Search results for: available potential energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17663

Search results for: available potential energy

10793 Elaboration of Titania Nanotubes on Ti₆Al₄V Substrate by Electrochemical Anodization for Dental Application

Authors: Abdelghani Boucheham, Ahcene Karaali, Amar Manseri

Abstract:

Nanostructured Titania layers formed on the surface of titanium and titanium alloys by anodic oxidation play an important role in the enhancement of their biocompatibility and osseointegration in the human body. In the current work, highly ordered titania nanotube array films were elaborated on Ti₆Al₄V medical grade alloys in organic electrolyte containing ethylene glycol, 0.2 wt. % NH₄F and 4 vol. % H₂O at an applied potential of 60 V for different durations. The diameters, lengths and wall thicknesses of the obtained nanotubes were characterized by scanning electronic microscopy (SEM).

Keywords: anodization, dental implants, titania nanotubes, titanium alloys, SEM

Procedia PDF Downloads 232
10792 Analysis of Taxonomic Compositions, Metabolic Pathways and Antibiotic Resistance Genes in Fish Gut Microbiome by Shotgun Metagenomics

Authors: Anuj Tyagi, Balwinder Singh, Naveen Kumar B. T., Niraj K. Singh

Abstract:

Characterization of diverse microbial communities in specific environment plays a crucial role in the better understanding of their functional relationship with the ecosystem. It is now well established that gut microbiome of fish is not the simple replication of microbiota of surrounding local habitat, and extensive species, dietary, physiological and metabolic variations in fishes may have a significant impact on its composition. Moreover, overuse of antibiotics in human, veterinary and aquaculture medicine has led to rapid emergence and propagation of antibiotic resistance genes (ARGs) in the aquatic environment. Microbial communities harboring specific ARGs not only get a preferential edge during selective antibiotic exposure but also possess the significant risk of ARGs transfer to other non-resistance bacteria within the confined environments. This phenomenon may lead to the emergence of habitat-specific microbial resistomes and subsequent emergence of virulent antibiotic-resistant pathogens with severe fish and consumer health consequences. In this study, gut microbiota of freshwater carp (Labeo rohita) was investigated by shotgun metagenomics to understand its taxonomic composition and functional capabilities. Metagenomic DNA, extracted from the fish gut, was subjected to sequencing on Illumina NextSeq to generate paired-end (PE) 2 x 150 bp sequencing reads. After the QC of raw sequencing data by Trimmomatic, taxonomic analysis by Kraken2 taxonomic sequence classification system revealed the presence of 36 phyla, 326 families and 985 genera in the fish gut microbiome. At phylum level, Proteobacteria accounted for more than three-fourths of total bacterial populations followed by Actinobacteria (14%) and Cyanobacteria (3%). Commonly used probiotic bacteria (Bacillus, Lactobacillus, Streptococcus, and Lactococcus) were found to be very less prevalent in fish gut. After sequencing data assembly by MEGAHIT v1.1.2 assembler and PROKKA automated analysis pipeline, pathway analysis revealed the presence of 1,608 Metacyc pathways in the fish gut microbiome. Biosynthesis pathways were found to be the most dominant (51%) followed by degradation (39%), energy-metabolism (4%) and fermentation (2%). Almost one-third (33%) of biosynthesis pathways were involved in the synthesis of secondary metabolites. Metabolic pathways for the biosynthesis of 35 antibiotic types were also present, and these accounted for 5% of overall metabolic pathways in the fish gut microbiome. Fifty-one different types of antibiotic resistance genes (ARGs) belonging to 15 antimicrobial resistance (AMR) gene families and conferring resistance against 24 antibiotic types were detected in fish gut. More than 90% ARGs in fish gut microbiome were against beta-lactams (penicillins, cephalosporins, penems, and monobactams). Resistance against tetracycline, macrolides, fluoroquinolones, and phenicols ranged from 0.7% to 1.3%. Some of the ARGs for multi-drug resistance were also found to be located on sequences of plasmid origin. The presence of pathogenic bacteria and ARGs on plasmid sequences suggested the potential risk due to horizontal gene transfer in the confined gut environment.

Keywords: antibiotic resistance, fish gut, metabolic pathways, microbial diversity

Procedia PDF Downloads 130
10791 Damage Detection in Beams Using Wavelet Analysis

Authors: Goutham Kumar Dogiparti, D. R. Seshu

Abstract:

In the present study, wavelet analysis was used for locating damage in simply supported and cantilever beams. Study was carried out varying different levels and locations of damage. In numerical method, ANSYS software was used for modal analysis of damaged and undamaged beams. The mode shapes obtained from numerical analysis is processed using MATLAB wavelet toolbox to locate damage. Effect of several parameters such as (damage level, location) on the natural frequencies and mode shapes were also studied. The results indicated the potential of wavelets in identifying the damage location.

Keywords: damage, detection, beams, wavelets

Procedia PDF Downloads 349
10790 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory

Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker

Abstract:

In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.

Keywords: chemical analysis, concrete, LIBS, spectroscopy

Procedia PDF Downloads 97
10789 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure

Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru

Abstract:

The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures and existing security and introducing new measures under a risk management process. Also, the plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.

Keywords: critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, impact analysis

Procedia PDF Downloads 532
10788 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: exergy, pinch, combined cycle power plant, supercritical steam

Procedia PDF Downloads 130
10787 Harnessing the Power of Mixed Ligand Complexes: Enhancing Antimicrobial Activities with Thiosemicarbazones

Authors: Sakshi Gupta, Seema Joshi

Abstract:

Thiosemicarbazones (TSCs) have garnered significant attention in coordination chemistry due to their versatile coordination modes and pharmacological properties. Mixed ligand complexes of TSCs represent a promising area of research, offering enhanced antimicrobial activities compared to their parent compounds. This review provides an overview of the synthesis, characterization, and antimicrobial properties of mixed ligand complexes incorporating thiosemicarbazones. The synthesis of mixed ligand complexes typically involves the reaction of a metal salt with TSC ligands and additional ligands, such as nitrogen- or oxygen-based ligands. Various transition metals, including copper, nickel, and cobalt, have been employed to form mixed ligand complexes with TSCs. Characterization techniques such as spectroscopy, X-ray crystallography, and elemental analysis are commonly utilized to confirm the structures of these complexes. One of the key advantages of mixed ligand complexes is their enhanced antimicrobial activity compared to pure TSC compounds. The synergistic effect between the TSC ligands and additional ligands contributes to increased efficacy, possibly through improved metal-ligand interactions or enhanced membrane permeability. Furthermore, mixed ligand complexes offer the potential for selective targeting of microbial species while minimizing toxicity to mammalian cells. This selectivity arises from the specific interactions between the metal center, TSC ligands, and biological targets within microbial cells. Such targeted antimicrobial activity is crucial for developing effective treatments with minimal side effects. Moreover, the versatility of mixed ligand complexes allows for the design of tailored antimicrobial agents with optimized properties. By varying the metal ion, TSC ligands, and additional ligands, researchers can fine-tune the physicochemical properties and biological activities of these complexes. This tunability opens avenues for the development of novel antimicrobial agents with improved efficacy and reduced resistance. In conclusion, mixed ligand complexes of thiosemicarbazones represent a promising class of compounds with potent antimicrobial activities. Further research in this field holds great potential for the development of novel therapeutic agents to combat microbial infections effectively.

Keywords: metal complex, thiosemicarbazones, mixed ligand, selective targeting, antimicrobial activity

Procedia PDF Downloads 45
10786 Effect of Time on Stream on the Performances of Plasma Assisted Fe-Doped Cryptomelanes in Trichloroethylene (TCE) Oxidation

Authors: Sharmin Sultana, Nicolas Nuns, Pardis Simon, Jean-Marc Giraudon, Jean-Francois Lamonior, Nathalie D. Geyter, Rino Morent

Abstract:

Environmental issues, especially air pollution, have become a huge concern of environmental legislation as a consequence of growing awareness in our global world. In this regard, control of volatile organic compounds (VOCs) emission has become an important issue due to their potential toxicity, carcinogenicity, and mutagenicity. The research of innovative technologies for VOC abatement is stimulated to accommodate the new stringent standards in terms of VOC emission. One emerging strategy is the coupling of 2 existing complementary technologies, namely here non-thermal plasma (NTP) and heterogeneous catalysis, to get a more efficient process for VOC removal in air. The objective of this current work is to investigate the abatement of trichloroethylene (TCE-highly toxic chlorinated VOC) from moist air (RH=15%) as a function of time by combined use of multi-pin-to-plate negative DC corona/glow discharge with Fe-doped cryptomelanes catalyst downstream i.e. post plasma-catalysis (PPC) process. For catalyst alone case, experiments reveal that, initially, Fe doped cryptomelane (regardless the mode of Fe incorporation by co-precipitation (Fe-K-OMS-2)/ impregnation (Fe/K-OMS-2)) exhibits excellent activity to decompose TCE compared to cryptomelane (K-OMS-2) itself. A maximum obtained value of TCE abatement after 6 min is as follows: Fe-KOMS-2 (73.3%) > Fe/KOMS-2 (48.5) > KOMS-2 (22.6%). However, with prolonged operation time, whatever the catalyst under concern, the abatement of TCE decreases. After 111 min time of exposure, the catalysts can be ranked as follows: Fe/KOMS-2 (11%) < K-OMS-2 (12.3%) < Fe-KOMS-2 (14.5%). Clearly, this phenomenon indicates catalyst deactivation either by chlorination or by blocking the active sites. Remarkably, in PPC configuration (energy density = 60 J/L, catalyst temperature = 150°C), experiments reveal an enhanced performance towards TCE removal regardless the type of catalyst. After 6 min time on stream, the TCE removal efficiency amount as follows: K-OMS-2 (60%) < Fe/K-OMS-2 (79%) < Fe-K-OMS-2 (99.3%). The enhanced performances over Fe-K-OMS-2 catalyst are attributed to its high surface oxygen mobility and structural defects leading to high O₃ decomposition efficiency to give active species able to oxidize the plasma processed hazardous\by-products and the possibly remaining VOC into CO₂. Moreover, both undoped and doped catalysts remain strongly capable to abate TCE with time on stream. The TCE removal efficiencies of the PPC processes with Fe/KOMS-2 and KOMS-2 catalysts are not affected by time on stream indicating an excellent catalyst stability. When using the Fe-K-OMS-2 as catalyst, TCE abatement slightly reduces with time on stream. However, it is noteworthy to stress that still a constant abatement of 83% is observed during at least 30 minutes. These results prove that the combination of NTP with catalysts not only increases the catalytic activity but also allows to avoid, to some extent, the poisoning of catalytic sites resulting in an enhanced catalyst stability. In order to better understand the different surface processes occurring in the course of the total TCE oxidation in PPC experiments, a detailed X-ray Photoelectron Spectroscopy (XPS) and Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) study on the fresh and used catalysts is in progress.

Keywords: Fe doped cryptomelane, non-thermal plasma, plasma-catalysis, stability, trichloroethylene

Procedia PDF Downloads 198
10785 Two-Component Biocompartible Material for Reconstruction of Articular Hyaline Cartilage

Authors: Alena O. Stepanova, Vera S. Chernonosova, Tatyana S. Godovikova, Konstantin A. Bulatov, Andrey Y. Patrushev, Pavel P. Laktionov

Abstract:

Trauma and arthrosis, not to mention cartilage destruction in overweight and elders put hyaline cartilage lesion among the most frequent diseases of locomotor system. These problems combined with low regeneration potential of the cartilage make regeneration of articular cartilage a high-priority task of tissue engineering. Many types of matrices, the procedures of their installation and autologous chondrocyte implantation protocols were offered, but certain aspects including adhesion of the implant with surrounding cartilage/bone, prevention of the ossification and fibrosis were not resolved. Simplification and acceleration of the procedures resulting in restoration of normal cartilage are also required. We have demonstrated that human chondroblasts can be successfully cultivated at the surface of electrospun scaffolds and produce extracellular matrix components in contrast to chondroblasts grown in homogeneous hydrogels. To restore cartilage we offer to use stacks of electrospun scaffolds fixed with photopolymerized solution of prepared from gelatin and chondroitin-4-sulfate both modified by glycidyl methacrylate and non-toxic photoinitator Darocur 2959. Scaffolds were prepared from nylon 6, polylactide-co-glicolide and their mixtures with modified gelatin. Illumination of chondroblasts in photopolymerized solution using 365 nm LED light had no effect on cell viability at compressive strength of the gel less than0,12 MPa. Stacks of electrospun scaffolds provide good compressive strength and have the potential for substitution with cartilage when biodegradable scaffolds are used. Vascularization can be prevented by introduction of biostable scaffolds in the layers contacting the subchondral bone. Studies of two-component materials (2-3 sheets of electrospun scaffold) implanted in the knee-joints of rabbits and fixed by photopolymerization demonstrated good crush resistance, biocompatibility and good adhesion of the implant with surrounding cartilage. Histological examination of the implants 3 month after implantation demonstrates absence of any inflammation and signs of replacement of the biodegradable scaffolds with normal cartilage. The possibility of intraoperative population of the implants with autologous cells is being investigated.

Keywords: chondroblasts, electrospun scaffolds, hyaline cartilage, photopolymerized gel

Procedia PDF Downloads 269
10784 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics

Procedia PDF Downloads 456
10783 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet

Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis

Abstract:

Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.

Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl

Procedia PDF Downloads 170
10782 Novel Nickel Complex Compound Reactivates the Apoptotic Network, Cell Cycle Arrest and Cytoskeletal Rearrangement in Human Colon and Breast Cancer Cells

Authors: Nima Samie, Batoul Sadat Haerian, Sekaran Muniandy, M. S. Kanthimathi

Abstract:

Colon and breast cancers are categorized as the most prevalent types of cancer worldwide. Recently, the broad clinical application of metal complex compounds has led to the discovery of potential therapeutic drugs. The aim of this study was to evaluate the cytotoxic action of a selected nickel complex compound (NCC) against human colon and breast cancer cells. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, MCF-7 and Hs 190.T cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content , measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results showed that our nickel complex compound displayed a potent suppressive effect on HT-29, WiDr, MCF-7 and Hs 190.T after 24 h of treatment with IC50 value of 2.02±0.54, 2.13±0.65, 3.76±015 and 3.14±0.45 µM respectively. This cytotoxic effect on normal cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the nickel complex compound. Activation of this pathway was further evidenced by significant activation of caspase 9 and 3/7.The nickel complex compound (NCC) was also shown activate the extrinsic pathways of apoptosis by activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. The results of this study suggest that the nickel complex compound is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways as well as cell cycle arrest in colon and breast cancer cells.

Keywords: nickel complex, apoptosis, cytoskeletal rearrangement, colon cancer, breast cancer

Procedia PDF Downloads 302
10781 Gas Flotation Unit in Kuwait Oil Company Operations

Authors: Homoud Bourisli, Haitham Safar

Abstract:

Oil is one of main resources of energy in the world. As conventional oil is drying out, oil recovery is crucial to maintain the same level of oil production. Since water injection is one of the commonly used methods to increase and maintain pressure in oil wells, oil-water separation processes of the water associated with oil production for water injection oil recovery is very essential. Therefore, Gas Flotation Units are used for oil-water separation to be able to re-inject the treated water back into the wells to increase pressure.

Keywords: Kuwait oil company, dissolved gas flotation unit, induced gas flotation unit, oil-water separation

Procedia PDF Downloads 562
10780 A Study of Farming Earthworms Commercial with Organic Waste

Authors: Phrutsaya Piyanusorn

Abstract:

This study aimed to study the artificial barriers and potential restrictions. Aspects of farming, marketing and cost oriented commercial farming earthworms with organic waste. To promote the use of waste recycling and reduce the amount of organic waste that must be disposed. And to create added value this research focuses on qualitative and quantitative research. By earthworm farms surveyed collected insights to analyse the strengths, weaknesses, including problems, conditions and limitations. To get more updates, which covers the cost of marketing and farm management.

Keywords: farmin earthworms, commercial, organic waste, marketing management

Procedia PDF Downloads 317
10779 Efficient Utilization of Biomass for Bioenergy in Environmental Control

Authors: Subir Kundu, Sukhendra Singh, Sumedha Ojha, Kanika Kundu

Abstract:

The continuous decline of petroleum and natural gas reserves and non linear rise of oil price has brought about a realisation of the need for a change in our perpetual dependence on the fossil fuel. A day to day increased consumption of crude and petroleum products has made a considerable impact on our foreign exchange reserves. Hence, an alternate resource for the conversion of energy (both liquid and gas) is essential for the substitution of conventional fuels. Biomass is the alternate solution for the present scenario. Biomass can be converted into both liquid as well as gaseous fuels and other feedstocks for the industries.

Keywords: bioenergy, biomass conversion, biorefining, efficient utilisation of night soil

Procedia PDF Downloads 391
10778 Targeted Delivery of Sustained Release Polymeric Nanoparticles for Cancer Therapy

Authors: Jamboor K. Vishwanatha

Abstract:

Among the potent anti-cancer agents, curcumin has been found to be very efficacious against various cancer cells. Despite multiple medicinal benefits of curcumin, poor water solubility, poor physiochemical properties and low bioavailability continue to pose major challenges in developing a formulation for clinical efficacy. To improve its potential application in the clinical area, we formulated poly lactic-co-glycolic acid (PLGA) nanoparticles. The PLGA nanoparticles were formulated using solid-oil/water emulsion solvent evaporation method and then characterized for percent yield, encapsulation efficiency, surface morphology, particle size, drug distribution within nanoparticles and drug polymer interaction. Our studies showed the successful formation of smooth and spherical curcumin loaded PLGA nanoparticles with a high percent yield of about 92.01±0.13% and an encapsulation efficiency of 90.88±0.14%. The mean particle size of the nanoparticles was found to be 145nm. The in vitro drug release profile showed 55-60% drug release from the nanoparticles over a period of 24 hours with continued sustained release over a period of 8 days. Exposure to curcumin loaded nanoparticles resulted in reduced cell viability of cancer cells compared to normal cells. We used a novel non-covalent insertion of a homo-bifunctional spacer for targeted delivery of curcumin to various cancer cells. Functionalized nanoparticles for antibody/targeting agent conjugation was prepared using a cross-linking ligand, bis(sulfosuccinimidyl) suberate (BS3), which has reactive carboxyl group to conjugate efficiently to the primary amino groups of the targeting agents. In our studies, we demonstrated successful conjugation of antibodies, Annexin A2 or prostate specific membrane antigen (PSMA), to curcumin loaded PLGA nanoparticles for targeting to prostate and breast cancer cells. The percent antibody attachment to PLGA nanoparticles was found to be 92.8%. Efficient intra-cellular uptake of the targeted nanoparticles was observed in the cancer cells. These results have emphasized the potential of our multifunctional curcumin nanoparticles to improve the clinical efficacy of curcumin therapy in patients with cancer.

Keywords: polymeric nanoparticles, cancer therapy, sustained release, curcumin

Procedia PDF Downloads 313
10777 Russian pipeline natural gas export strategy under uncertainty

Authors: Koryukaeva Ksenia, Jinfeng Sun

Abstract:

Europe has been a traditional importer of Russian natural gas for more than 50 years. In 2021, Russian state-owned company Gazprom supplied about a third of all gas consumed in Europe. The Russia-Europe mutual dependence in terms of natural gas supplies has been causing many concerns about the energy security of the two sides for a long period of time. These days the issue has become more urgent than ever considering recent Russian invasion in Ukraine followed by increased large-scale geopolitical conflicts, making the future of Russian natural gas supplies and global gas markets as well highly uncertain. Hence, the main purpose of this study is to get insight into the possible futures of Russian pipeline natural gas exports by a scenario planning method based on Monte-Carlo simulation within LUSS model framework, and propose Russian pipeline natural gas export strategies based on the obtained scenario planning results. The scenario analysis revealed that recent geopolitical disputes disturbed the traditional, longstanding model of Russian pipeline gas exports, and, as a result, the prospects and the pathways for Russian pipeline gas on the world markets will differ significantly from those before 2022. Specifically, our main findings show, that (i) the events of 2022 generated many uncertainties for the long-term future of Russian pipeline gas export perspectives on both western and eastern supply directions, including geopolitical, regulatory, economic, infrastructure and other uncertainties; (ii) according to scenario modelling results, Russian pipeline exports will face many challenges in the future, both on western and eastern directions. A decrease in pipeline gas exports will inevitably affect country’s natural gas production and significantly reduce fossil fuel export revenues, jeopardizing the energy security of the country; (iii) according to proposed strategies, in order to ensure the long-term stable export supplies in the changing environment, Russia may need to adjust its traditional export strategy by performing export flows and product diversification, entering new markets, adapting its contracting mechanism, increasing competitiveness and gaining a reputation of a reliable gas supplier.

Keywords: Russian natural gas, Pipeline natural gas, Uncertainty, Scenario simulation, Export strategy

Procedia PDF Downloads 48
10776 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances

Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.

Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive

Procedia PDF Downloads 137
10775 Blood Ketones as a Point of Care Testing in Paediatric Emergencies

Authors: Geetha Jayapathy, Lakshmi Muthukrishnan, Manoj Kumar Reddy Pulim , Radhika Raman

Abstract:

Introduction: Ketones are the end products of fatty acid metabolism and a source of energy for vital organs such as the brain, heart and skeletal muscles. Ketones are produced in excess when glucose is not available as a source of energy or it cannot be utilized as in diabetic ketoacidosis. Children admitted in the emergency department often have starvation ketosis which is not clinically manifested. Decision on admission of children to the emergency room with subtle signs can be difficult at times. Point of care blood ketone testing can be done at the bedside even in a primary level care setting to supplement and guide us in our management decisions. Hence this study was done to explore the utility of this simple bedside parameter as a supplement in assessing pediatric patients presenting to the emergency department. Objectives: To estimate blood ketones of children admitted in the emergency department. To analyze the significance of blood ketones in various disease conditions. Methods: Blood ketones using point of care testing instrument (ABOTTprecision Xceed Pro meters) was done in patients getting admitted in emergency room and in out-patients (through sample collection centre). Study population: Children aged 1 month to 18 years were included in the study. 250 cases (In-patients) and 250 controls (out-patients) were collected. Study design: Prospective observational study. Data on details of illness and physiological status were documented. Blood ketones were compared between the two groups and all in patients were categorized into various system groups and analysed. Results: Mean blood ketones were high in in-patients ranging from 0 to 7.2, with a mean of 1.28 compared to out-patients ranging from 0 to 1.9 with a mean of 0.35. This difference was statistically significant with a p value < 0.001. In-patients with shock (mean of 4.15) and diarrheal dehydration (mean of 1.85) had a significantly higher blood ketone values compared to patients with other system involvement. Conclusion: Blood ketones were significantly high (above the normal range) in pediatric patients who are sick requiring admission. Patients with various forms of shock had very high blood ketone values as found in diabetic ketoacidosis. Ketone values in diarrheal dehydration were moderately high correlating to the degree of dehydration.

Keywords: admission, blood ketones, paediatric emergencies, point of care testing

Procedia PDF Downloads 197
10774 Analysis and Re-Design Ergonomic Mineral Water Gallon Trolley

Authors: Dessy Laksyana Utami

Abstract:

Manual material handling activities often make it difficult for humans to work like this. Muscle injury due to incorrect posture.Workers need to facilitate their activities. One tool to assist their activities in the transportation of ordinary materials is a trolley. This tool is very useful because it can be used.It can bring many items without having to spend more energy to operate it. Very Comfortable used a trolley in the community. But the old design still have a complaint by worker, because lack of grip and capacity. After posture analysis with the REBA method, the value of risk need to be increased is obtained tool. Re design use Indonesian anthropometric data with the 50th percentile.

Keywords: Material Handling, REBA method, postural assessment, Trolley.

Procedia PDF Downloads 125
10773 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 41
10772 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 112
10771 Enhancement of Morphogenetic Potential to Obtain Elite Varities of Sauropus androgynous (L.) Merr. through Somatic Embryogenesis

Authors: S. Padma, D. H. Tejavathi

Abstract:

Somatic embryogenesis is a remarkable illustration of the dictum of plant totipotency where developmental reconstruction of somatic cells takes place towards the embryogenic pathway. It recapitulates the morphological and developmental process that occurs in zygotic embryogenesis. S. androgynous commonly called as multivitamin plant. The leaves are consumed as green leafy vegetable by the Southeast Asian communities due to their rich nutritional profile. Despite being a good nutritional vegetable with proteins, vitamins, minerals, amino acids, it is warned for excessive intake due to the presence of alkoloid called papaverine. Papaverine at higher concentrations is toxic and leads to a syndrome called Bronchiolitis Obliterans. In the present study, morphogenetic potential of shoot tip, leaf and nodal explants of Sauropus androgynous was investigated to develop and enhance the reliable plant regeneration protocol via somatic embryogenesis. Somatic embryos were derived directly from the embryogenic callus derived from shoot tip, node and leaf cultures on Phillips and Collins (L2) medium supplemented with NAA at various concentrations ranging from 5.3 µM/l to 26.85 µM/l within two months of inoculation. Thus obtained embryos were sub cultured to modified L2 media supplemented with increased vitamin level for the further growth. Somatic embryos with well-developed cotyledons were transferred to normal and modified L2 basal medium for conversion. The plantlets thus obtained were subjected to brief acclimatization before transferring them to land. About 95% of survival rate was recorded. The augmentation process of culturing various explants through somatic embryogenesis using synthetic medium with various plant growth regulators under controlled conditions have aggrandized the commercial production of Sauropus making it easily available over the conventional propagation methods. In addition, regeneration process through somatic embryogenesis has ameliorated the development of desired character in Sauropus with low papaverine content thereby providing a valuable resource to the food and pharmaceutical industry. Based on this research, plant tissue culture techniques have shown promise for economical and convenient application in Sauropus androgynous breeding.

Keywords: L2 medium, multivitamin plant, NAA, papaverine

Procedia PDF Downloads 196
10770 Screening of Wheat Wild Relatives as a Gene Pool for Improved Photosynthesis in Wheat Breeding

Authors: Amanda J. Burridge, Keith J. Edwards, Paul A. Wilkinson, Tom Batstone, Erik H. Murchie, Lorna McAusland, Ana Elizabete Carmo-Silva, Ivan Jauregui, Tracy Lawson, Silvere R. M. Vialet-Chabrand

Abstract:

The rate of genetic progress in wheat production must be improved to meet global food security targets. However, past selection for domestication traits has reduced the genetic variation in modern wheat cultivars, a fact that could severely limit the future rate of genetic gain. The genetic variation in agronomically important traits for the wild relatives and progenitors of wheat is far greater than that of the current domesticated cultivars, but transferring these traits into modern cultivars is not straightforward. Between the elite cultivars of wheat, photosynthetic capacity is a key trait for which there is limited variation. Early screening of wheat wild relative and progenitors has shown differences in photosynthetic capacity and efficiency not only between wild relative species but marked differences between the accessions of each species. By identifying wild relative accessions with improved photosynthetic traits and characterising the genetic variation responsible, it is possible to incorporate these traits into advanced breeding programmes by wide crossing and introgression programmes. To identify the potential variety of photosynthetic capacity and efficiency available in the secondary and tertiary genepool, a wide scale survey was carried out for over 600 accessions from 80 species including those from the genus Aegilops, Triticum, Thinopyrum, Elymus, and Secale. Genotype data were generated for each accession using a ‘Wheat Wild Relative’ Single Nucleotide Polymorphism (SNP) genotyping array composed of 35,000 SNP markers polymorphic between wild relatives and elite hexaploid wheat. This genotype data was combined with phenotypic measurements such as gas exchange (CO₂, H₂O), chlorophyll fluorescence, growth, morphology, and RuBisCO activity to identify potential breeding material with enhanced photosynthetic capacity and efficiency. The data and associated analysis tools presented here will prove useful to anyone interested in increasing the genetic diversity in hexaploid wheat or the application of complex genotyping data to plant breeding.

Keywords: wheat, wild relatives, pre-breeding, genomics, photosynthesis

Procedia PDF Downloads 198
10769 Potential of Detailed Environmental Data, Produced by Information and Communication Technology Tools, for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes

Procedia PDF Downloads 121
10768 Intellectual Capital and Transparency in Universities: An Empirical Study

Authors: Yolanda Ramirez, Angel Tejada, Agustin Baidez

Abstract:

This paper shows the general perceptions of Spanish university stakeholders in relation to the university’s annual reports and the adequacy and potential of intellectual capital reporting. To this end, a questionnaire was designed and sent to every member of the Social Councils of Spanish public universities. It was thought that these participants would provide a good example of the attitude of university stakeholders since they represent the different social groups connected with universities. From the results of this study we are in the position of confirming the need for universities to offer information on intellectual capital in their accounting information model.

Keywords: intellectual capital, disclosure, stakeholders, universities, annual report

Procedia PDF Downloads 483
10767 Effects of Different Food Matrices on Viscosity and Protein Degradation during in vitro Digestion

Authors: Gulay Oncu Ince, Sibel Karakaya

Abstract:

Food is a worldwide concern. Among the factors that have influences on human health, food, nutrition and life style have been regarded as the most important factors since they can be intervened. While some parts of the world has been faced with food shortages and hence, chronic metabolic diseases, the other part of the world have been emerged from over consumption of food. Both situations can result in shorter life expectancy and represent a major global health problem. Hunger, satiety and appetite sensation form a balance ensures the operation of feeding behavior between food intake and energy consumption. Satiety is one of the approaches that is effective in ensuring weight control and avoid eating more in the postprandial period. By manipulating the microstructure of food macro and micronutrient bioavailability may be increased or reduced. For the food industry appearance, texture, taste structural properties as well as the gastrointestinal tract behavior of the food after the consumption is becoming increasingly important. Also, this behavior has been the subject of several researches in recent years by the scientific community. Numerous studies have been published about changing the food matrix in order to increase expected impacts. In this study, yogurts were enriched with caseinomacropeptide (CMP), whey protein (WP), CMP and sodium alginate (SA), and WP + SA in order to produce goat yogurts having different food matrices. SDS Page profiles of the samples after in vitro digestion and viscosities of the stomach digesta at different share rates were determined. Energy values were 62.11kcal/100 g, 70.27 kcal/100 g, 70.61 kcal/100 g, 71.20 kcal/100 g and 71.67 kcal/100 g for control, CMP added WP added, WP + SA added, and CMP + SA added yogurts respectively. The results of viscosity analysis showed that control yogurt had the lowest viscosity value and this was followed by CMP added, WP added, CMP + SA added and WP + SA added yogurts, respectively. Protein contents of the stomach and duedonal digests of the samples after subjected to two different in vitro digestion methods were changed between 5.34-5.91 mg protein / g sample and 16.93-19.75 mg protein /g of sample, respectively. Viscosity measurements of the stomach digests showed that CMP + SA added yogurt displayed the highest viscosity value in both in vitro digestion methods. There were differences between the protein profiles of the stomach and duedonal digests obtained by two different in vitro digestion methods (p<0.05).

Keywords: caseinomacropeptide, protein profile, whey protein, yogurt

Procedia PDF Downloads 479
10766 Development of Two Phage Therapy-Based Strategies for the Treatment of American Foulbrood Disease Affecting Apis Mellifera capensis

Authors: Ridwaan N. Milase, Leonardo J. Van Zyl, Marla Trindade

Abstract:

American foulbrood (AFB) is the world’s most devastating honeybee disease that has drastically reduced the population of Apis mellifera capensis since 2009. The outbreak has jeopardized the South African bee keeping industry as well as the agricultural sector dependent on honeybees for honey production and pollination, leading to significant economic losses. AFB is caused by Paenibacillus larvae, a spore-forming, Gram positive facultative anaerobic and flagellated bacterium. The use of antibiotics within beehives has selected for resistant strains of P. larvae, while the current practice of burning spore contaminated beehives and equipment contributes to the economic losses in the honeybee-keeping industry. Therefore, phage therapy is proposed as a promising alternative to combat P. larvae strains affecting A. mellifera capensis. The genomes of two P. larvae strains isolated from infected combs in the Western Cape have been sequenced and annotated using bioinformatics tools. Genome analyses has revealed that these P. larvae strains are lysogens to more than 6 different prophages and possess different type of clustered regularly interspaced short palindromic repeat (CRISPRs) regions per strain. Active prophages from one of the two P. larvae strains were detected and identified using PCR. Electron microscopy was used to determine the family of the identified active prophages. Lytic bacteriophages that specifically target the two P. larvae strains were purified from sewage wastewater, beehive materials, and soil samples to investigate their potential development as anti-P. larvae agents. Another alternative treatment being investigated is the development of a prophage endolysin cocktail. Endolysin genes of the prophages have been targeted, cloned and expressed in Escherichia coli. The heterologously expressed endolysins have been purified and are currently being assessed for their lytic activity against P. larvae strains and other commensal microorganisms that compose the honeybee larvae microbiota. The study has shown that phage therapy and endolysins have a great potential as alternative control methods for AFB disease affecting A. mellifera capensis.

Keywords: American foulbrood, bacteriophage, honeybee, Paenibacillus larvae

Procedia PDF Downloads 167
10765 Physiological and Biochemical Assisted Screening of Wheat Varieties under Partial Rhizosphere Drying

Authors: Muhammad Aown Sammar Raza

Abstract:

Environmental stresses are one of the major reasons for poor crop yield across the globe. Among the various environmental stresses, drought stress is the most damaging one, especially in arid and semi-arid regions. Wheat is the major staple food of many countries of the world, which is badly affected by drought stress. In order to fulfill the dietary needs of increasing population with depleting water resources there is a need to adopt technologies which result in sufficient crop yield with less water consumption. One of them is partial root zone drying. Keeping in view these conditions, a wire house experiment was conducted at agronomic research area of University College of Agriculture and Environmental Sciences, The Islamia University Bahawalpur during 2015, to screen out the different wheat varieties for partial root zone drying (PRD). Five approved local wheat varieties (V1= Galaxy-2013, V2= Punjab-2011, V3 = Faisalabad-2008, V4 = Lasani-2008 and V5 = V.8200) and two irrigation levels (I1= control irrigation and I2 = PRD irrigation) with completely randomized design having four replications were used in the experiment. Among the varieties, Galaxy-2013 performed the best and attained maximum plant height, leaf area, stomatal conductance, photosynthesis, total sugars, proline contents and antioxidant enzymes activities and minimum values of growth and physiological parameters were recorded in variety V.8200. For irrigation levels, higher values of growth, physiological and water related parameters were recorded in control treatment (I1) except leaf water potential, osmotic potential, total sugars and proline contents. However, enzyme activities were higher under PRD treatment for all varieties. It was concluded that Galaxy-2013 is the most compatible and V.8200 is the most susceptible variety for PRD, respectively and more quality traits and enzymatic activities were recorded under PRD irrigation as compared to control treatment.

Keywords: antioxidant enzymes activities, osmolytes concentration, partial root zone drying, photosynthetic rate, water relations, wheat

Procedia PDF Downloads 228
10764 Sequence Stratigraphy and Petrophysical Analysis of Sawan Gas Field, Central Indus Basin, Pakistan

Authors: Saeed Ur Rehman Chaudhry

Abstract:

The objectives of the study are to reconstruct sequence stratigraphic framework and petrophysical analysis of the reservoir marked by using sequence stratigraphy of Sawan Gas Field. The study area lies in Central Indus Basin, District Khairpur, Sindh province, Pakistan. The study area lies tectonically in an extensional regime. Lower Goru Formation and Sembar Formation act as a reservoir and source respectively. To achieve objectives, data set of seismic lines, consisting of seismic lines PSM96-114, PSM96-115, PSM96-133, PSM98-201, PSM98-202 and well logs of Sawan-01, Sawan-02 and Gajwaro-01 has been used. First of all interpretation of seismic lines has been carried out. Interpretation of seismic lines shows extensional regime in the area and cut entire Cretaceous section. Total of seven reflectors has been marked on each seismic line. Lower Goru Formation is thinning towards west. Seismic lines also show eastward tilt of stratigraphy due to uplift at the western side. Sequence stratigraphic reconstruction has been done by integrating seismic and wireline log data. Total of seven sequence boundaries has been interpreted between the top of Chiltan Limestone to Top of Lower Goru Formation. It has been observed on seismic lines that Sembar Formation initially generated shelf margin profile and then ramp margin on which Lower Goru deposition took place. Shelf edge deltas and slope fans have been observed on seismic lines, and signatures of slope fans are also observed on wireline logs as well. Total of six sequences has been interpreted. Stratigraphic and sequence stratigraphic correlation has been carried out by using Sawan 01, Sawan 02 and Gajwaro 01 and a Low Stand Systems tract (LST) within Lower Goru C sands has been marked as a zone of interest. The petrophysical interpretation includes shale volume, effective porosity, permeability, saturation of water and hydrocarbon. On the basis of good effective porosity and hydrocarbon saturation petrophysical analysis confirms that the LST in Sawan-01 and Sawan-02 has good hydrocarbon potential.

Keywords: petrophysical analysis, reservoir potential, Sawan Gas Field, sequence stratigraphy

Procedia PDF Downloads 251