Search results for: systems topology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9651

Search results for: systems topology

2781 Biomass Enhancement of Stevia (Stevia rebaudiana Bertoni) Shoot Culture in Temporary Immersion System (TIS) RITA® Bioreactor Optimized in Two Different Immersion Periods

Authors: Agustine Melviana, Rizkita Esyanti

Abstract:

Stevia plant contains steviol glycosides which is estimated to be 300 times sweeter than sucrose. However in Indonesia, conventional (in vivo) propagation of Stevia rebaudiana was not effective due to a poor result. Therefore, alternative methods to propagate S. rebaudiana plants is needed, one of it is using in vitro method. Multiplication with a large quantity of stevia biomass in relatively short period can be conducted by using TIS RITA® (Recipient for Automated Temporary Immersion System). The objective of this study was to evaluate the effect of immersion period of the medium on growth and the medium bioconversion into the production of shoot biomass. The study was conducted to determine the effect of different intensity period of medium to enhance biomass of stevia shoots. Shoot culture of S. rebaudiana was grown in full strength MS medium supplemented with 1 ppm Kinetin. RITA® bioreactors were set up with two different immersion periods, 15 min (RITA® 15) and 30 min (RITA® 30), scheduled every 6 hours and incubated for 21 days. The result indicated that immersion period affected the biomass and growth rate (µ). Thirty-minutes immersion showed greater percentage of shoot multiplication (93.44 ± 0.83%), percentage of leaf growth (85.24 ± 5.99%), growth rate (0.042 ± 0.001 g/day), and productivity (0.066 g/L medium/day) compared to that immersed in RITA® 15 min (76.90 ± 4.85%; 79.73 ± 7.76; 0.045 ± 0.004 g/day, and 0.045 g/L medium/day respectively). Enhancement of biomass in RITA® 30 reached 1,702 ± 0,114 gr, whereas in RITA® 15 only 0,953 ± 0,093 gr. Additionally, the pattern of sucrose, mineral, and inorganic compounds consumption followed the growth of plant biomass for both systems. In conclusion, the bioconversion efficiency from medium to biomass in RITA® 30 is better than RITA® 15.

Keywords: intensity period, shoot culture, Stevia rebaudiana, TIS RITA®

Procedia PDF Downloads 257
2780 Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations

Authors: Satya Pradhan, Venky Nanniyur

Abstract:

As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality.

Keywords: quality management system, quality metrics framework, quality metrics, agile, waterfall, hybrid development system

Procedia PDF Downloads 181
2779 Incorporating Morality Standards in eLearning Process at INU

Authors: Khader Musbah Titi

Abstract:

In this era, traditional education systems do not meet the new challenges created by emerging technologies. On the other hand, eLearning offers all the necessary tools to meet these challenges. Using the Internet has brought numerous benefits to most educational institutions; it has also stretched traditional problems of plagiarism, cheating, stealing, vandalism, and spying into the cyberspace. This research discusses these issues in an eLearning environment. It attempts to provide suggestions and possible solutions to some of these issues. The main aim of this research is to conduct a survey at Irbid National University (INU), one of the oldest and biggest universities in Jordan, to study information related to moral and ethical issues in e-learning environment that affect the construction of the students’ characters in the future. The study will focus on student’s behavior and actions through the Internet using Learning Management System (LMS). Another aim of this research is to analyze the opinions of the instructors and last year students at INU about ethical behavior and interaction through LMS. The results show that educational institutes that use LMS should focus on student character development along with field knowledge. According to disadvantages, the results of the study showed that most of students behave unethically in their online activities (cheating, plagiarism, copy/paste etc.) while studying online courses through LMS. The result showed that instructors play a major role in the character development of students. The result also showed that academic institute must have variant mechanisms and strict policy in LMS to control unethical actions of students.

Keywords: LMS, cyber ethics, e-learning, IT ethics, students’ behaviors

Procedia PDF Downloads 248
2778 Dispersions of Carbon Black in Microemulsions

Authors: Mohamed Youssry, Dominique Guyomard, Bernard Lestriez

Abstract:

In order to enhance the energy and power densities of electrodes for energy storage systems, the formulation and processing of electrode slurries proved to be a critical issue in determining the electrode performance. In this study, we introduce novel approach to formulate carbon black slurries based on microemulsion and lyotropic liquid crystalline phases (namely, lamellar phase) composed of non-ionic surfactant (Triton X100), decanol and water. Simultaneous measurements of electrical properties of slurries under shear flow (rheology) have been conducted to elucidate the microstructure evolution with the surfactant concentration and decanol/water ratio at rest, as well as, the structural transition under steady-shear which has been confirmed by rheo-microscopy. Interestingly, the carbon black slurries at low decanol/water ratio are weak-gel (flowable) with higher electrical conductivity than those at higher ratio which behave strong-gel viscoelastic response. In addition, the slurries show recoverable electrical behaviour under shear flow in tandem with the viscosity trend. It is likely that oil-in-water microemulsion enhances slurries’ stability without affecting on the percolating network of carbon black. On the other hand, the oil-in-water analogous and bilayer structure of lamellar phase cause the slurries less conductive as a consequence of losing the network percolation. These findings are encouraging to formulate microemulsion-based electrodes for energy storage system (lithium-ion batteries).

Keywords: electrode slurries, microemulsion, microstructure transition, rheo-electrical properties

Procedia PDF Downloads 268
2777 Effectiveness of Lowering the Water Table as a Mitigation Measure for Foundation Settlement in Liquefiable Soils Using 1-g Scale Shake Table Test

Authors: Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed

Abstract:

An earthquake is an unpredictable natural disaster. It induces liquefaction, which causes considerable damage to the structure, life support, and piping systems because of ground settlement. As a result, people are incredibly concerned about how to resolve the situation. Previous researchers adopted different ground improvement techniques to reduce the settlement of the structure during earthquakes. This study evaluates the effectiveness of lowering the water table as a technique to mitigate foundation settlement in liquefiable soil. The performance will be evaluated based on foundation settlement and the reduction of excessive pore water pressure. In this study, a scaled model was prepared based on a full-scale shale table experiment conducted at the University of California, San Diego (UCSD). The model ground consists of three soil layers having a relative density of 55%, 45%, and 90%, respectively. A shallow foundation is seated over an unsaturated crust layer. After preparation of the model ground, the water table was measured to be at 45, 40, and 35 cm (from the bottom). Then, the input motions were applied for 10 seconds, with a peak acceleration of 0.25g and a constant frequency of 2.73 Hz. Based on the experimental results, the effectiveness of the lowering water table in reducing the foundation settlement and excess pore water pressure was evident. The foundation settlement was reduced from 50 mm to 5 mm. In addition, lowering the water table as a mitigation measure is a cost-effective way to decrease liquefaction-induced building settlement.

Keywords: foundation settlement, ground water table, liquefaction, hake table test

Procedia PDF Downloads 117
2776 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)

Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine

Abstract:

In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.

Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities

Procedia PDF Downloads 100
2775 Luminescence Dating of Ancient Agricultural Terraced Landscapes: Prospects for Heritage Protection

Authors: Lisa Snape, Andreas Lang, Tony Brown, Dan Fallu, Ben Pears

Abstract:

Agricultural terraced landscapes are widespread in mountainous areas in a variety of climatic zones around the World. The most famous are those found associated with the famous Inca site of Machu Pichu in the Andes, the arid lands in upland areas of Yemen, and the abundant rice terraces covering the hilltops in tropical areas such as Thailand, Vietnam, and China and also Bali. Terraces were designed using advanced engineered techniques, requiring specialist knowledge of bedrock geology, soil cultivation and maintenance, and ecosystem management to grow a variety of crops in specific environmental conditions. These enigmatic landscapes were often overlooked in the past but have now received widespread attention to further understand their age, origins, and evolution as the landscapes and environment changed over time. By understanding the age and chronologies of agricultural terrace technology, we can enhance our understanding of these unique features considered widely as important ecosystem services in the present day. We present distinct luminescence dating evidence from a variety of terraced systems found in different European environmental settings, such as the UK, Italy and Belgium, as part of the wider ERC-funded TerrACE Project. Our research aims to better understand their history and advocate for their protection and effective management as important cultural, heritage and environmental assets, creating new avenues for future scientific research.

Keywords: terraces, agriculture, luminescence dating, heritage protection

Procedia PDF Downloads 57
2774 Analysis of a Multiejector Cooling System in a Truck at Different Loads

Authors: Leonardo E. Pacheco, Carlos A. Díaz

Abstract:

An alternative way of addressing the difficult to recover the useless heat is through an ejector refrigeration cycle for vehicles applications. A group of thermo-compressor supply the mechanical compressor function at conventional refrigeration compression system. The thermo-compressor group recovers the thermal energy from waste streams (exhaust gases product in internal combustion motors, gases burned in wellhead among others) to eliminate the power consumption of the mechanical compressor. These types of alternative cooling system (air-conditioners) present a kind of advantages in both the increase in energy efficiency and the improvement of the COP of the system being studied from their its mechanical simplicity (decrease of moving parts). An ejector refrigeration cycle represents a significant step forward in the optimization of the efficient use of energy in the process of air conditioning and an alternative to reduce the environmental impacts. On one side, with the energy recycling decreases the temperature of the gases thrown into the atmosphere, which contributes to the principal beneficiaries of the average temperature of the planet. In parallel, mitigating the environmental impact caused by the production and handling of conventional cooling fluids commonly available in the market, causing the destruction of the ozone layer. This work had studied the operation of the multiejector cooling system for a truck with a 420 HP engine at different rotation speed. The operation condition limits and the COP of multi-ejector cooling systems applied in a truck are analyzed for a variable rpm range from to 800–1800 rpm.

Keywords: ejector system, exhaust gas, multiejector cooling system, recovery energy

Procedia PDF Downloads 263
2773 Study and Simulation of the Thrust Vectoring in Supersonic Nozzles

Authors: Kbab H, Hamitouche T

Abstract:

In recent years, significant progress has been accomplished in the field of aerospace propulsion and propulsion systems. These developments are associated with efforts to enhance the accuracy of the analysis of aerothermodynamic phenomena in the engine. This applies in particular to the flow in the nozzles used. One of the most remarkable processes in this field is thrust vectoring by means of devices able to orientate the thrust vector and control the deflection of the exit jet in the engine nozzle. In the study proposed, we are interested in the fluid thrust vectoring using a second injection in the nozzle divergence. This fluid injection causes complex phenomena, such as boundary layer separation, which generates a shock wave in the primary jet upstream of the fluid interacting zone (primary jet - secondary jet). This will cause the deviation of the main flow, and therefore of the thrust vector with reference to the axis nozzle. In the modeling of the fluidic thrust vector, various parameters can be used. The Mach number of the primary jet and the injected fluid, the total pressures ratio, the injection rate, the thickness of the upstream boundary layer, the injector position in the divergent part, and the nozzle geometry are decisive factors in this type of phenomenon. The complexity of the latter challenges researchers to understand the physical phenomena of the turbulent boundary layer encountered in supersonic nozzles, as well as the calculation of its thickness and the friction forces induced on the walls. The present study aims to numerically simulate the thrust vectoring by secondary injection using the ANSYS-FLUENT, then to analyze and validate the results and the performances obtained (angle of deflection, efficiency...), which will then be compared with those obtained by other authors.

Keywords: CD Nozzle, TVC, SVC, NPR, CFD, NPR, SPR

Procedia PDF Downloads 138
2772 The Friction of Oil Contaminated Granular Soils; Experimental Study

Authors: Miron A., Tadmor R., Pinkert S.

Abstract:

Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.

Keywords: contaminated soils, lubrication, friction, granular media

Procedia PDF Downloads 59
2771 Optimization of Bifurcation Performance on Pneumatic Branched Networks in next Generation Soft Robots

Authors: Van-Thanh Ho, Hyoungsoon Lee, Jaiyoung Ryu

Abstract:

Efficient pressure distribution within soft robotic systems, specifically to the pneumatic artificial muscle (PAM) regions, is essential to minimize energy consumption. This optimization involves adjusting reservoir pressure, pipe diameter, and branching network layout to reduce flow speed and pressure drop while enhancing flow efficiency. The outcome of this optimization is a lightweight power source and reduced mechanical impedance, enabling extended wear and movement. To achieve this, a branching network system was created by combining pipe components and intricate cross-sectional area variations, employing the principle of minimal work based on a complete virtual human exosuit. The results indicate that modifying the cross-sectional area of the branching network, gradually decreasing it, reduces velocity and enhances momentum compensation, preventing flow disturbances at separation regions. These optimized designs achieve uniform velocity distribution (uniformity index > 94%) prior to entering the connection pipe, with a pressure drop of less than 5%. The design must also consider the length-to-diameter ratio for fluid dynamic performance and production cost. This approach can be utilized to create a comprehensive PAM system, integrating well-designed tube networks and complex pneumatic models.

Keywords: pneumatic artificial muscles, pipe networks, pressure drop, compressible turbulent flow, uniformity flow, murray's law

Procedia PDF Downloads 88
2770 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts

Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht

Abstract:

Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.

Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans

Procedia PDF Downloads 320
2769 Approaching In vivo Dosimetry for Kilovoltage X-Ray Radiotherapy

Authors: Rodolfo Alfonso, David Alonso, Albin Garcia, Jose Luis Alonso

Abstract:

Recently a new kilovoltage radiotherapy unit model Xstrahl 200 - donated to the INOR´s Department of Radiotherapy (DR-INOR) in the framework of a IAEA's technical cooperation project- has been commissioned. This unit is able to treat shallow and low deep laying lesions, as it provides 8 discrete beam qualities, from 40 to 200 kV. As part of the patient-specific quality assurance program established at DR-INOR for external beam radiotherapy, it has been recommended to implement in vivo dose measurements (IVD), as they allow effectively discovering eventual errors or failures in the radiotherapy process. For that purpose a radio-photoluminescence (RPL) dosimetry system, model XXX, -also donated to DR-INOR by the same IAEA project- has been studied and commissioned. Main dosimetric parameters of the RPL system, such as reproducibility, linearity, and filed size influence were assessed. In a similar way, the response of radiochromic EBT3 type film was investigated for purposes of IVD. Both systems were calibrated in terms of entrance surface dose. Results of the dosimetric commissioning of RPL and EBT3 for IVD, and their pre-clinical implementation through end-to-end test cases are presented. The RPL dosimetry seems more recommendable for hyper-fractionated schemes with larger fields and curved patient contours, as those in chest wall irradiations, where the use of more than one dosimeter could be required. The radiochromic system involves smaller corrections with field size, but it sensibility is lower; hence it is more adequate for hypo-fractionated treatments with smaller fields.

Keywords: glass dosimetry, in vivo dosimetry, kilovotage radiotherapy, radiochromic dosimetry

Procedia PDF Downloads 401
2768 Radio Frequency Identification Device Based Emergency Department Critical Care Billing: A Framework for Actionable Intelligence

Authors: Shivaram P. Arunachalam, Mustafa Y. Sir, Andy Boggust, David M. Nestler, Thomas R. Hellmich, Kalyan S. Pasupathy

Abstract:

Emergency departments (EDs) provide urgent care to patients throughout the day in a complex and chaotic environment. Real-time location systems (RTLS) are increasingly being utilized in healthcare settings, and have shown to improve safety, reduce cost, and increase patient satisfaction. Radio Frequency Identification Device (RFID) data in an ED has been shown to compute variables such as patient-provider contact time, which is associated with patient outcomes such as 30-day hospitalization. These variables can provide avenues for improving ED operational efficiency. A major challenge with ED financial operations is under-coding of critical care services due to physicians’ difficulty reporting accurate times for critical care provided under Current Procedural Terminology (CPT) codes 99291 and 99292. In this work, the authors propose a framework to optimize ED critical care billing using RFID data. RFID estimated physician-patient contact times could accurately quantify direct critical care services which will help model a data-driven approach for ED critical care billing. This paper will describe the framework and provide insights into opportunities to prevent under coding as well as over coding to avoid insurance audits. Future work will focus on data analytics to demonstrate the feasibility of the framework described.

Keywords: critical care billing, CPT codes, emergency department, RFID

Procedia PDF Downloads 137
2767 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 135
2766 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 52
2765 Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions

Authors: Jean-Philippe Gagnon, Benjamin Saute, Stéphane Boubanga-Tombet

Abstract:

Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution.

Keywords: infrared, multispectral, fire, broadband, gas temperature, IR camera

Procedia PDF Downloads 149
2764 4D Modelling of Low Visibility Underwater Archaeological Excavations Using Multi-Source Photogrammetry in the Bulgarian Black Sea

Authors: Rodrigo Pacheco-Ruiz, Jonathan Adams, Felix Pedrotti

Abstract:

This paper introduces the applicability of underwater photogrammetric survey within challenging conditions as the main tool to enhance and enrich the process of documenting archaeological excavation through the creation of 4D models. Photogrammetry was being attempted on underwater archaeological sites at least as early as the 1970s’ and today the production of traditional 3D models is becoming a common practice within the discipline. Photogrammetry underwater is more often implemented to record exposed underwater archaeological remains and less so as a dynamic interpretative tool.  Therefore, it tends to be applied in bright environments and when underwater visibility is > 1m, reducing its implementation on most submerged archaeological sites in more turbid conditions. Recent years have seen significant development of better digital photographic sensors and the improvement of optical technology, ideal for darker environments. Such developments, in tandem with powerful processing computing systems, have allowed underwater photogrammetry to be used by this research as a standard recording and interpretative tool. Using multi-source photogrammetry (5, GoPro5 Hero Black cameras) this paper presents the accumulation of daily (4D) underwater surveys carried out in the Early Bronze Age (3,300 BC) to Late Ottoman (17th Century AD) archaeological site of Ropotamo in the Bulgarian Black Sea under challenging conditions (< 0.5m visibility). It proves that underwater photogrammetry can and should be used as one of the main recording methods even in low light and poor underwater conditions as a way to better understand the complexity of the underwater archaeological record.

Keywords: 4D modelling, Black Sea Maritime Archaeology Project, multi-source photogrammetry, low visibility underwater survey

Procedia PDF Downloads 241
2763 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons

Authors: Ozgu Hafizoglu

Abstract:

Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.

Keywords: analogy, analogical reasoning, cognitive model, brain and glials

Procedia PDF Downloads 191
2762 Liesegang Phenomena: Experimental and Simulation Studies

Authors: Vemula Amalakrishna, S. Pushpavanam

Abstract:

Change and motion characterize and persistently reshape the world around us, on scales from molecular to global. The subtle interplay between change (Reaction) and motion (Diffusion) gives rise to an astonishing intricate spatial or temporal pattern. These pattern formation in nature has been intellectually appealing for many scientists since antiquity. Periodic precipitation patterns, also known as Liesegang patterns (LP), are one of the stimulating examples of such self-assembling reaction-diffusion (RD) systems. LP formation has a great potential in micro and nanotechnology. So far, the research on LPs has been concentrated mostly on how these patterns are forming, retrieving information to build a universal mathematical model for them. Researchers have developed various theoretical models to comprehensively construct the geometrical diversity of LPs. To the best of our knowledge, simulation studies of LPs assume an arbitrary value of RD parameters to explain experimental observation qualitatively. In this work, existing models were studied to understand the mechanism behind this phenomenon and challenges pertaining to models were understood and explained. These models are not computationally effective due to the presence of discontinuous precipitation rate in RD equations. To overcome the computational challenges, smoothened Heaviside functions have been introduced, which downsizes the computational time as well. Experiments were performed using a conventional LP system (AgNO₃-K₂Cr₂O₇) to understand the effects of different gels and temperatures on formed LPs. The model is extended for real parameter values to compare the simulated results with experimental data for both 1-D (Cartesian test tubes) and 2-D(cylindrical and Petri dish).

Keywords: reaction-diffusion, spatio-temporal patterns, nucleation and growth, supersaturation

Procedia PDF Downloads 155
2761 Effects of Chemicals in Elderly

Authors: Ali Kuzu

Abstract:

There are about 800 thousand chemicals in our environment and the number is increasing more than a thousand every year. While most of these chemicals are used as components in various consumer products, some are faced as industrial waste in the environment. Unfortunately, many of these chemicals are hazardous and affect humans. According to the “International Program on Chemical Safety” of World Health Organization; Among the chronic health effects of chemicals, cancer is of major concern. Many substances have found in recent years to be carcinogenic in one or more species of laboratory animals. Especially with respect to long-term effects, the response to a chemical may vary, quantitatively or qualitatively, in different groups of individuals depending on predisposing conditions, such as nutritional status, disease status, current infection, climatic extremes, and genetic features, sex and age of the individuals. Understanding the response of such specific risk groups is an important area of toxicology research. People with age 65+ is defined as “aged (or elderly)”. The elderly population in the world is about 600 million, which corresponds to ~8 percent of the world population. While every 1 of each 4 people is aged in Japan, the elderly population is quite close to 20 percent in many developed countries. And elderly population in these countries is growing more rapidly than the total population. The negative effects of chemicals on elderly take an important place in health-care related issues in last decades. The aged population is more susceptible to the harmful effects of environmental chemicals. According to the poor health of the organ systems in elderly, the ability of their body to eliminate the harmful effects and chemical substances from their body is also poor. With the increasing life expectancy, more and more people will face problems associated with chemical residues.

Keywords: elderly, chemicals’ effects, aged care, care need

Procedia PDF Downloads 460
2760 In-Farm Wood Gasification Energy Micro-Generation System in Brazil: A Monte Carlo Viability Simulation

Authors: Erich Gomes Schaitza, Antônio Francisco Savi, Glaucia Aparecida Prates

Abstract:

The penetration of renewable energy into the electricity supply in Brazil is high, one of the highest in the World. Centralized hydroelectric generation is the main source of energy, followed by biomass and wind. Surprisingly, mini and micro-generation are negligible, with less than 2,000 connections to the national grid. In 2015, a new regulatory framework was put in place to change this situation. In the agricultural sector, the framework was complemented by the offer of low interest rate loans to in-farm renewable generation. Brazil proposed to more than double its area of planted forests as part of its INDC- Intended Nationally Determined Contributions to the UNFCCC-U.N. Framework Convention on Climate Change (UNFCCC). This is an ambitious target which will be achieved only if forests are attractive to farmers. Therefore, this paper analyses whether planting forests for in-farm energy generation with a with a woodchip gasifier is economically viable for microgeneration under the new framework and at if they could be an economic driver for forest plantation. At first, a static case was analyzed with data from Eucalyptus plantations in five farms. Then, a broader analysis developed with the use of Monte Carlo technique. Planting short rotation forests to generate energy could be a viable alternative and the low interest loans contribute to that. There are some barriers to such systems such as the inexistence of a mature market for small scale equipment and of a reference network of good practices and examples.

Keywords: biomass, distribuited generation, small-scale, Monte Carlo

Procedia PDF Downloads 292
2759 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals

Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty

Abstract:

A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.

Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction

Procedia PDF Downloads 121
2758 Public Participation in Science: The Case of Genetic Modified Organisms in Brazil

Authors: Maria Luisa Nozawa Ribeiro, Maria Teresa Miceli Kerbauy

Abstract:

This paper aims to present the theories of public participation in order to understand the context of the public GMO (Genetic Modified Organisms) policies in Brazil, highlighting the characteristics of its configuration and the dialog with the experts. As a controversy subject, the commercialization of GMO provoked manifestation of some popular and environmental representative groups questioning the decisions of policy makers and experts on the matter. Many aspects and consequences of the plantation and consumption of this crops emerged and the safety of this technology was questioned. Environmentalists, Civil Right's movement, representatives of rural workers, farmers and organics producers, etc. demonstrated their point of view, also sustained by some experts of medical, genetical, environmental, agronomical sciences, etc. fields. Despite this movement, the precautionary principle (risk management), implemented in 1987, suggested precaution facing new technologies and innovations in the sustainable development society. This principle influenced many legislation and regulation on GMO around the world, including Brazil, which became a reference among the world regulatory GMO systems. The Brazilian legislation ensures the citizens participation on GMO discussion, characteristic that was important to establish the connection between the subject and the participation theory. These deliberation spaces materialized in Brazil through the "Public Audiences", which are managed by the National Biosafety Technical Commission (CTNBio), the department responsible for controlling the research, production and commercialization of GMOs in Brazil.

Keywords: public engagement, public participation, science and technology studies, transgenic politics

Procedia PDF Downloads 309
2757 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 248
2756 Development of a Flexible Lora-Based Wireless Sensory System for Long-Time Health Monitoring of Civil Structures

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

In this study, a highly flexible LoRa-Based wireless sensing system was used to assess the strain state performance of building structures. The system was developed to address the local damage limitation of structural health monitoring (SHM) systems. The system is part of an intelligent SHM system designed to monitor, collect and transmit strain changes in key structural components. The main purpose of the wireless sensor system is to reduce the development and installation costs, and reduce the power consumption of the system, so as to achieve long-time monitoring. The highly stretchable flexible strain gauge is mounted on the surface of the structure and is waterproof, heat resistant, and low temperature resistant, greatly reducing the installation and maintenance costs of the sensor. The system was also developed with the aim of using LoRa wireless communication technology to achieve both low power consumption and long-distance transmission, therefore solving the problem of large-scale deployment of sensors to cover more areas in large structures. In the long-term monitoring of the building structure, the system shows very high performance, very low actual power consumption, and wireless transmission stability. The results show that the developed system has a high resolution, sensitivity, and high possibility of long-term monitoring.

Keywords: LoRa, SHM system, strain measurement, civil structures, flexible sensing system

Procedia PDF Downloads 106
2755 Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification

Authors: Etty Soesilowati

Abstract:

This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production.

Keywords: cultivation system, diversification, salt products, high quality salt

Procedia PDF Downloads 405
2754 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 88
2753 Benthic Cover in Coral Reef Environments under Influence of Submarine Groundwater Discharges

Authors: Arlett A. Rosado-Torres, Ismael Marino-Tapia

Abstract:

Changes in benthic cover of coral dominated systems to macroalgae dominance are widely studied worldwide. Watershed pollutants are potentially as important as overfishing causing phase shift. In certain regions of the world most of the continental inputs are through submarine groundwater discharges (SGD), which can play a significant ecological role because the concentration of its nutrients is usually greater that the one found in surface seawater. These stressors have adversely affected coral reefs, particularly in the Caribbean. Measurements of benthic cover (with video tracing, through a Go Pro camera), reef roughness (acoustic estimates with an Acoustic Doppler Current Velocity profiler and a differential GPS), thermohaline conditions (conductivity-temperature-depth (CTD) instrument) and nutrient measurements were taken in different sites in the reef lagoon of Puerto Morelos, Q. Roo, Mexico including those with influence of SGD and without it. The results suggest a link between SGD, macroalgae cover and structural complexity. Punctual water samples and data series from a CTD Diver confirm the presence of the SGD. On the site where the SGD is, the macroalgae cover is larger than in the other sites. To establish a causal link between this phase shift and SGD, the DELFT 3D hydrodynamic model (FLOW and WAVE modules) was performed under different environmental conditions and discharge magnitudes. The model was validated using measurements of oceanographic instruments anchored in the lagoon and forereef. The SGD is consistently favoring macroalgae populations and affecting structural complexity of the reef.

Keywords: hydrodynamic model, macroalgae, nutrients, phase shift

Procedia PDF Downloads 155
2752 Power-Sharing Politics: A Panacea to Conflict Resolution and Stability in Africa

Authors: Emmanuel Dangana Monday

Abstract:

Africa as a continent has been ravaged and bedeviled by series of political conflicts associated with politics and power-sharing maneuvering. As a result it has become the most unstable continent in the world in terms of power distribution and stable political culture. This paper examines the efficacy of conscious and deliberate power-sharing strategies to settle or resolve political conflicts in Africa in the arrangements of creation of states, revenue and resources allocation, and office distribution systems. The study is concerned with the spatial impact of conflicts generated in some renowned African countries in which power-sharing would have been a solution. Ethno-regional elite groups are identified as the major actors in the struggles for the distribution of territorial, economic and political powers in Africa. The struggle for power has become so intense that it has degenerated to conflicts and wars of inter and intra-political classes and parties respectively. Secondary data and deductive techniques were used in data collection and analysis. It is discovered that power-sharing has become an indispensable tool to curb the incessant political and power crisis in Africa. It is one of the finest tolerable modality of mediating elite’ competition, since it reflects the interests of both the dominant and the perceived marginalized groups. The study recommends that countries and regions of political, ethnic and religious differences in Africa should employed power-sharing strategy in order to avoid unnecessary political tension and resultant crisis. Interest groups should always come to the negotiation table to reach a realistic, durable and expected compromise to secure a peacefully resolute Africa.

Keywords: Africa, power-sharing, conflicts, politics and political stability

Procedia PDF Downloads 330