpose of institutional learning outcomes (ILOs) is to assess what students across the university know and what they do not. The issue is gathering this information in a systematic and usable way. This presentation will explain how one institution has engineered this process for both student success and maximum faculty curriculum and course design input. At Brandman University, there are three levels of learning outcomes: course, program, and institutional. Institutional Learning Outcomes (ILOs) are mapped to specific courses. Faculty course developers write the signature assignments (SAs) in alignment with the Institutional Learning Outcomes for each course. These SAs use a specific rubric that is applied consistently by every section and every instructor. Each year, the 12-member General Education Team (GET), as a part of their work, conducts the calibration and assessment of the university-wide SAs and the related rubrics for one or two of the five ILOs. GET members, who are senior faculty and administrators who represent each of the university's schools, lead the calibration meetings. Specifically, calibration is a process designed to ensure the accuracy and reliability of evaluating signature assignments by working with peer faculty to interpret rubrics and compare scoring. These calibration meetings include the full time and adjunct faculty members who teach the course to ensure consensus on the application of the rubric. Each calibration session is chaired by a GET representative as well as the course custodian/contact where the ILO signature assignment resides. The overall calibration process GET follows includes multiple steps, such as: contacting and inviting relevant faculty members to participate; organizing and hosting calibration sessions; and reviewing and discussing at least 10 samples of student work from class sections during the previous academic year, for each applicable signature assignment. Conversely, the commitment for calibration teams consist of attending two virtual meetings lasting up to three hours in duration. The first meeting focuses on interpreting the rubric, and the second meeting involves comparing scores for sample work and sharing feedback about the rubric and assignment. Next, participants are expected to follow all directions provided and participate actively, and respond to scheduling requests and other emails within 72 hours. The virtual meetings are recorded for future institutional use. Adjunct faculty are paid a small stipend after participating in both calibration meetings. Full time faculty can use this work on their annual faculty report for "internal service" credit.

Keywords: assessment, assurance of learning, course design, institutional learning outcomes, rubrics, signature assignments

Procedia PDF Downloads 274
8371 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing

Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi

Abstract:

According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.

Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models

Procedia PDF Downloads 444
8370 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 135
8369 Prevalence and Risk Factors of Economic Toxicity in Gynecologic Malignancies: A Systematic Review

Authors: Dongliu Li

Abstract:

Objective: This study systematically evaluates the incidence and influencing factors of economic toxicity in patients with gynecological malignant tumors. Methods: Literature on economic toxicity of gynecological malignancies were comprehensively searched in Pubmed, The Cochrane Library, Web of Science, Embase, CINAHL, CNKI, Wanfang Database, Chinese Biomedical Literature database and VIP database. The search period is up to February 2024. Stata 17 software was used to conduct a single-group meta-analysis of the incidence of economic toxicity in gynecological malignant tumors, and descriptive analysis was used to analyze the influencing factors. Results: A total of 11 pieces of literature were included, including 6475 patients with gynecological malignant tumors. The results of the meta-analysis showed that the incidence of economic toxicity in gynecological malignant tumors was 40% (95%CI 31%—48%). The influencing factors of economic toxicity in patients with gynecological malignant tumors include social demographic factors, medical insurance-related factors and disease-related factors. Conclusion: The incidence of economic toxicity in patients with gynecological malignant tumors is high, and medical staff should conduct early screening of patients according to relevant influencing factors, personalized assessment of patients' economic status, early prevention work and personalized intervention measures.

Keywords: gynecological malignancy, economic toxicity, the incidence rate, influencing factors, systematic review

Procedia PDF Downloads 10
8368 Directivity and Gain Improvement for Microstrip Array Antenna with Directors

Authors: Hassan M. Elkamchouchi, Samy H. Darwish, Yasser H. Elkamchouchi, M. E. Morsy

Abstract:

Methodology is suggested to design a linear rectangular microstrip array antenna based on Yagi antenna theory. The antenna with different directors' lengths as parasitic elements were designed, simulated, and analyzed using HFSS. The calculus and results illustrate the effectiveness of using specific parasitic elements to improve the directivity and gain for microstrip array antenna. The results have shown that the suggested methodology has the potential to be applied for improving the antenna performance. Maximum radiation intensity (Umax) of the order of 0.47w/st was recorded, directivity of 6.58dB, and gain better than 6.07dB are readily achievable for the antenna that working.

Keywords: directivity, director, microstrip antenna, gain improvment

Procedia PDF Downloads 452
8367 China’s Scientific Research of the Arctic (Historical Aspect)

Authors: Cui Long (Allen)

Abstract:

China's attention to the Arctic began in 1925, when the country joined the Svalbard Treaty. China's participation in Arctic exploration was determined by the second and third articles of the treaty, according to which the country could conduct scientific activities in the adjacent waters of Svalbard. The first studies of the New China began in the 50s of the twentieth century. The first scientific projects on Arctic exploration began in the 80s of the twentieth century. During these years, the "National Committee of the People's Republic of China for Arctic Expeditions" and the "Institute of Polar Research" in Shanghai were established. The beginning of Deng Xiaoping's policy of openness and reform has opened a new page in China's scientific research of the Arctic. Since the 90s, the first Chinese scientific programs have been developed with foreign partners. The Chinese Academy of Sciences and its subordinate scientific institutions are actively involved in scientific activities: the Institute of Aerophysics, the Institute of Geographical Sciences and Natural Resources, the Institute of Oceanology, etc. An important event for the development of scientific research in the Arctic was China's entry into the Arctic Council in 2013 as an observer. By 2018, China had conducted nine Arctic expeditions, their purpose was to study the melting of ice and its effects on the world's climate system, as well as the impact of the Arctic climate on China and the presence of plastic waste in the Arctic was monitored. At the beginning of the new millennium, China considers the Arctic as the most important region of a geopolitical and geostrategic nature, for its further logistical and economic development.

Keywords: Arctic, China, history of Arctic research, arctic science, Chinese scientific research in the Arctic, scientific expeditions

Procedia PDF Downloads 45
8366 Preparation of Fe, Cr Codoped TiO2 Nanostructure for Phenol Removal from Wastewaters

Authors: N. Nowzari-Dalini, S. Sabbaghi

Abstract:

Phenol is a hazardous material found in many industrial wastewaters. Photocatalytic degradation and furthermore catalyst doping are promising techniques in purpose of effective phenol removal, which have been studied comprehensively in this decade. In this study, Fe, Cr codoped TiO2 were prepared by sol-gel method, and its photocatalytic activity was investigated through degradation of phenol under visible light. The catalyst was characterized by XRD, SEM, FT-IR, BET, and EDX. The results showed that nanoparticles possess anatase phase, and the average size of nanoparticles was about 21 nm. Also, photocatalyst has significant surface area. Effect of experimental parameters such as pH, irradiation time, pollutant concentration, and catalyst concentration were investigated by using Design-Expert® software. 98% of phenol degradation was achieved after 6h of irradiation.

Keywords: doping, metals, sol-gel, titanium dioxide, wastewater

Procedia PDF Downloads 324
8365 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 151
8364 Lean Models Classification: Towards a Holistic View

Authors: Y. Tiamaz, N. Souissi

Abstract:

The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.

Keywords: lean approach, lean models, classification, dimensions, holistic view

Procedia PDF Downloads 430
8363 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy

Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.

Abstract:

Background:  Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.

Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality

Procedia PDF Downloads 24
8362 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 313
8361 Simulation, Design, and 3D Print of Novel Highly Integrated TEG Device with Improved Thermal Energy Harvest Efficiency

Authors: Jaden Lu, Olivia Lu

Abstract:

Despite the remarkable advancement of solar cell technology, the challenge of optimizing total solar energy harvest efficiency persists, primarily due to significant heat loss. This excess heat not only diminishes solar panel output efficiency but also curtails its operational lifespan. A promising approach to address this issue is the conversion of surplus heat into electricity. In recent years, there is growing interest in the use of thermoelectric generators (TEG) as a potential solution. The integration of efficient TEG devices holds the promise of augmenting overall energy harvest efficiency while prolonging the longevity of solar panels. While certain research groups have proposed the integration of solar cells and TEG devices, a substantial gap between conceptualization and practical implementation remains, largely attributed to low thermal energy conversion efficiency of TEG devices. To bridge this gap and meet the requisites of practical application, a feasible strategy involves the incorporation of a substantial number of p-n junctions within a confined unit volume. However, the manufacturing of high-density TEG p-n junctions presents a formidable challenge. The prevalent solution often leads to large device sizes to accommodate enough p-n junctions, consequently complicating integration with solar cells. Recently, the adoption of 3D printing technology has emerged as a promising solution to address this challenge by fabricating high-density p-n arrays. Despite this, further developmental efforts are necessary. Presently, the primary focus is on the 3D printing of vertically layered TEG devices, wherein p-n junction density remains constrained by spatial limitations and the constraints of 3D printing techniques. This study proposes a novel device configuration featuring horizontally arrayed p-n junctions of Bi2Te3. The structural design of the device is subjected to simulation through the Finite Element Method (FEM) within COMSOL Multiphysics software. Various device configurations are simulated to identify optimal device structure. Based on the simulation results, a new TEG device is fabricated utilizing 3D Selective laser melting (SLM) printing technology. Fusion 360 facilitates the translation of the COMSOL device structure into a 3D print file. The horizontal design offers a unique advantage, enabling the fabrication of densely packed, three-dimensional p-n junction arrays. The fabrication process entails printing a singular row of horizontal p-n junctions using the 3D SLM printing technique in a single layer. Subsequently, successive rows of p-n junction arrays are printed within the same layer, interconnected by thermally conductive copper. This sequence is replicated across multiple layers, separated by thermal insulating glass. This integration created in a highly compact three-dimensional TEG device with high density p-n junctions. The fabricated TEG device is then attached to the bottom of the solar cell using thermal glue. The whole device is characterized, with output data closely matching with COMSOL simulation results. Future research endeavors will encompass the refinement of thermoelectric materials. This includes the advancement of high-resolution 3D printing techniques tailored to diverse thermoelectric materials, along with the optimization of material microstructures such as porosity and doping. The objective is to achieve an optimal and highly integrated PV-TEG device that can substantially increase the solar energy harvest efficiency.

Keywords: thermoelectric, finite element method, 3d print, energy conversion

Procedia PDF Downloads 58
8360 Design of Visual Repository, Constraint and Process Modeling Tool Based on Eclipse Plug-Ins

Authors: Rushiraj Heshi, Smriti Bhandari

Abstract:

Master Data Management requires creation of Central repository, applying constraints on Repository and designing processes to manage data. Designing of Repository, constraints on repository and business processes is very tedious and time consuming task for large Enterprise. Hence Visual Repository, constraints and Process (Workflow) modeling is the most critical step in Master Data Management.In this paper, we realize a Visual Modeling tool for implementing Repositories, Constraints and Processes based on Eclipse Plugin using GMF/EMF which follows principles of Model Driven Engineering (MDE).

Keywords: EMF, GMF, GEF, repository, constraint, process

Procedia PDF Downloads 488
8359 Extraction of Essential Oil From Orange Peels

Authors: Aayush Bhisikar, Neha Rajas, Aditya Bhingare, Samarth Bhandare, Amruta Amrurkar

Abstract:

Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.

Keywords: orange peels, extraction, essential oil, distillation

Procedia PDF Downloads 76
8358 Extraction of Essential Oil from Orange Peels

Authors: Neha Rajas, Aayush Bhisikar, Samarth Bhandare, Aditya Bhingare, Amruta Amrutkar

Abstract:

Orange peels are currently thrown away as garbage in India after orange fruits' edible components are consumed. However, the nation depends on important essential oils for usage in companies that produce goods, including food, beverages, cosmetics, and medicines. This study was conducted to show how to effectively use it. By using various extraction techniques, orange peel is used in the creation of essential oils. Stream distillation, water distillation, and solvent extraction were the techniques taken into consideration in this paper. Due to its relative prevalence among the extraction techniques, Design Expert 7.0 was used to plan an experimental run for solvent extraction. Oil was examined to ascertain its physical and chemical characteristics after extraction. It was determined from the outcomes that the orange peels.

Keywords: orange peels, extraction, distillation, essential oil

Procedia PDF Downloads 71
8357 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 324
8356 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment

Authors: Chenxiao Yang, Li Li

Abstract:

In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.

Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable

Procedia PDF Downloads 266
8355 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 182
8354 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 75
8353 Free to Select vTuber Avatar eLearning Video for University Ray Tracing Course

Authors: Rex Hsieh, Kosei Yamamura, Satoshi Cho, Hisashi Sato

Abstract:

This project took place in the fall semester of 2019 from September 2019 to February 2020. It improves upon the design of a previous vTuber based eLearning video system by correcting criticisms from students and enhancing the positive aspects of the previous system. The transformed audio which has proven to be ineffective in previous experiments was not used in this experiment. The result is videos featuring 3 avatars covering different Ray Tracing subject matters being released weekly. Students are free to pick which videos they want to watch and can also re-watch any videos they want. The students' subjective impressions of each video is recorded and analysed to help further improve the system.

Keywords: vTuber, eLearning, Ray Tracing, Avatar

Procedia PDF Downloads 184