Search results for: violence detection
3566 A Unique Immunization Card for Early Detection of Retinoblastoma
Authors: Hiranmoyee Das
Abstract:
Aim. Due to late presentation and delayed diagnosis mortality rate of retinoblastoma is more than 50% in developing counties. So to facilitate the diagnosis, to decrease the disease and treatment burden and to increase the disease survival rate, an attempt was made for early diagnosis of Retinoblastoma by including fundus examination in routine immunization programs. Methods- A unique immunization card is followed in a tertiary health care center where examination of pupillary reflex is made mandatory in each visit of the child for routine immunization. In case of any abnormality, the child is referred to the ophthalmology department. Conclusion- Early detection is the key in the management of retinoblastoma. Every child is brought to the health care system at least five times before the age of 2 years for routine immunization. We should not miss this golden opportunity for early detection of retinoblastoma.Keywords: retinoblastoma, immunization, unique, early
Procedia PDF Downloads 1983565 Characteristic Matrix Faults for Flight Control System
Authors: Thanh Nga Thai
Abstract:
A major issue in air transportation is in flight safety. Recent developments in control engineering have an attractive potential for resolving new issues related to guidance, navigation, and control of flying vehicles. Many future atmospheric missions will require increased on board autonomy including fault diagnosis and the subsequent control and guidance recovery actions. To improve designing system diagnostic, an efficient FDI- fault detection and identification- methodology is necessary to achieve. Contribute to characteristic of different faults in sensor and actuator in the view of mathematics brings a lot of profit in some condition changes in the system. This research finds some profit to reduce a trade-off to achieve between fault detection and performance of the closed loop system and cost and calculated in simulation.Keywords: fault detection and identification, sensor faults, actuator faults, flight control system
Procedia PDF Downloads 4233564 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 1073563 Reviewing Image Recognition and Anomaly Detection Methods Utilizing GANs
Authors: Agastya Pratap Singh
Abstract:
This review paper examines the emerging applications of generative adversarial networks (GANs) in the fields of image recognition and anomaly detection. With the rapid growth of digital image data, the need for efficient and accurate methodologies to identify and classify images has become increasingly critical. GANs, known for their ability to generate realistic data, have gained significant attention for their potential to enhance traditional image recognition systems and improve anomaly detection performance. The paper systematically analyzes various GAN architectures and their modifications tailored for image recognition tasks, highlighting their strengths and limitations. Additionally, it delves into the effectiveness of GANs in detecting anomalies in diverse datasets, including medical imaging, industrial inspection, and surveillance. The review also discusses the challenges faced in training GANs, such as mode collapse and stability issues, and presents recent advancements aimed at overcoming these obstacles.Keywords: generative adversarial networks, image recognition, anomaly detection, synthetic data generation, deep learning, computer vision, unsupervised learning, pattern recognition, model evaluation, machine learning applications
Procedia PDF Downloads 323562 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 2593561 Non-Enzymatic Electrochemical Detection of Glucose in Disposable Paper-Based Sensor Using a Graphene and Cobalt Phthalocyanine Composite
Authors: Sudkate Chaiyo, Weena Siangproh, Orawon Chailapakul, Kurt Kalcher
Abstract:
In the present work, a simple and sensitive non-enzymatic electrochemical detection of glucose in disposable paper-based sensor was developed at ionic liquid/graphene/cobalt phthalocyanine composite (IL/G/CoPc) modified electrode. The morphology of the fabricated composite was characterized and confirmed by scanning electron microscopy and UV-Vis spectroscopy. The UV-Vis spectroscopy results confirmed that the G/CoPc composite formed via the strong π–π interaction between CoPc and G. Amperometric i-t technique was used for the determination of glucose. The response of glucose was linear over the concentration ranging from 10 µM to 1.5 mM. The response time of the sensor was found as 30 s with a limit of detection of 0.64 µM (S/N=3). The fabricated sensor also exhibited its good selectivity in the presence of common interfering species. In addition, the fabricated sensor exhibited its special advantages such as low working potential, good sensitivity along with good repeatability and reproducibility for the determination of glucose.Keywords: glucose, paper-based sensor, ionic liquid/graphene/cobalt phthalocyanine composite, electrochemical detection
Procedia PDF Downloads 1653560 The Anatomy of Inter-Religious Conflict in Northern Nigeria: A Conflict without Peace Education
Authors: Shehu Hashimu
Abstract:
Ever since the independence, Northern Nigeria has been experiencing a flashpoint of all sorts of conflict ranging from ethnoreligious, intra-religious, and inter-religious violence; many people are of the view and worrisome that indeed the region (North) is becoming a religious-political battle-ground. The trends of violence associated with these conflicts are a reflection of high level of misunderstanding, misinform unpolitical zeal toward uplifting peace education for greater enhancement among the religious, ethnic group or sects in the northern region. The aims of this paper, among other things, are to outline the misconception on the term inter-religious conflict. It is justifiable to state the brief historical antecedence of the making of contemporary Northern Nigeria and how conflict is fluctuating over and over without concrete resolution is another concern of the paper. The desirability of peace education in enhancing cordial relations and cementing potholes among various religious sects in the region (Northern Nigeria) cannot over emphasized considering the pivotal role play toward national cohesion; therefore, this paper strategically made a lengthy discourse for elaborations. In the conclusion aspect of it, the paper outline some relevant recommendation and suggestions for viable co-existence if properly implemented.Keywords: anatomy, inter-religious, conflict, peace education
Procedia PDF Downloads 2513559 The Embodiment of Violence and Liminal Space in Illegality: Rohingya Refugees
Authors: E. Xavier, B. Nandita
Abstract:
Rohingyas are an ethnic and religious minority that resides in the Rakhine State of Myanmar. Post the military coup in 1962, Rohingyas have not been recognized as one of the ethnic tribes of Burma under the legislation. They have lost citizenship, education, health care rights, and instantly became illegal immigrants. While the historicization of this conflict is crucial, this paper wants to humanize the Rohingya population’s embodiment of violence on three different levels – individual, social, and political. In addition, the study focuses on their liminal existence in refugee camps in Bangladesh and in other parts of the world, such as Malaysia and the United States of America. A multi-medium study, it includes first-hand interviews with the Rohingya community in Wisconsin and Chicago, second-hand interviews from documentaries and past ethnographies from scholars to draw meaningful conclusions about their experience as a community. In the end, it focuses on the group of Rohingyas who have managed to resettle in another country and their transitioning experience. Rohingyas embody violence on their individual, social, and political bodies in different ways. Along with rape, murder, and physical harm, the community also encounters sexually transmitted infections, post-traumatic stress disorder symptoms, and poor mental health. On a social level, they encounter heightened gender discrimination, work industry shifting, and immense, shared emotional pain. As for their political body, the news media and journalism industry uses their bodies for purposes that benefit both parties and flirts with a tone of sensationalism in their reporting. In addition, the Rohingya community fluctuates with the concept of nationality, patriotism, citizenship, and refugee when they think about the future. This study provides a framework that future aid or health programs can use to determine the type of community need and its significance in the Rohingya community.Keywords: embodiment, liminal, refugee, Rohingya
Procedia PDF Downloads 1333558 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2893557 Auto Classification of Multiple ECG Arrhythmic Detection via Machine Learning Techniques: A Review
Authors: Ng Liang Shen, Hau Yuan Wen
Abstract:
Arrhythmia analysis of ECG signal plays a major role in diagnosing most of the cardiac diseases. Therefore, a single arrhythmia detection of an electrocardiographic (ECG) record can determine multiple pattern of various algorithms and match accordingly each ECG beats based on Machine Learning supervised learning. These researchers used different features and classification methods to classify different arrhythmia types. A major problem in these studies is the fact that the symptoms of the disease do not show all the time in the ECG record. Hence, a successful diagnosis might require the manual investigation of several hours of ECG records. The point of this paper presents investigations cardiovascular ailment in Electrocardiogram (ECG) Signals for Cardiac Arrhythmia utilizing examination of ECG irregular wave frames via heart beat as correspond arrhythmia which with Machine Learning Pattern Recognition.Keywords: electrocardiogram, ECG, classification, machine learning, pattern recognition, detection, QRS
Procedia PDF Downloads 3763556 A National Systematic Review on Determining Prevalence of Mobbing Exposure in Turkish Nurses
Authors: Betül Sönmez, Aytolan Yıldırım
Abstract:
Objective: This systematic review aims to methodically analyze studies regarding mobbing behavior prevalence, individuals performing this behavior and the effects of mobbing on Turkish nurses. Background: Worldwide reports on mobbing cases have increased in the past years, a similar trend also observable in Turkey. It has been demonstrated that among healthcare workers, mobbing is significantly widespread in nurses. The number of studies carried out in this regard has also increased. Method: The main criteria for choosing articles in this systematic review were nurses located in Turkey, regardless of any specific date. In November 2014, a search using the keywords 'mobbing, bullying, psychological terror/violence, emotional violence, nurses, healthcare workers, Turkey' in PubMed, Science Direct, Ebscohost, National Thesis Centre database and Google search engine led to 71 studies in this field. 33 studies were not met the inclusion criteria specified for this study. Results: The findings were obtained using the results of 38 studies carried out in the past 13 years in Turkey, a large sample consisting of 8,877 nurses. Analysis of the incidences of mobbing behavior revealed a broad spectrum, ranging from none-slight experiences to 100% experiences. The most frequently observed mobbing behaviors include attacking personality, blocking communication and attacking professional and social reputation. Victims mostly experienced mobbing from their managers, the most common consequence of these actions being psychological effects. Conclusions: The results of studies with various scales indicate exposure of nurses to similar mobbing behavior. The high frequency of exposure of nurses to mobbing behavior in such a large sample highlights the importance of considering this issue in terms of individual and institutional consequences that adversely affect the performance of nurses.Keywords: mobbing, bullying, workplace violence, nurses, Turkey
Procedia PDF Downloads 2773555 The Prevailing Practice of Night Hunting in Central Bhutan: Traditional Practice of Courtship as a Sexual Coercion to Women
Authors: Ugyen Phuntsho
Abstract:
A popular and entrenched custom as a form of courtship has been practicing in Bhutan from long time back. This custom is widely being practiced in the villages of eastern and central Bhutan. This long-practiced custom is known by different terms in Bhutan, but it is popularly known to the foreigners as ‘night hunting’. This unique form of courtship custom involves the boy visiting the girl’s house stealthily under the cover of darkness without any pre-appointment. It is still perceived as a serving norms of courtship in the villages in central Bhutan. For many years this practice of night hunting has been in the spotlight of debate as a harmless culture but as sexual violence against women. However, this study examined the changing perception on the night hunting as a form of courtship custom or sexual coercion to women by employing the in-depth interview with 42 participants (21 females and 9 males from 3 different villages, 5 females and 7 males from urban areas) in central Bhutan. Moreover, the study investigated the gender inequality linked with the practice of night hunting in the rural areas of central Bhutan. The study revealed the changing perception on night hunting as more of sexual coercion taking place during night hunting than merely tolerating it as traditional form of practice of courtship. The finding of this study revealed unlike the past; this practice serves minimal social purpose in the society as the social changes with the development of socioeconomic of the people. However, the practice of night hunting is still prevalent at the villages, and it is known that the social power, single and widow women, valuing of village endogamy practices and the popular notion of pride of promiscuous amongst the men have attributed in sexual coercion and in ultimate victimization of the women. Furthermore, the study revealed the gender inequality linked with night hunting thus significantly increasing the vulnerability of rural women to other forms of violence in the society.Keywords: courtship, custom, men, night hunting, practice, sexual coercion, women, violence
Procedia PDF Downloads 2493554 Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with Evaluation on a Ground Truth
Authors: Hatem Hajri, Mohamed-Cherif Rahal
Abstract:
Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth.Keywords: ground truth, Hungarian algorithm, lidar Radar data fusion, global nearest neighbor filter
Procedia PDF Downloads 1743553 System Identification in Presence of Outliers
Authors: Chao Yu, Qing-Guo Wang, Dan Zhang
Abstract:
The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising
Procedia PDF Downloads 3083552 Image Processing Approach for Detection of Three-Dimensional Tree-Rings from X-Ray Computed Tomography
Authors: Jorge Martinez-Garcia, Ingrid Stelzner, Joerg Stelzner, Damian Gwerder, Philipp Schuetz
Abstract:
Tree-ring analysis is an important part of the quality assessment and the dating of (archaeological) wood samples. It provides quantitative data about the whole anatomical ring structure, which can be used, for example, to measure the impact of the fluctuating environment on the tree growth, for the dendrochronological analysis of archaeological wooden artefacts and to estimate the wood mechanical properties. Despite advances in computer vision and edge recognition algorithms, detection and counting of annual rings are still limited to 2D datasets and performed in most cases manually, which is a time consuming, tedious task and depends strongly on the operator’s experience. This work presents an image processing approach to detect the whole 3D tree-ring structure directly from X-ray computed tomography imaging data. The approach relies on a modified Canny edge detection algorithm, which captures fully connected tree-ring edges throughout the measured image stack and is validated on X-ray computed tomography data taken from six wood species.Keywords: ring recognition, edge detection, X-ray computed tomography, dendrochronology
Procedia PDF Downloads 2213551 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads
Authors: Seyed Sadegh Naseralavi
Abstract:
This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation
Procedia PDF Downloads 2873550 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 4533549 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electromechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2553548 The International Prohibition of Religiously-Motivated 'Incitement' to Violence
Authors: J. D. Temperman
Abstract:
Introduction: In particular, in relation to religion, the meaning and scope of freedom of expression have been tested in recent times. This paper investigates the legal justifications for restrictions that have been suggested in this area and asks whether they are sustainable from an international human rights perspective. The universal human rights instruments, particularly the UN International Covenant on Civil and Political Rights (ICCPR), are increasingly geared towards eradicating ‘incitement’ to contingent harms like violence or discrimination, whilst forms of extreme speech that fall short of such incitement are to be protected rather than countered by states. Human Rights Committee’s draft-General Comment on freedom of expression, adopted in 2011, provides another strong indication that this is the envisaged way forward: repealing anti-blasphemy and anti-religious defamation laws, whilst simultaneously increasing efforts to combat ‘incitement’. Within regional human rights frameworks, notably the European Convention system, judgments have in fact supported legal restrictions on both hate speech, holocaust denial, and blasphemy or religious defamation. Major contributions to scholarship: This paper proposes an actus reus for the offense of ‘advocacy of religious hatred that constitutes incitement to discrimination or violence’, as enshrined in Article 20(2) of the UN ICCPR. In underscoring the high threshold of ‘incitement’, the author distinguishes this offense from such notions as ‘blasphemy’ or ‘defamation of religions’. In addition to treating the said provision as a sui generis prohibition, the question is addresses whether a ‘right to be protected against incitement’ may be distilled from the ICCPR. Furthermore, the author will discuss the question of how to judge incitement; notably, is mens rea required to convict someone of incitement, and if so, what degree of mens rea? This analysis also includes the question how to balance content and context factors when addressing alleged instances of incitement, notably what factors make provide for a likelihood that imminent acts of violence or discrimination will ensue from an inciteful speech act? Methodology: This paper takes a double comparative approach: (i) it endeavours to compare and contrast monitoring bodies’ approach to incitement (notably, the UN Human Rights Committee, but also the UN Committee on the Elimination of Racial Discrimination which monitors states’ compliance with Article 4 of ICERD on incitement); and (ii) it endeavours to chart and compare and analyse from an international human rights perspective recent forms of state practice in the field of dealing with incitement (i.e. a comparative legal analysis and vertical human rights analysis of newly emerging incitement legislation in the light of the said international standards). Conclusion: This paper conceptualizes a legal notion – ‘incitement’ – encapsulated in international human rights law that may have a profound bearing on contemporary challenges of radicalization and religious strife.Keywords: incitement, international human rights law, religious hatred, violence
Procedia PDF Downloads 3083547 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials: Analytical and Experimental Study
Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis
Abstract:
An effort for the detection of damages in the reinforcement bars of reinforced concrete members using PZTs is presented. The damage can be the result of excessive elongation of the steel bar due to steel yielding or due to local steel corrosion. In both cases the damage is simulated by considering reduced diameter of the rebar along the damaged part of its length. An integration approach based on both electro-mechanical admittance methodology and guided wave propagation technique is used to evaluate the artificial damage on the examined longitudinal steel bar. Two actuator PZTs and a sensor PZT are considered to be bonded on the examined steel bar. The admittance of the Sensor PZT is calculated using COMSOL 3.4a. Fast Furrier Transformation for a better evaluation of the results is employed. An effort for the quantification of the damage detection using the root mean square deviation (RMSD) between the healthy condition and damage state of the sensor PZT is attempted. The numerical value of the RSMD yields a level for the difference between the healthy and the damaged admittance computation indicating this way the presence of damage in the structure. Experimental measurements are also presented.Keywords: concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT
Procedia PDF Downloads 2933546 Consequences of Youth Bulge in Pakistan
Authors: Muhammad Farooq, Muhammad Idrees
Abstract:
The present study has been designed to explore the causes and effects of Youth Bulge in Pakistan. However, youth bulge is a part of population segment which create problem for the whole society. The youth bulge is a common phenomenon in many developing countries, and in particular, in the least developed countries. It is often due to a stage of development where a country achieves success in reducing infant mortality but mothers still have a high fertility rate. The result is that a large share of the population is comprised of children and young adults, and today’s children are tomorrow’s young adults. Youth often play a prominent role in political violence and the existence of a “youth bulge” has been associated with times of political crisis. The population pyramid of Pakistan represents a large youth proportion and our government did not use that youth in positive way and did not provide them opportunity for development, this situation creates frustration in youth that leads them towards conflict, unrest and violence. This study will be focus on the opportunity and motives of the youth bulge situation in Pakistan in the lens of youth bulge theory. Moreover, it will give some suggestions to utilize youth in the development activities and avoid youth bulge situation in Pakistan. The present research was conducted in the metropolitan entities of Punjab, Pakistan. A sample of 300 respondents was taken from three randomly selected metropolitan entities (Faisalabad, Lahore and Rawalpindi) of Punjab Province of Pakistan. Information regarding demography, household, locality and other socio-cultural variables related to causes and effects of youth bulge in the state was collected through a well structured interview schedule. Mean, Standard Deviation and frequency distribution were used to check the measure of central tendency. Multiple linear regression was also applied to measure the influence of various independent variables on the response variable.Keywords: youth bulge, violence, conflict, social unrest, crime, metropolitan entities, mean, standard deviation, multiple linear regression
Procedia PDF Downloads 4613545 Automated Feature Detection and Matching Algorithms for Breast IR Sequence Images
Authors: Chia-Yen Lee, Hao-Jen Wang, Jhih-Hao Lai
Abstract:
In recent years, infrared (IR) imaging has been considered as a potential tool to assess the efficacy of chemotherapy and early detection of breast cancer. Regions of tumor growth with high metabolic rate and angiogenesis phenomenon lead to the high temperatures. Observation of differences between the heat maps in long term is useful to help assess the growth of breast cancer cells and detect breast cancer earlier, wherein the multi-time infrared image alignment technology is a necessary step. Representative feature points detection and matching are essential steps toward the good performance of image registration and quantitative analysis. However, there is no clear boundary on the infrared images and the subject's posture are different for each shot. It cannot adhesive markers on a body surface for a very long period, and it is hard to find anatomic fiducial markers on a body surface. In other words, it’s difficult to detect and match features in an IR sequence images. In this study, automated feature detection and matching algorithms with two type of automatic feature points (i.e., vascular branch points and modified Harris corner) are developed respectively. The preliminary results show that the proposed method could identify the representative feature points on the IR breast images successfully of 98% accuracy and the matching results of 93% accuracy.Keywords: Harris corner, infrared image, feature detection, registration, matching
Procedia PDF Downloads 3043544 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3553543 Moroccan Ultra Groups of Football: From Tifos to Street Politics
Authors: Yassir Yousfi
Abstract:
The Ultras phenomena have become the most spectacular form of football fandom in the early twenty-first century. Yet, since their appearance in Morocco, they have been associated with violence and vandalism. This paper aims to explain the political dimension of Moroccan ultra group in terms of their chants in Morocco post-February 20thera. It seeks to analyze their narratives which have shifted to a form of social Hirak, or, using AsefBayat’s term, non-movement. The paper focuses on the dynamics of two nationally and universally notorious groups located in Casablanca, Morocco’s biggest and most densely populated city, namely the “Winners” (supporters of the Wydad Athletic Club) and the “Green Boys” (supporters of the Raja Club Athletic) of Casablanca. The paper adopts a critical perspective analysis that attempts to sketch out some examples of their “political” chants to understand their discourses, spaces of their activities, levels of their impact on the street protests, and their prospects in the political scene. It also seeks to deconstruct the concept of “social movement” while referring to the Ultras as well as discussing their political transition.Keywords: ultra groups, transition, political chants, football violence, cultural movement
Procedia PDF Downloads 1423542 A Supervised Approach for Detection of Singleton Spam Reviews
Authors: Atefeh Heydari, Mohammadali Tavakoli, Naomie Salim
Abstract:
In recent years, we have witnessed that online reviews are the most important source of customers’ opinion. They are progressively more used by individuals and organisations to make purchase and business decisions. Unfortunately, for the reason of profit or fame, frauds produce deceptive reviews to hoodwink potential customers. Their activities mislead not only potential customers to make appropriate purchasing decisions and organisations to reshape their business, but also opinion mining techniques by preventing them from reaching accurate results. Spam reviews could be divided into two main groups, i.e. multiple and singleton spam reviews. Detecting a singleton spam review that is the only review written by a user ID is extremely challenging due to lack of clue for detection purposes. Singleton spam reviews are very harmful and various features and proofs used in multiple spam reviews detection are not applicable in this case. Current research aims to propose a novel supervised technique to detect singleton spam reviews. To achieve this, various features are proposed in this study and are to be combined with the most appropriate features extracted from literature and employed in a classifier. In order to compare the performance of different classifiers, SVM and naive Bayes classification algorithms were used for model building. The results revealed that SVM was more accurate than naive Bayes and our proposed technique is capable to detect singleton spam reviews effectively.Keywords: classification algorithms, Naïve Bayes, opinion review spam detection, singleton review spam detection, support vector machine
Procedia PDF Downloads 3093541 Signal Processing of the Blood Pressure and Characterization
Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig
Abstract:
In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.Keywords: blood pressure, SBP, DBP, detection algorithm
Procedia PDF Downloads 4393540 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1463539 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 733538 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 2013537 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 52