Search results for: thermoplastic poly urethane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 769

Search results for: thermoplastic poly urethane

109 Development of Excellent Water-Repellent Coatings for Metallic and Ceramic Surfaces

Authors: Aditya Kumar

Abstract:

One of the most fascinating properties of various insects and plant surfaces in nature is their water-repellent (superhydrophobicity) capability. The nature offers new insights to learn and replicate the same in designing artificial superhydrophobic structures for a wide range of applications such as micro-fluidics, micro-electronics, textiles, self-cleaning surfaces, anti-corrosion, anti-fingerprint, oil/water separation, etc. In general, artificial superhydrophobic surfaces are synthesized by creating roughness and then treating the surface with low surface energy materials. In this work, various super-hydrophobic coatings on metallic surfaces (aluminum, steel, copper, steel mesh) were synthesized by chemical etching process using different etchants and fatty acid. Also, SiO2 nano/micro-particles embedded polyethylene, polystyrene, and poly(methyl methacrylate) superhydrophobic coatings were synthesized on glass substrates. Also, the effect of process parameters such as etching time, etchant concentration, and particle concentration on wettability was studied. To know the applications of the coatings, surface morphology, contact angle, self-cleaning, corrosion-resistance, and water-repellent characteristics were investigated at various conditions. Furthermore, durabilities of coatings were also studied by performing thermal, ultra-violet, and mechanical stability tests. The surface morphology confirms the creation of rough microstructures by chemical etching or by embedding particles, and the contact angle measurements reveal the superhydrophobic nature. Experimentally it is found that the coatings have excellent self-cleaning, anti-corrosion and water-repellent nature. These coatings also withstand mechanical disturbances such surface bending, adhesive peeling, and abrasion. Coatings are also found to be thermal and ultra-violet stable. Additionally, coatings are also reproducible. Hence aforesaid durable superhydrophobic surfaces have many potential industrial applications.

Keywords: superhydrophobic, water-repellent, anti-corrosion, self-cleaning

Procedia PDF Downloads 293
108 Monitoring the Thin Film Formation of Carrageenan and PNIPAm Microgels

Authors: Selim Kara, Ertan Arda, Fahrettin Dolastir, Önder Pekcan

Abstract:

Biomaterials and thin film coatings play a fundamental role in medical, food and pharmaceutical industries. Carrageenan is a linear sulfated polysaccharide extracted from algae and seaweeds. To date, such biomaterials have been used in many smart drug delivery systems due to their biocompatibility and antimicrobial activity properties. Poly (N-isopropylacrylamide) (PNIPAm) gels and copolymers have also been used in medical applications. PNIPAm shows lower critical solution temperature (LCST) property at about 32-34 °C which is very close to the human body temperature. Below and above the LCST point, PNIPAm gels exhibit distinct phase transitions between swollen and collapsed states. A special class of gels are microgels which can react to environmental changes significantly faster than microgels due to their small sizes. Quartz crystal microbalance (QCM) measurement technique is one of the attractive techniques which has been used for monitoring the thin-film formation process. A sensitive QCM system was designed as to detect 0.1 Hz difference in resonance frequency and 10-7 change in energy dissipation values, which are the measures of the deposited mass and the film rigidity, respectively. PNIPAm microgels with the diameter around few hundred nanometers in water were produced via precipitation polymerization process. 5 MHz quartz crystals with functionalized gold surfaces were used for the deposition of the carrageenan molecules and microgels in the solutions which were slowly pumped through a flow cell. Interactions between charged carrageenan and microgel particles were monitored during the formation of the film layers, and the Sauerbrey masses of the deposited films were calculated. The critical phase transition temperatures around the LCST were detected during the heating and cooling cycles. It was shown that it is possible to monitor the interactions between PNIPAm microgels and biopolymer molecules, and it is also possible to specify the critical phase transition temperatures by using a QCM system.

Keywords: carrageenan, phase transitions, PNIPAm microgels, quartz crystal microbalance (QCM)

Procedia PDF Downloads 224
107 Polycode Texts in Communication of Antisocial Groups: Functional and Pragmatic Aspects

Authors: Ivan Potapov

Abstract:

Background: The aim of this paper is to investigate poly code texts in the communication of youth antisocial groups. Nowadays, the notion of a text has numerous interpretations. Besides all the approaches to defining a text, we must take into account semiotic and cultural-semiotic ones. Rapidly developing IT, world globalization, and new ways of coding of information increase the role of the cultural-semiotic approach. However, the development of computer technologies leads also to changes in the text itself. Polycode texts play a more and more important role in the everyday communication of the younger generation. Therefore, the research of functional and pragmatic aspects of both verbal and non-verbal content is actually quite important. Methods and Material: For this survey, we applied the combination of four methods of text investigation: not only intention and content analysis but also semantic and syntactic analysis. Using these methods provided us with information on general text properties, the content of transmitted messages, and each communicants’ intentions. Besides, during our research, we figured out the social background; therefore, we could distinguish intertextual connections between certain types of polycode texts. As the sources of the research material, we used 20 public channels in the popular messenger Telegram and data extracted from smartphones, which belonged to arrested members of antisocial groups. Findings: This investigation let us assert that polycode texts can be characterized as highly intertextual language unit. Moreover, we could outline the classification of these texts based on communicants’ intentions. The most common types of antisocial polycode texts are a call to illegal actions and agitation. What is more, each type has its own semantic core: it depends on the sphere of communication. However, syntactic structure is universal for most of the polycode texts. Conclusion: Polycode texts play important role in online communication. The results of this investigation demonstrate that in some social groups using these texts has a destructive influence on the younger generation and obviously needs further researches.

Keywords: text, polycode text, internet linguistics, text analysis, context, semiotics, sociolinguistics

Procedia PDF Downloads 130
106 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 146
105 Tripeptide Inhibitor: The Simplest Aminogenic PEGylated Drug against Amyloid Beta Peptide Fibrillation

Authors: Sutapa Som Chaudhury, Chitrangada Das Mukhopadhyay

Abstract:

Alzheimer’s disease is a well-known form of dementia since its discovery in 1906. Current Food and Drug Administration approved medications e.g. cholinesterase inhibitors, memantine offer modest symptomatic relief but do not play any role in disease modification or recovery. In last three decades many small molecules, chaperons, synthetic peptides, partial β-secretase enzyme blocker have been tested for the development of a drug against Alzheimer though did not pass the 3rd clinical phase trials. Here in this study, we designed a PEGylated, aminogenic, tripeptidic polymer with two different molecular weights based on the aggregation prone amino acid sequence 17-20 in amyloid beta (Aβ) 1-42. Being conjugated with poly-ethylene glycol (PEG) which self-assembles into hydrophilic nanoparticles, these PEGylated tripeptides constitute a very good drug delivery system crossing the blood brain barrier while the peptide remains protected from proteolytic degradation and non-specific protein interactions. Moreover, being completely aminogenic they would not raise any side effects. These peptide inhibitors were evaluated for their effectiveness against Aβ42 fibrillation at an early stage of oligomer to fibril formation as well as preformed fibril clearance via Thioflavin T (ThT) assay, dynamic light scattering analyses, atomic force microscopy and scanning electron microscopy. The inhibitors were proved to be safe at a higher concentration of 20µM by the reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye. Moreover, SHSY5Y neuroblastoma cells have shown a greater survivability when treated with the inhibitors following Aβ42 fibril and oligomer treatment as compared with the control Aβ42 fibril and/or oligomer treated neuroblastoma cells. These make the peptidic inhibitors a promising compound in the aspect of the discovery of alternative medication for Alzheimer’s disease.

Keywords: Alzheimer’s disease, alternative medication, amyloid beta, PEGylated peptide

Procedia PDF Downloads 205
104 Multilayered Assembly of Gelatin on Nanofibrous Matrix for 3-D Cell Cultivation

Authors: Ji Un Shin, Wei Mao, Hyuk Sang Yoo

Abstract:

Electrospinning is a versatile tool for fabricating nano-structured polymeric materials. Gelatin hydrogels are considered to be a good material for cell cultivation because of high water swellability as well as good biocompatibility. Three-dimensional (3-D) cell cultivation is a desirable method of cell cultivation for preparing tissues and organs because cell-to-cell interactions or cell-to-matrix interactions can be much enhanced through this approach. For this reason, hydrogels were widely employed as tissue scaffolds because they can support cultivating cells and tissue in multi-dimensions. Major disadvantages of hydrogel-based cell cultivation include low mechanical properties, lack of topography, which should be enhanced for successful tissue engineering. Herein we surface-immobilized gelatin on the surface of nanofibrous matrix for 3-D cell cultivation in topographical cues added environments. Electrospun nanofibers were electrospun with injection of poly(caprolactone) through a single nozzle syringe. Electrospun meshes were then chopped up with a high speed grinder to fine powders. This was hydrolyzed in optimized concentration of sodium hydroxide solution from 1 to 6 hours and harvested by centrifugation. The freeze-dried powders were examined by scanning electron microscopy (SEM) for revealing the morphology and fibrilar shaped with a length of ca. 20um was observed. This was subsequently immersed in gelatin solution for surface-coating of gelatin, where the process repeated up to 10 times for obtaining desirable coating of gelatin on the surface. Gelatin-coated nanofibrils showed high waterswellability in comparison to the unmodified nanofibrils, and this enabled good dispersion properties of the modified nanofibrils in aqueous phase. The degree of water-swellability was increased as the coating numbers of gelatin increased, however, it did not any meaning result after 10 times of gelatin coating process. Thus, by adjusting the gelatin coating times, we could successfully control the degree of hydrophilicity and water-swellability of nanofibrils.

Keywords: nano, fiber, cell, tissue

Procedia PDF Downloads 164
103 Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors

Authors: Tomas Vincze, Michal Micjan, Milan Pavuk, Martin Weis

Abstract:

In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility.

Keywords: copper oxide, field-effect transistor, semiconductor, sol-gel method

Procedia PDF Downloads 127
102 Humins: From Industrial By-Product to High Value Polymers

Authors: Pierluigi Tosi, Ed de Jong, Gerard van Klink, Luc Vincent, Alice Mija

Abstract:

During the last decades renewable and low-cost resources have attracted increasingly interest. Carbohydrates can be derived by lignocellulosic biomasses, which is an attractive option since they represent the most abundant carbon source available in nature. Carbohydrates can be converted in a plethora of industrially relevant compounds, such as 5-hydroxymethylfurfural (HMF) and levulinic acid (LA), within acid catalyzed dehydration of sugars with mineral acids. Unfortunately, these acid catalyzed conversions suffer of the unavoidable formation of highly viscous heterogeneous poly-disperse carbon based materials known as humins. This black colored low value by-product is made by a complex mixture of macromolecules built by covalent random condensations of the several compounds present during the acid catalyzed conversion. Humins molecular structure is still under investigation but seems based on furanic rings network linked by aliphatic chains and decorated by several reactive moieties (ketones, aldehydes, hydroxyls, …). Despite decades of research, currently there is no way to avoid humins formation. The key parameter for enhance the economic viability of carbohydrate conversion processes is, therefore, increasing the economic value of the humins by-product. Herein are presented new humins based polymeric materials that can be prepared starting from the raw by-product by thermal treatment, without any step of purification or pretreatment. Humins foams can be produced with the control of reaction key parameters, obtaining polymeric porous materials with designed porosity, density, thermal and electrical conductivity, chemical and electrical stability, carbon amount and mechanical properties. Physico chemical properties can be enhanced by modifications on the starting raw material or adding different species during the polymerization. A comparisons on the properties of different compositions will be presented, along with tested applications. The authors gratefully acknowledge the European Community for financial support through Marie-Curie H2020-MSCA-ITN-2015 "HUGS" Project.

Keywords: by-product, humins, polymers, valorization

Procedia PDF Downloads 139
101 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 122
100 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress

Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim

Abstract:

A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.

Keywords: cowpea, genetic variability, quantitative traits, water stress

Procedia PDF Downloads 152
99 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor

Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen

Abstract:

In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.

Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.

Procedia PDF Downloads 249
98 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect

Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich

Abstract:

Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.

Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking

Procedia PDF Downloads 114
97 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process

Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc

Abstract:

In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.

Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown

Procedia PDF Downloads 354
96 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 378
95 Development of R³ UV Exposure for the UV Dose-Insensitive and Cost-Effective Fabrication of Biodegradable Polymer Microneedles

Authors: Sungmin Park, Gyungmok Nam, Seungpyo Woo, Young Choi, Sangheon Park, Sang-Hee Yoon

Abstract:

Puncturing human skin with microneedles is critically important for microneedle-mediate drug delivery. Despite of extensive efforts in the past decades, the scale-up fabrication of sharp-tipped and high-aspect-ratio microneedles, especially made of biodegradable polymers, is still a long way off. Here, we present a UV dose insensitive and cost-effective microfabrication method for the biodegradable polymer microneedles with sharp tips and long lengths which can pierce human skin with low insertion force. The biodegradable polymer microneedles are fabricated with the polymer solution casting where a poly(lactic-co-glycolic acid) (PLGA, 50:50) solution is coated onto a SU-8 mold prepared with a reverse, ramped, and rotational (R3) UV exposure. The R3 UV exposure is modified from the multidirectional UV exposure both to suppress UV reflection from the bottom surface without anti-reflection layers and to optimize solvent concentration in the SU-8 photoresist, therefore achieving robust (i.e., highly insensitive to UV dose) and cost-effective fabrication of biodegradable polymer microneedles. An optical model for describing the spatial distribution of UV irradiation dose of the R3 UV exposure is also developed to theoretically predict the microneedle geometry fabricated with the R3 UV exposure and also to demonstrate the insensitiveness of microneedle geometry to UV dose. In the experimental characterization, the microneedles fabricated with the R3 UV exposure are compared with those fabricated with a conventional method (i.e., multidirectional UV exposure). The R3 UV exposure-based microfabrication reduces the end-tip radius by a factor of 5.8 and the deviation from ideal aspect ratio by 74.8%, compared with conventional method-based microfabrication. The PLGA microneedles fabricated with the R3 UV exposure pierce full-thickness porcine skins successfully and are demonstrated to completely dissolve in PBS (phosphate-buffered saline). The findings of this study will lead to an explosive growth of the microneedle-mediated drug delivery market.

Keywords: R³ UV exposure, optical model, UV dose, reflection, solvent concentration, biodegradable polymer microneedle

Procedia PDF Downloads 163
94 Effect of Mistranslating tRNA Alanine on Polyglutamine Aggregation

Authors: Sunidhi Syal, Rasangi Tennakoon, Patrick O'Donoghue

Abstract:

Polyglutamine (polyQ) diseases are a group of diseases related to neurodegeneration caused by repeats of the amino acid glutamine (Q) in the DNA, which translates into an elongated polyQ tract in the protein. The pathological explanation is that the polyQ tract forms cytotoxic aggregates in the neurons, leading to their degeneration. There are no cures or preventative efforts established for these diseases as of today, although the symptoms of these diseases can be relieved. This study specifically focuses on Huntington's disease, which is a type of polyQ disease in which aggregation is caused by the extended cytosine, adenine, guanine (CUG) codon repeats in the huntingtin (HTT) gene, which encodes for the huntingtin protein. Using this principle, we attempted to create six models, which included mutating wildtype tRNA alanine variant tRNA-AGC-8-1 to have glutamine anticodons CUG and UUG so serine is incorporated at glutamine sites in poly Q tracts. In the process, we were successful in obtaining tAla-8-1 CUG mutant clones in the HTTexon1 plasmids with a polyQ tract of 23Q (non-pathogenic model) and 74Q (disease model). These plasmids were transfected into mouse neuroblastoma cells to characterize protein synthesis and aggregation in normal and mistranslating cells and to investigate the effects of glutamines replaced with alanines on the disease phenotype. Notably, we observed no noteworthy differences in mean fluorescence between the CUG mutants for 23Q or 74Q; however, the Triton X-100 assay revealed a significant reduction in insoluble 74Q aggregates. We were unable to create a tAla-8-1 UUG mutant clone, and determining the difference in the effects of the two glutamine anticodons may enrich our understanding of the disease phenotype. In conclusion, by generating structural disruption with the amino acid alanine, it may be possible to find ways to minimize the toxicity of Huntington's disease caused by these polyQ aggregates. Further research is needed to advance knowledge in this field by identifying the cellular and biochemical impact of specific tRNA variants found naturally in human genomes.

Keywords: Huntington's disease, polyQ, tRNA, anticodon, clone, overlap PCR

Procedia PDF Downloads 36
93 Anticancer Effect of Doxorubicin Using Injectable Hydrogel

Authors: Prasamsha Panta, Da Yeon Kim, Ja Yong Jang, Min Jae Kim, Jae Ho Kim, Moon Suk Kim

Abstract:

Introduction: Among the many anticancer drugs used clinically, doxorubicin (Dox), was one of widely used drugs to treat many types of solid tumors such as liver, colon, breast, or lung. Intratumoral injection of chemotherapeutic agents is a potentially more effective alternative to systemic administration because direct delivery of the anticancer drug to the target may improve both the stability and efficacy of anticancer drugs. Injectable in situ-forming gels have attracted considerable attention because they can achieve site specific drug delivery, long term action periods, and improved patient compliance. Objective: Objective of present study is to confirm clinical benefit of intratumoral chemotherapy using injectable in situ-forming poly(ethylene glycol)-b-polycaprolactone diblock copolymer (MP) and Dox with increase in efficacy and reducing the toxicity in patients with cancer diseases. Methods and methodology: We prepared biodegradable MP hydrogel and measured viscosity for the evaluation of thermo-sensitive property. In vivo antitumor activity was performed with normal saline, MP only, single free Dox, repeat free Dox, and Dox-loaded MP gel. The remaining amount of Dox drug was measured using HPLC after the mouse was sacrified. For cytotoxicity studies WST-1 assay was performed. Histological analysis was done with H&E and TUNEL processes respectively. Results: The works in this experiment showed that Dox-loaded MP have biodegradable drug depot property. Dox-loaded MP gels showed remarkable in vitro cytotoxicity activities against cancer cells. Finally, this work indicates that injection of Dox-loaded MP allowed Dox to act effectively in the tumor and induced long-lasting supression of tumor growth. Conclusion: This work has examined the potential clinical utility of intratumorally injected Dox-loaded MP gel, which shows significant effect of higher local Dox retention compared with systemically administered Dox.

Keywords: injectable in-situ forming hydrogel, anticancer, doxorubicin, intratumoral injection

Procedia PDF Downloads 404
92 Mn3O4 anchored Broccoli-Flower like Nickel Manganese Selenide Composite for Ultra-efficient Solid-State Hybrid Supercapacitors with Extended Durability

Authors: Siddhant Srivastav, Shilpa Singh, Sumanta Kumar Meher

Abstract:

Innovative renewable energy sources for energy storage/conversion is the demand of the current scenario in electrochemical machinery. In this context, choosing suitable organic precipitants for tuning the crystal characteristics and microstructures is a challenge. On the same note, herein we report broccoli flower-like porous Mn3O4/NiSe2−MnSe2 composite synthesized using a simple two step hydrothermal synthesis procedure assisted by sluggish precipitating agent and an effective cappant followed by intermediated anion exchange. The as-synthesized material was exposed to physical and chemical measurements depicting poly-crystallinity, stronger bonding and broccoli flower-like porous arrangement. The material was assessed electrochemically by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) measurements. The Electrochemical studies reveal redox behavior, supercapacitive charge-discharge shape and extremely low charge transfer resistance. Further, the fabricated Mn3O4/NiSe2−MnSe2 composite based solid-state hybrid supercapacitor (Mn3O4/NiSe2−MnSe2 ||N-rGO) delivers excellent rate specific capacity, very low internal resistance, with energy density (~34 W h kg–1) of a typical rechargeable battery and power density (11995 W kg–1) of an ultra-supercapacitor. Consequently, it can be a favorable contender for supercapacitor applications for high performance energy storage utilizations. A definitive exhibition of the supercapacitor device is credited to electrolyte-ion buffering reservior alike behavior of broccoli flower like Mn3O4/NiSe2−MnSe2, enhanced by upgraded electronic and ionic conductivities of N- doped rGO (negative electrode) and PVA/KOH gel (electrolyte separator), respectively

Keywords: electrolyte-ion buffering reservoir, intermediated-anion exchange, solid-state hybrid supercapacitor, supercapacitive charge-dischargesupercapacitive charge-discharge

Procedia PDF Downloads 71
91 Effect of Papaverine on Developmental Neurotoxicity: Neurosphere as in vitro Model

Authors: Mohammed Y. Elsherbeny, Mohamed Salama, Ahmed Lotfy, Hossam Fareed, Nora Mohammed

Abstract:

Background: Developmental neurotoxicity (DNT) entails the toxic effects imparted by various chemicals on brain during the early childhood when human brains are vulnerable during this period. DNT study in vivo cannot determine the effect of the neurotoxins, as it is not applicable, so using the neurosphere cells of lab animals as an alternative is applicable and time saving. Methods: Cell culture: Rat neural progenitor cells were isolated from rat embryos’ brain. The cortices were aseptically dissected out and the tissues were triturated. The dispersed tissues were allowed to settle. The supernatant was then transferred to a fresh tube and centrifuged. The pellet was placed in Hank’s balanced salt solution and cultured as free-floating neurospheres in proliferation medium. Differentiation was initiated by growth factor withdrawal in differentiation medium and plating onto a poly-d-lysine/ laminin matrix. Chemical Exposure: Neurospheres were treated for 2 weeks with papaverine in proliferation medium. Proliferation analyses: Spheres were cultured. After 0, 4, 5, 11 and 14 days, sphere size was determined by software analyses (CellProfiler, version 2.1; Broad Institute). Diameter of each neurosphere was measured and exported to excel file further to statistical analysis. Viability test: Trypsin-EDTA solution was added to neurospheres to dissociate neurospheres into single cells suspension, then viability evaluated by the Trypan Blue exclusion test. Result: As regards proliferation analysis and percentage of viable cells of papaverin treated groups: There was no significant change in cells proliferation compared to control at 0, 4, 5, 11 and 14 days with concentrations 1, 5 and 10 µM of papaverine, but there is a significant change in cell viability compared to control after 1 week and 2 weeks with the same concentrations of papaverine. Conclusion: Papaverine has toxic effect on viability of neural cell, not on their proliferation, so it may produce focal neural lesions not growth morphological changes.

Keywords: developmental neurotoxicity, neurotoxin, papaverine, neuroshperes

Procedia PDF Downloads 381
90 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China

Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek

Abstract:

Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.

Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates

Procedia PDF Downloads 279
89 Efficiently Degradation of Perfluorooctanoic Acid, an Emerging Contaminant, by a Hybrid Process of Membrane Distillation Process and Electro-Fenton

Authors: Afrouz Yousefi, Mohtada Sadrzadeh

Abstract:

The widespread presence of poly- and perfluoroalkyl substances (PFAS) poses a significant concern due to their ability to accumulate in living organisms and their persistence in the environment, thanks to their robust carbon-fluorine (C-F) bonds, which require substantial energy to break (485 kJ/mol). The prevalence of toxic PFAS compounds can be highly detrimental to ecosystems, wildlife, and human health. Ongoing efforts are dedicated to investigating methods for fully breaking down and eliminating PFAS from the environment. Among the various techniques employed, advanced oxidation processes have shown promise in completely breaking down emerging contaminants in wastewater. However, the drawback lies in the relatively slow reaction rates of these processes and the substantial energy input required, which currently impedes their widespread commercial adoption. We developed a hybrid process, comprising electro-Fenton as an advanced oxidation process and membrane distillation, to simultaneously degrade organic PFAS pollutants and extract pure water from the mixture. In this study, environmentally persistent perfluorooctanoic acid (PFOA), as an emerging contaminant, was used to study the effectiveness of the electro-Fenton/membrane distillation hybrid system. The PFOA degradation studies were conducted in two modes: electro-Fenton and electro-Fenton coupled with membrane distillation. High-performance liquid chromatography with ultraviolet detection (HPLC-UV), ion-chromatography (measuring fluoride ion concentration), total organic carbon (TOC) decay, mineralization current efficiency (MCE), and specific energy consumption (SEC) were evaluated for a single EF and hybrid EF-MD processes. In contrast to a single EF reaction, TOC decay improved significantly in the EF-MD process. Overall, the MCE of hybrid processes surpassed 100% while it remained under 50% for a single EF reaction. Calculations of specific energy consumption (SEC) demonstrated a substantial decrease of nearly one-third in energy usage when integrating the EF reaction with the MD process.

Keywords: water treatment, PFAS, membrane distillation, electro-Fenton, advanced oxidation

Procedia PDF Downloads 58
88 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 267
87 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites

Procedia PDF Downloads 119
86 Tuberculosis in Humans and Animals in the Eastern Part of the Sudan

Authors: Yassir Adam Shuaib, Stefan Niemann, Eltahir Awad Khalil, Ulrich Schaible, Lothar Heinz Wieler, Mohammed Ahmed Bakhiet, Abbashar Osman Mohammed, Mohamed Abdelsalam Abdalla, Elvira Richter

Abstract:

Tuberculosis (TB) is a chronic bacterial disease of humans and animals and it is characterized by the progressive development of specific granulomatous tubercle lesions in affected tissues. In a six-month study, from June to November 2014, a total of 2,304 carcasses of cattle, camel, sheep, and goats slaughtered at East and West Gaash slaughterhouses, Kassala, were investigated during postmortem, in parallel, 101 sputum samples from TB suspected patients at Kassala and El-Gadarif Teaching Hospitals were collected in order to investigate tuberculosis in animals and humans. Only 0.1% carcasses were found with suspected TB lesions in the liver and lung and peritoneal cavity of two sheep and no tuberculous lesions were found in the carcasses of cattle, goats or camels. All samples, tissue lesions and sputum, were decontaminated by the NALC-NaOH method and cultured for mycobacterial growth at the NRZ for Mycobacteria, Research Center Borstel, Germany. Genotyping and molecular characterization of the grown strains were done by line probe assay (GenoType CM and MTBC) and 16S rDNA, rpoB gene, and ITS sequencing, spoligotyping, MIRU-VNTR typing and next generation sequencing (NGS). Culture of the specimens revealed growth of organisms from 81.6% of all samples. Mycobacterium tuberculosis (76.2%), M. intracellulare (14.2%), mixed infection with M. tuberculosis and M. intracellulare (6.0%) and mixed infection with M. tuberculosis and M. fortuitum and with M. intracellulare and unknown species (1.2%) were detected in the sputum samples and unknown species (1.2%) were detected in the samples of one of the animals tissues. From the 69 M. tuberculosis strains, 25 (36.2%) were showing either mono-drug-resistant or multi-drug-resistant or poly-drug-resistant but none was extensively drug-resistant. In conclusion, the prevalence of TB in animals was very low while in humans M. tuberculosis-Delhi/CAS lineage was responsible for most cases and there was an evidence of MDR transmission and acquisition.

Keywords: animal, human, slaughterhouse, Sudan, tuberculosis

Procedia PDF Downloads 362
85 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 468
84 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 292
83 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy

Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas

Abstract:

In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.

Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell

Procedia PDF Downloads 396
82 Anodic Stability of Li₆PS₅Cl/PEO Composite Polymer Electrolytes for All-Solid-State Lithium Batteries: A First-Principles Molecular Dynamics Study

Authors: Hao-Wen Chang, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

All-solid-state lithium batteries (ASSLBs) are increasingly recognized as a safer and more reliable alternative to conventional lithium-ion batteries due to their non-flammable nature and enhanced safety performance. ASSLBs utilize a range of solid-state electrolytes, including solid polymer electrolytes (SPEs), inorganic solid electrolytes (ISEs), and composite polymer electrolytes (CPEs). SPEs are particularly valued for their flexibility, ease of processing, and excellent interfacial compatibility with electrodes, though their ionic conductivity remains a significant limitation. ISEs, on the other hand, provide high ionic conductivity, broad electrochemical windows, and strong mechanical properties but often face poor interfacial contact with electrodes, impeding performance. CPEs, which merge the strengths of SPEs and ISEs, represent a compelling solution for next-generation ASSLBs by addressing both electrochemical and mechanical challenges. Despite their potential, the mechanisms governing lithium-ion transport within these systems remain insufficiently understood. In this study, we designed CPEs based on argyrodite-type Li₆PS₅Cl (LPSC) combined with two distinct polymer matrices: poly(ethylene oxide) (PEO) with 24.5 wt% lithium bis(trifluoromethane)sulfonimide (LiTFSI) and polycaprolactone (PCL) with 25.7 wt% LiTFSI. Through density functional theory (DFT) calculations, we investigated the interfacial chemistry of these materials, revealing critical insights into their stability and interactions. Additionally, ab initio molecular dynamics (AIMD) simulations of lithium electrodes interfaced with LPSC layers containing polymers and LiTFSI demonstrated that the polymer matrix significantly mitigates LPSC decomposition, compared to systems with only a lithium electrode and LPSC layers. These findings underscore the pivotal role of CPEs in improving the performance and longevity of ASSLBs, offering a promising path forward for next-generation energy storage technologies.

Keywords: all-solid-state lithium-ion batteries, composite solid electrolytes, DFT calculations, Li-ion transport

Procedia PDF Downloads 11
81 Bioproduction of L(+)-Lactic Acid and Purification by Ion Exchange Mechanism

Authors: Zelal Polat, Şebnem Harsa, Semra Ülkü

Abstract:

Lactic acid exists in nature optically in two forms, L(+), D(-)-lactic acid, and has been used in food, leather, textile, pharmaceutical and cosmetic industries. Moreover, L(+)-lactic acid constitutes the raw material for the production of poly-L-lactic acid which is used in biomedical applications. Microbially produced lactic acid was aimed to be recovered from the fermentation media efficiently and economically. Among the various downstream operations, ion exchange chromatography is highly selective and yields a low cost product recovery within a short period of time. In this project, Lactobacillus casei NRRL B-441 was used for the production of L(+)-lactic acid from whey by fermentation at pH 5.5 and 37°C that took 12 hours. The product concentration was 50 g/l with 100% L(+)-lactic acid content. Next, the suitable resin was selected due to its high sorption capacity with rapid equilibrium behavior. Dowex marathon WBA, weakly basic anion exchanger in OH form reached the equilibrium in 15 minutes. The batch adsorption experiments were done approximately at pH 7.0 and 30°C and sampling was continued for 20 hours. Furthermore, the effect of temperature and pH was investigated and their influence was found to be unimportant. All the adsorption/desorption experiments were applied to both model lactic acid and biomass free fermentation broth. The ion exchange equilibria of lactic acid and L(+)-lactic acid in fermentation broth on Dowex marathon WBA was explained by Langmuir isotherm. The maximum exchange capacity (qm) for model lactic acid was 0.25 g La/g wet resin and for fermentation broth 0.04 g La/g wet resin. The equilibrium loading and exchange efficiency of L(+)-lactic acid in fermentation broth were reduced as a result of competition by other ionic species. The competing ions inhibit the binding of L(+)-lactic acid to the free sites of ion exchanger. Moreover, column operations were applied to recover adsorbed lactic acid from the ion exchanger. 2.0 M HCl was the suitable eluting agent to recover the bound L(+)-lactic acid with a flowrate of 1 ml/min at ambient temperature. About 95% of bound L(+)-lactic acid was recovered from Dowex marathon WBA. The equilibrium was reached within 15 minutes. The aim of this project was to investigate the purification of L(+)-lactic acid with ion exchange method from fermentation broth. The additional goals were to investigate the end product purity, to obtain new data on the adsorption/desorption behaviours of lactic acid and applicability of the system in industrial usage.

Keywords: fermentation, ion exchange, lactic acid, purification, whey

Procedia PDF Downloads 500
80 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China

Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai

Abstract:

Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.

Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment

Procedia PDF Downloads 113