Search results for: elliptic curve digital signature algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7376

Search results for: elliptic curve digital signature algorithm

506 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 84
505 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 224
504 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to the exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes the multi-criteria nature of the problem and how decision-makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of a significant degree of ambiguity and indeterminacy observed in the decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies the Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method for a real problem of academic personnel selection, having as the main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherent ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: multi-criteria decision making methods, analytical hierarchy process, delphi method, personnel recruitment, neutrosophic set theory

Procedia PDF Downloads 117
503 Early Prediction of Diseases in a Cow for Cattle Industry

Authors: Ghufran Ahmed, Muhammad Osama Siddiqui, Shahbaz Siddiqui, Rauf Ahmad Shams Malick, Faisal Khan, Mubashir Khan

Abstract:

In this paper, a machine learning-based approach for early prediction of diseases in cows is proposed. Different ML algos are applied to extract useful patterns from the available dataset. Technology has changed today’s world in every aspect of life. Similarly, advanced technologies have been developed in livestock and dairy farming to monitor dairy cows in various aspects. Dairy cattle monitoring is crucial as it plays a significant role in milk production around the globe. Moreover, it has become necessary for farmers to adopt the latest early prediction technologies as the food demand is increasing with population growth. This highlight the importance of state-ofthe-art technologies in analyzing how important technology is in analyzing dairy cows’ activities. It is not easy to predict the activities of a large number of cows on the farm, so, the system has made it very convenient for the farmers., as it provides all the solutions under one roof. The cattle industry’s productivity is boosted as the early diagnosis of any disease on a cattle farm is detected and hence it is treated early. It is done on behalf of the machine learning output received. The learning models are already set which interpret the data collected in a centralized system. Basically, we will run different algorithms on behalf of the data set received to analyze milk quality, and track cows’ health, location, and safety. This deep learning algorithm draws patterns from the data, which makes it easier for farmers to study any animal’s behavioral changes. With the emergence of machine learning algorithms and the Internet of Things, accurate tracking of animals is possible as the rate of error is minimized. As a result, milk productivity is increased. IoT with ML capability has given a new phase to the cattle farming industry by increasing the yield in the most cost-effective and time-saving manner.

Keywords: IoT, machine learning, health care, dairy cows

Procedia PDF Downloads 71
502 A Method against Obsolescence of Three-Dimensional Archaeological Collection. Two Cases of Study from Qubbet El-Hawa Necropolis, Aswan, Egypt

Authors: L. Serrano-Lara, J.M Alba-Gómez

Abstract:

Qubbet el–Hawa Project has been documented archaeological artifacts as 3d models by laser scanning technique since 2015. Currently, research has obtained the right methodology to develop a high accuracy photographic texture for each geometrical 3D model. Furthermore, the right methodology to attach the complete digital surrogate into a 3DPDF document has been obtained; it is used as a catalogue worksheet that brings archaeological data and, at the same time, allows us to obtain precise measurements, volume calculations and cross-section mapping of each scanned artifact. This validated archaeological documentation is the first step for dissemination, application as Qubbet el-Hawa Virtual Museum, and, moreover, multi-sensory experience through 3D print archaeological artifacts. Material culture from four funerary complexes constructed in West Aswan has become physical replicas opening the archaeological research process itself and offering creative possibilities on museology or educational projects. This paper shares a method of acquiring texture for scanning´s output product in order to achieve a 3DPDF archaeological cataloguing, and, on the other hand, to allow the colorfully 3D printing of singular archaeological artifacts. The proposed method has undergone two concrete cases, a polychrome wooden ushabti, and, a cartonnage mask belonging to a lady, bought recovered on intact tomb QH34aa. Both 3D model results have been implemented on three main applications, archaeological 3D catalogue, public dissemination activities, and the 3D artifact model in a bachelor education program. Due to those three already mentioned applications, productive interaction among spectator and three-dimensional artifact have been increased; moreover, functionality as archaeological documentation has been consolidated. Finding the right methodology to assign a specific color to each vector on the geometric 3D model, we had been achieved two essential archaeological applications. Firstly, 3DPDF as a display document for an archaeological catalogue, secondly, the possibility to obtain a colored 3d printed object to be displayed in public exhibitions. Obsolescences 3D models have become updated archaeological documentation of QH43aa tomb cultural material. Therefore, Qubbet el-Hawa Project has been actualized the educational potential of its results thanks to a multi-sensory experience that arose from 3d scanned´s archaeological artifacts.

Keywords: 3D printed, 3D scanner, Middle Kingdom, Qubbet el-Hawa necropolis, virtual archaeology

Procedia PDF Downloads 141
501 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation

Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou

Abstract:

This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.

Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units

Procedia PDF Downloads 157
500 Analyzing Political Cartoons in Arabic-Language Media after Trump's Jerusalem Move: A Multimodal Discourse Perspective

Authors: Inas Hussein

Abstract:

Communication in the modern world is increasingly becoming multimodal due to globalization and the digital space we live in which have remarkably affected how people communicate. Accordingly, Multimodal Discourse Analysis (MDA) is an emerging paradigm in discourse studies with the underlying assumption that other semiotic resources such as images, colours, scientific symbolism, gestures, actions, music and sound, etc. combine with language in order to  communicate meaning. One of the effective multimodal media that combines both verbal and non-verbal elements to create meaning is political cartoons. Furthermore, since political and social issues are mirrored in political cartoons, these are regarded as potential objects of discourse analysis since they not only reflect the thoughts of the public but they also have the power to influence them. The aim of this paper is to analyze some selected cartoons on the recognition of Jerusalem as Israel's capital by the American President, Donald Trump, adopting a multimodal approach. More specifically, the present research examines how the various semiotic tools and resources utilized by the cartoonists function in projecting the intended meaning. Ten political cartoons, among a surge of editorial cartoons highlighted by the Anti-Defamation League (ADL) - an international Jewish non-governmental organization based in the United States - as publications in different Arabic-language newspapers in Egypt, Saudi Arabia, UAE, Oman, Iran and UK, were purposively selected for semiotic analysis. These editorial cartoons, all published during 6th–18th December 2017, invariably suggest one theme: Jewish and Israeli domination of the United States. The data were analyzed using the framework of Visual Social Semiotics. In accordance with this methodological framework, the selected visual compositions were analyzed in terms of three aspects of meaning: representational, interactive and compositional. In analyzing the selected cartoons, an interpretative approach is being adopted. This approach prioritizes depth to breadth and enables insightful analyses of the chosen cartoons. The findings of the study reveal that semiotic resources are key elements of political cartoons due to the inherent political communication they convey. It is proved that adequate interpretation of the three aspects of meaning is a prerequisite for understanding the intended meaning of political cartoons. It is recommended that further research should be conducted to provide more insightful analyses of political cartoons from a multimodal perspective.

Keywords: Multimodal Discourse Analysis (MDA), multimodal text, political cartoons, visual modality

Procedia PDF Downloads 240
499 Computer-Aided Ship Design Approach for Non-Uniform Rational Basis Spline Based Ship Hull Surface Geometry

Authors: Anu S. Nair, V. Anantha Subramanian

Abstract:

This paper presents a surface development and fairing technique combining the features of a modern computer-aided design tool namely the Non-Uniform Rational Basis Spline (NURBS) with an algorithm to obtain a rapidly faired hull form. Some of the older series based designs give sectional area distribution such as in the Wageningen-Lap Series. Others such as the FORMDATA give more comprehensive offset data points. Nevertheless, this basic data still requires fairing to obtain an acceptable faired hull form. This method uses the input of sectional area distribution as an example and arrives at the faired form. Characteristic section shapes define any general ship hull form in the entrance, parallel mid-body and run regions. The method defines a minimum of control points at each section and using the Golden search method or the bisection method; the section shape converges to the one with the prescribed sectional area with a minimized error in the area fit. The section shapes combine into evolving the faired surface by NURBS and typically takes 20 iterations. The advantage of the method is that it is fast, robust and evolves the faired hull form through minimal iterations. The curvature criterion check for the hull lines shows the evolution of the smooth faired surface. The method is applicable to hull form from any parent series and the evolved form can be evaluated for hydrodynamic performance as is done in more modern design practice. The method can handle complex shape such as that of the bulbous bow. Surface patches developed fit together at their common boundaries with curvature continuity and fairness check. The development is coded in MATLAB and the example illustrates the development of the method. The most important advantage is quick time, the rapid iterative fairing of the hull form.

Keywords: computer-aided design, methodical series, NURBS, ship design

Procedia PDF Downloads 169
498 Association between Dental Caries and Asthma among 12-15 Years Old School Children Studying in Karachi, Pakistan: A Cross Sectional Study

Authors: Wajeeha Zahid, Shafquat Rozi, Farhan Raza, Masood Kadir

Abstract:

Background: Dental caries affects the overall health and well-being of children. Findings from various international studies regarding the association of dental caries with asthma are inconsistent. With the increasing burden of caries and childhood asthma, it becomes imperative for an underdeveloped country like Pakistan where resources are limited to identify whether there is a relationship between the two. This study aims to identify an association between dental caries and asthma. Methods: A cross-sectional study was conducted on 544 children aged 12-15 years recruited from five private schools in Karachi. Information on asthma was collected through the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. The questionnaire addressed questions regarding child’s demographics, physician diagnoses of asthma, type of medication administered, family history of asthma and allergies, dietary habits and oral hygiene behavior. Dental caries was assessed using DMFT Index (Decayed, Missing, Filled teeth) index The data was analyzed using Cox proportional Hazard algorithm and crude and adjusted prevalence ratios with 95% CI were reported. Results: This study comprises of 306 (56.3%) boys and 238 (43.8%) girls. The mean age of children was 13.2 ± (0.05) years. The total number of children with carious teeth (DMFT > 0) were 166/544 (30.5%), and the decayed component contributed largely (22.8%) to the DMFT score. The prevalence of physician’s diagnosed asthma was 13%. This study identified almost 7% asthmatic children using the internationally validated International Study of Asthma and Allergies in Childhood (ISAAC) tool and 8 children with childhood asthma were identified by parent interviews. Overall prevalence of asthma was 109/544 (20%). The prevalence of caries in asthmatic children was 28.4% as compared to 31% among non-asthmatic children. The adjusted prevalence ratio of dental caries in asthmatic children was 0.8 (95% CI 0.59-1.29). After adjusting for carious food intake, age, oral hygiene index and dentist visit, the association between asthma and dental caries turned out to be non-significant. Conclusion: There was no association between asthma and dental caries among children who participated in this study.

Keywords: asthma, caries, children, school-based

Procedia PDF Downloads 246
497 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 231
496 An Experimental Machine Learning Analysis on Adaptive Thermal Comfort and Energy Management in Hospitals

Authors: Ibrahim Khan, Waqas Khalid

Abstract:

The Healthcare sector is known to consume a higher proportion of total energy consumption in the HVAC market owing to an excessive cooling and heating requirement in maintaining human thermal comfort in indoor conditions, catering to patients undergoing treatment in hospital wards, rooms, and intensive care units. The indoor thermal comfort conditions in selected hospitals of Islamabad, Pakistan, were measured on a real-time basis with the collection of first-hand experimental data using calibrated sensors measuring Ambient Temperature, Wet Bulb Globe Temperature, Relative Humidity, Air Velocity, Light Intensity and CO2 levels. The Experimental data recorded was analyzed in conjunction with the Thermal Comfort Questionnaire Surveys, where the participants, including patients, doctors, nurses, and hospital staff, were assessed based on their thermal sensation, acceptability, preference, and comfort responses. The Recorded Dataset, including experimental and survey-based responses, was further analyzed in the development of a correlation between operative temperature, operative relative humidity, and other measured operative parameters with the predicted mean vote and adaptive predicted mean vote, with the adaptive temperature and adaptive relative humidity estimated using the seasonal data set gathered for both summer – hot and dry, and hot and humid as well as winter – cold and dry, and cold and humid climate conditions. The Machine Learning Logistic Regression Algorithm was incorporated to train the operative experimental data parameters and develop a correlation between patient sensations and the thermal environmental parameters for which a new ML-based adaptive thermal comfort model was proposed and developed in our study. Finally, the accuracy of our model was determined using the K-fold cross-validation.

Keywords: predicted mean vote, thermal comfort, energy management, logistic regression, machine learning

Procedia PDF Downloads 63
495 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background

Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong

Abstract:

Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.

Keywords: deep learning, image fusion, image generation, layout analysis

Procedia PDF Downloads 157
494 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 21
493 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: automobile suspension, MATLAB, control system, PID, PSO

Procedia PDF Downloads 294
492 Response of Caldeira De Tróia Saltmarsh to Sea Level Rise, Sado Estuary, Portugal

Authors: A. G. Cunha, M. Inácio, M. C. Freitas, C. Antunes, T. Silva, C. Andrade, V. Lopes

Abstract:

Saltmarshes are essential ecosystems both from an ecological and biological point of view. Furthermore, they constitute an important social niche, providing valuable economic and protection functions. Thus, understanding their rates and patterns of sedimentation is critical for functional management and rehabilitation, especially in an SLR scenario. The Sado estuary is located 40 km south of Lisbon. It is a bar built estuary, separated from the sea by a large sand spit: the Tróia barrier. Caldeira de Tróia is located on the free edge of this barrier, and encompasses a salt marsh with ca. 21,000 m². Sediment cores were collected in the high and low marshes and in the mudflat area of the North bank of Caldeira de Tróia. From the low marsh core, fifteen samples were chosen for ²¹⁰Pb and ¹³⁷Cs determination at University of Geneva. The cores from the high marsh and the mudflat are still being analyzed. A sedimentation rate of 2.96 mm/year was derived from ²¹⁰Pb using the Constant Flux Constant Sedimentation model. The ¹³⁷Cs profile shows a peak in activity (1963) between 15.50 and 18.50 cm, giving a 3.1 mm/year sedimentation rate for the past 53 years. The adopted sea level rise scenario was based on a model built with the initial rate of SLR of 2.1 mm/year in 2000 and an acceleration of 0.08 mm/year². Based on the harmonic analysis of Setubal-Tróia tide gauge of 2005 data, the tide model was estimated and used to build the tidal tables to the period 2000-2016. With these tables, the average mean water levels were determined for the same time span. A digital terrain model was created from LIDAR scanning with 2m horizontal resolution (APA-DGT, 2011) and validated with altimetric data obtained with a DGPS-RTK. The response model calculates a new elevation for each pixel of the DTM for 2050 and 2100 based on the sedimentation rates specific of each environment. At this stage, theoretical values were chosen for the high marsh and the mudflat (respectively, equal and double the low marsh rate – 2.92 mm/year). These values will be rectified once sedimentation rates are determined for the other environments. For both projections, the total surface of the marsh decreases: 2% in 2050 and 61% in 2100. Additionally, the high marsh coverage diminishes significantly, indicating a regression in terms of maturity.

Keywords: ¹³⁷Cs, ²¹⁰Pb, saltmarsh, sea level rise, response model

Procedia PDF Downloads 250
491 A Multi-criteria Decision Method For The Recruitment Of Academic Personnel Based On The Analytical Hierarchy Process And The Delphi Method In A Neutrosophic Environment (Full Text)

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model is the first which applies Neutrosophic Delphi Method in the selection of academic staff. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: analytical hierarchy process, delphi method, multi-criteria decision maiking method, neutrosophic set theory, personnel recruitment

Procedia PDF Downloads 200
490 Effects of Ubiquitous 360° Learning Environment on Clinical Histotechnology Competence

Authors: Mari A. Virtanen, Elina Haavisto, Eeva Liikanen, Maria Kääriäinen

Abstract:

Rapid technological development and digitalization has affected also on higher education. During last twenty years multiple of electronic and mobile learning (e-learning, m-learning) platforms have been developed and have become prevalent in many universities and in the all fields of education. Ubiquitous learning (u-learning) is not that widely known or used. Ubiquitous learning environments (ULE) are the new era of computer-assisted learning. They are based on ubiquitous technology and computing that fuses the learner seamlessly into learning process by using sensing technology as tags, badges or barcodes and smart devices like smartphones and tablets. ULE combines real-life learning situations into virtual aspects and can be flexible used in anytime and anyplace. The aim of this study was to assess the effects of ubiquitous 360 o learning environment on higher education students’ clinical histotechnology competence. A quasi-experimental study design was used. 57 students in biomedical laboratory science degree program was assigned voluntarily to experiment (n=29) and to control group (n=28). Experimental group studied via ubiquitous 360o learning environment and control group via traditional web-based learning environment (WLE) in a 8-week educational intervention. Ubiquitous 360o learning environment (ULE) combined authentic learning environment (histotechnology laboratory), digital environment (virtual laboratory), virtual microscope, multimedia learning content, interactive communication tools, electronic library and quick response barcodes placed into authentic laboratory. Web-based learning environment contained equal content and components with the exception of the use of mobile device, interactive communication tools and quick response barcodes. Competence of clinical histotechnology was assessed by using knowledge test and self-report developed for this study. Data was collected electronically before and after clinical histotechnology course and analysed by using descriptive statistics. Differences among groups were identified by using Wilcoxon test and differences between groups by using Mann-Whitney U-test. Statistically significant differences among groups were identified in both groups (p<0.001). Competence scores in post-test were higher in both groups, than in pre-test. Differences between groups were very small and not statistically significant. In this study the learning environment have developed based on 360o technology and successfully implemented into higher education context. And students’ competence increases when ubiquitous learning environment were used. In the future, ULE can be used as a learning management system for any learning situation in health sciences. More studies are needed to show differences between ULE and WLE.

Keywords: competence, higher education, histotechnology, ubiquitous learning, u-learning, 360o

Procedia PDF Downloads 286
489 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks

Authors: Mst Shapna Akter, Hossain Shahriar

Abstract:

One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.

Keywords: cyber security, vulnerability detection, neural networks, feature extraction

Procedia PDF Downloads 89
488 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks

Procedia PDF Downloads 354
487 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
486 21st Century Business Dynamics: Acting Local and Thinking Global through Extensive Business Reporting Language (XBRL)

Authors: Samuel Faboyede, Obiamaka Nwobu, Samuel Fakile, Dickson Mukoro

Abstract:

In the present dynamic business environment of corporate governance and regulations, financial reporting is an inevitable and extremely significant process for every business enterprise. Several financial elements such as Annual Reports, Quarterly Reports, ad-hoc filing, and other statutory/regulatory reports provide vital information to the investors and regulators, and establish trust and rapport between the internal and external stakeholders of an organization. Investors today are very demanding, and emphasize greatly on authenticity, accuracy, and reliability of financial data. For many companies, the Internet plays a key role in communicating business information, internally to management and externally to stakeholders. Despite high prominence being attached to external reporting, it is disconnected in most companies, who generate their external financial documents manually, resulting in high degree of errors and prolonged cycle times. Chief Executive Officers and Chief Financial Officers are increasingly susceptible to endorsing error-laden reports, late filing of reports, and non-compliance with regulatory acts. There is a lack of common platform to manage the sensitive information – internally and externally – in financial reports. The Internet financial reporting language known as eXtensible Business Reporting Language (XBRL) continues to develop in the face of challenges and has now reached the point where much of its promised benefits are available. This paper looks at the emergence of this revolutionary twenty-first century language of digital reporting. It posits that today, the world is on the brink of an Internet revolution that will redefine the ‘business reporting’ paradigm. The new Internet technology, eXtensible Business Reporting Language (XBRL), is already being deployed and used across the world. It finds that XBRL is an eXtensible Markup Language (XML) based information format that places self-describing tags around discrete pieces of business information. Once tags are assigned, it is possible to extract only desired information, rather than having to download or print an entire document. XBRL is platform-independent and it will work on any current or recent-year operating system, or any computer and interface with virtually any software. The paper concludes that corporate stakeholders and the government cannot afford to ignore the XBRL. It therefore recommends that all must act locally and think globally now via the adoption of XBRL that is changing the face of worldwide business reporting.

Keywords: XBRL, financial reporting, internet, internal and external reports

Procedia PDF Downloads 286
485 Altruistic and Hedonic Motivations to Write eWOM Reviews on Hotel Experience

Authors: Miguel Llorens-Marin, Adolfo Hernandez, Maria Puelles-Gallo

Abstract:

The increasing influence of Online Travel Agencies (OTAs) on hotel bookings and the electronic word-of-mouth (eWOM) contained in them has been featured by many scientific studies as a major factor in the booking decision. The main reason is that nowadays, in the hotel sector, consumers first come into contact with the offer through the web and the online environment. Due to the nature of the hotel product and the fact that it is booked in advance to actually seeing it, there is a lack of knowledge about its actual features. This makes eWOM a major channel to help consumers to reduce their perception of risk when making their booking decisions. This research studies the relationship between aspects of customer influenceability by reading eWOM communications, at the time of booking a hotel, with the propensity to write a review. In other words, to test relationships between the reading and the writing of eWOM. Also investigates the importance of different underlying motivations for writing eWOM. Online surveys were used to obtain the data from a sample of hotel customers, with 739 valid questionnaires. A measurement model and Path analysis were carried out to analyze the chain of relationships among the independent variable (influenceability from reading reviews) and the dependent variable (propensity to write a review) with the mediating effects of additional variables, which help to explain the relationship. The authors also tested the moderating effects of age and gender in the model. The study considered three different underlying motivations for writing a review on a hotel experience, namely hedonic, altruistic and conflicted. Results indicate that the level of influenceability by reading reviews has a positive effect on the propensity to write reviews; therefore, we manage to link the reading and the writing of reviews. Authors also discover that the main underlying motivation to write a hotel review is the altruistic motivation, being the one with the higher Standard regression coefficient above the hedonic motivation. The authors suggest that the propensity to write reviews is not related to sociodemographic factors (age and gender) but to attitudinal factors such as ‘the most influential factor when reading’ and ‘underlying motivations to write. This gives light on the customer engagement motivations to write reviews. The implications are that managers should encourage their customers to write eWOM reviews on altruistic grounds to help other customers to make a decision. The most important contribution of this work is to link the effect of reading hotel reviews with the propensity to write reviews.

Keywords: hotel reviews, electronic word-of-mouth (eWOM), online consumer reviews, digital marketing, social media

Procedia PDF Downloads 100
484 Game On: Unlocking the Educational Potential of Games and Entertainment in Online Learning

Authors: Colleen Cleveland, W. Adam Baldowski

Abstract:

In the dynamic realm of online education, the integration of games and entertainment has emerged as a powerful strategy to captivate learners, drive active participation, and cultivate meaningful learning experiences. This abstract presents an overview of the upcoming conference, "Game On," dedicated to exploring the transformative impact of gamification, interactive simulations, and multimedia content in the digital learning landscape. Introduction: The conference aims to blur the traditional boundaries between education and entertainment, inspiring learners of diverse ages and backgrounds to actively engage in their online learning journeys. By leveraging the captivating elements of games and entertainment, educators can enhance motivation, retention, and deep understanding among virtual classroom participants. Conference Highlights: Commencing with an exploration of theoretical foundations drawing from educational psychology, instructional design, and the latest pedagogical research, participants will gain valuable insights into the ways gamified elements elevate the quality of online education. Attendees can expect interactive sessions, workshops, and case studies showcasing best practices and innovative strategies, including game-based assessments and virtual reality simulations. Inclusivity and Diversity: The conference places a strong emphasis on inclusivity, accessibility, and diversity in the integration of games and entertainment for educational purposes. Discussions will revolve around accommodating diverse learning styles, overcoming potential challenges, and ensuring equitable access to engaging educational content for all learners. Educational Transformation: Educators, instructional designers, and e-learning professionals attending "Game On" will acquire practical techniques to elevate the quality of their online courses. The conference promises a stimulating and informative exploration of blending education with entertainment, unlocking the untapped potential of games and entertainment in online education. Conclusion: "Game On" invites participants to embark on a journey that transforms online education by harnessing the power of entertainment. This event promises to be a cornerstone in the evolution of virtual learning, offering valuable insights for those seeking to create a more engaging and effective online educational experience. Join us as we explore new horizons, pushing the boundaries of online education through the fusion of games and entertainment.

Keywords: online education, games, entertainment, psychology, therapy, pop culture

Procedia PDF Downloads 50
483 Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller

Authors: Jin-Siang Shaw, Patricia Moya Caceres, Sheng-Xiang Xu

Abstract:

This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller.

Keywords: adaptive fuzzy sliding mode controller, particle swarm optimization, piezoelectric actuator, vibration suppression

Procedia PDF Downloads 146
482 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 109
481 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
480 The Impact of E-Commerce in Changing Shopping Lifestyle of Urban Communities in Jakarta

Authors: Juliana Kurniawati, Helen Diana Vida

Abstract:

Visiting mall is one of the Indonesian communities’ lifestyle who live in urban areas. Indonesian people, especially who live in Jakarta, use a shopping mall as one of the favourite places to get pleasure. This mall visitors come from various social classes. They use the shopping mall as a place to identify themselves as urban people. Jakarta has a number of great shopping malls such as Plaza Indonesia, Plaza Senayan, Pondok Indah Mall, etc. The shopping malls become one of the popular places since Jakarta's public sphere such as parks and playgrounds are very limited in number compared to that of shopping malls. In Jakarta, people do not come to a shopping mall only for shopping. Sometimes they go there to look around, meet up with some friends, or watch a movie. We can find everything in the shopping malls. The principle of one-stop shopping becomes an attractive offer for urban people. The items for selling are various, from the cheap goods to the expensive ones. A new era in consumer culture began with the advent of shopping was localized in France in the 19th century. Since the development of the online store and the easier way to access the internet, everyone can shop 24 hours anywhere they want. The emergence of online store indirectly has an impact on the viability of conventional stores. In October 2017, in Indonesia, two outlets branded goods namely Lotus and Debenhams were closed. This may a result of increasingly rampant online stores and shopping style urban society shift. The rising of technology gives some influence on the development of e-commerce in Indonesia. Everyone can access e-commerce. However, those who can do it are the middle up class to high class people. The development of e-commerce in Indonesia is quite fast, we can observe the emergence of various online shopping sites on various social media platforms such as Zalora, Berrybenka, Bukalapak, Lazada, and Tokopedia. E-commerce is increasingly affecting people's lives in line with the development of lifestyle and increasing revenue. This research aims to know the reasons of urban society choosing e-commerce as a medium for grocery shopping, how e-commerce is affecting their shopping styles, as well as why society provides confidence in the online store for shopping. This research uses theories of lifestyle by David Chaney. The subject of this research is urban society who actively shop online on Zalora, the communities based in Jakarta. Zalora site was chosen because the site is selling branded goods. This research is expected to explain in detail about the changing style of the urban community from the shopping mall to digital media by emphasizing the aspect of public confidence towards the online store.

Keywords: e-commerce, shopping, lifestyle, changing

Procedia PDF Downloads 298
479 User Experience in Relation to Eye Tracking Behaviour in VR Gallery

Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski

Abstract:

Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.

Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication

Procedia PDF Downloads 42
478 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants

Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li

Abstract:

The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.

Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care

Procedia PDF Downloads 152
477 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause

Authors: Kana Matsuyanagi

Abstract:

Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.

Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI

Procedia PDF Downloads 43