Search results for: interferences and analytical errors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3316

Search results for: interferences and analytical errors

2656 Reproductive Traits for Holstein Cattle

Authors: Ashraf M. Ward, Ruban S. Yu

Abstract:

Data consisting of 2757 records from tow Holstein herds made between 2000 and 2010 were used to examine environmental factors affecting age at first calving (AFC) and calving intervals (CI) and consequently estimate genetic and phenotypic parameters and trends. The overall means and standard errors for AFC and CI were 39.4 ± 7.2 months and 487.5 ± 151.6 days respectively. The respective heritability estimates were 0.091 ± 0.05 and 0.044 ± 0.032, while the repeatability estimate for CI was 0.096 ± 0.001. The genetic trends for CI and AFC were -0.6 d/yr and -0.01 mo/yr respectively and were both significant (P < 0.001), indicating a decrease in mean breeding value over the study period. Phenotypic trends were -0.31 mo/yr and -0.35 d/yr for AFC and CI respectively though non-significant (P > 0.05). The low heritability for CI and AFC indicated that temporary environmental influences were much greater than genetic influences or permanent environmental influences on these traits.

Keywords: Holstein, reproductive, genetic parameters, heritability

Procedia PDF Downloads 720
2655 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds

Authors: Qiming Wang

Abstract:

Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.

Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds

Procedia PDF Downloads 187
2654 Development of a Standardization Methodology Assessing the Comfort Performance for Hanok

Authors: Mi-Hyang Lee, Seung-Hoon Han

Abstract:

Korean traditional residences have been built with deep design issues for various values such as social, cultural, and environmental influences to be started from a few thousand years ago, but its meaning is being vanished due to the different lifestyles these days. It is necessary, therefore, to grasp the meaning of the Korea traditional building called Hanok and to get Korean people understand its real advantages. The purpose of this study is to propose a standardization methodology for evaluating comfort features towards Korean traditional houses. This paper is also trying to build an official standard evaluation system and to integrate aesthetic and psychological values induced from Hanok. Its comfort performance values could be divided into two large categories that are physical and psychological, and fourteen methods have been defined as the Korean Standards (KS). For this research, field survey data from representative Hanok types were collected for each method. This study also contains a qualitative in-depth analysis of the Hanok comfort index by the professions using AHP (Analytical Hierarchy Process) and has examined the effect of the methods. As a result, this paper could define what methods can provide trustful outcomes and how to evaluate the own strengths in aspects of spatial comfort of Hanok using suggested procedures towards the spatial configuration of the traditional dwellings. This study has finally proposed an integrated development of a standardization methodology assessing the comfort performance for Korean traditional residences, and it is expected that they could evaluate inhabitants of the residents and interior environmental conditions especially structured by wood materials like Hanok.

Keywords: Hanok, comfort performance, human condition, analytical hierarchy process

Procedia PDF Downloads 157
2653 Weighted G2 Multi-Degree Reduction of Bezier Curves

Authors: Salisu ibrahim, Abdalla Rababah

Abstract:

In this research, we use Weighted G2-Multi-degree reduction of Bezier curve of degree n to a Bezier curve of degree m, m < n. The degree reduction of Bezier curves is used to represent a given Bezier curve of n by a Bezier curve of degree m, m < n. Exact degree reduction is not possible, and degree reduction is approximate process in nature. We derive a weighted degree reducing method that is geometrically continuous at the end points. Different norms will be considered, several error minimizations will be given. The proposed methods produce error function that are less than the errors of existing methods.

Keywords: Bezier curves, multiple degree reduction, geometric continuity, error function

Procedia PDF Downloads 482
2652 Modelling and Control of Electrohydraulic System Using Fuzzy Logic Algorithm

Authors: Hajara Abdulkarim Aliyu, Abdulbasid Ismail Isa

Abstract:

This research paper studies electrohydraulic system for its role in position and motion control system and develops as mathematical model describing the behaviour of the system. The research further proposes Fuzzy logic and conventional PID controllers in order to achieve both accurate positioning of the payload and overall improvement of the system performance. The simulation result shows Fuzzy logic controller has a superior tracking performance and high disturbance rejection efficiency for its shorter settling time, less overshoot, smaller values of integral of absolute and deviation errors over the conventional PID controller at all the testing conditions.

Keywords: electrohydraulic, fuzzy logic, modelling, NZ-PID

Procedia PDF Downloads 470
2651 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.

Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection

Procedia PDF Downloads 447
2650 Three-Dimensional Finite Element Analysis of Geogrid-Reinforced Piled Embankments on Soft Clay

Authors: Mahmoud Y. Shokry, Rami M. El-Sherbiny

Abstract:

This paper aims to highlight the role of some parameters that may be of a noticeable impact on numerical analysis/design of embankments. It presents the results of a three-dimensional (3-D) finite element analysis of a monitored earth embankment that was constructed on soft clay formation stabilized by cast in-situ piles using software PLAXIS 3D. A comparison between the predicted and the monitored responses is presented to assess the adequacy of the adopted numerical model. The model was used in the targeted parametric study. Moreover, a comparison was performed between the results of the 3-D analyses and the analytical solutions. This paper concluded that the effect of using mono pile caps led to decrease both the total and differential settlement and increased the efficiency of the piled embankment system. The study of using geogrids revealed that it can contribute in decreasing the settlement and maximizing the part of the embankment load transferred to piles. Moreover, it was found that increasing the stiffness of the geogrids provides higher values of tensile forces and hence has more effective influence on embankment load carried by piles rather than using multi-number of layers with low values of geogrid stiffness. The efficiency of the piled embankments system was also found to be greater when higher embankments are used rather than the low height embankments. The comparison between the numerical 3-D model and the theoretical design methods revealed that many analytical solutions are conservative and non-accurate rather than the 3-D finite element numerical models.

Keywords: efficiency, embankment, geogrids, soft clay

Procedia PDF Downloads 323
2649 Discursive Legitimation Strategies in ISIS’ Online Magazine, Dabiq: A Discourse Historical Approach

Authors: Sahar Rasoulikolamaki

Abstract:

ISIS (also known as DAASH) is an Islamic fundamentalist group that has been known as a global threat to the whole world for their radicalizing approach and application of online platforms as a tool to portray their activities, to disseminate their ideology, and to commit recruiting activities. This study is an attempt to carry out a critical discourse analysis on the argumentative devices by which ISIS legitimizes or delegitimizes positive or negative constructions of social practices in Dabiq. It tries to shed light on how texts in Dabiq as linguistic elements in the micro level of analysis relate to ISIS’ ideology as the higher-up macro level and in other words, how local structures contributed to the construction and transference of a global structure or ideology and vice versa. Therefore, following the relevant analytical frameworks, the study focuses on both micro-level of analysis of arguments (topoi) and macro-structure of legitimation and delegitimation in Dabiq. This purpose is nailed using the analytical categories and tools provided by Wodak’s Discourse Historical Approach (DHA) such as argumentation strategies (topoi), by which the coded language of legitimation/delegitimation and persuasion as used in Dabiq are explored. The ensuing findings demonstrate that Dabiq rigorously relies on the positive representation of the in-group course of actions and justifying its violence and, at the same time, the negative representation of the out-group behavior through implementing various topoi to achieve its desired outcome, which is the ideological manipulation and powerful self-depiction, as well as the supporter recruitment.

Keywords: argumentation, discourse-historical approach, ideology, legitimation and delegitimation, topoi

Procedia PDF Downloads 135
2648 Designing, Preparation and Structural Evaluation of Co-Crystals of Oxaprozin

Authors: Maninderjeet K. Grewal, Sakshi Bhatnor, Renu Chadha

Abstract:

The composition of pharmaceutical entities and the molecular interactions can be altered to optimize drug properties such as solubility and bioavailability by the crystal engineering technique. The present work has emphasized on the preparation, characterization, and biopharmaceutical evaluation of co-crystal of BCS Class II anti-osteoarthritis drug, Oxaprozin (OXA) with aspartic acid (ASPA) as co-former. The co-crystals were prepared through the mechanochemical solvent drop grinding method. Characterization of the prepared co-crystal (OXA-ASPA) was done by using analytical tools such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermogram of OXA-ASPA cocrystal showed a single sharp melting endotherm at 235 ºC, which was between the melting peaks of the drug and the counter molecules suggesting the formation of a new phase which is a co-crystal that was further confirmed by using other analytical techniques. FT-IR analysis of OXA-ASPA cocrystal showed a shift in a hydroxyl, carbonyl, and amine peaks as compared to pure drugs indicating all these functional groups are participating in cocrystal formation. The appearance of new peaks in the PXRD pattern of cocrystals in comparison to individual components showed that a new crystalline entity has been formed. The Crystal structure of cocrystal was determined using material studio software (Biovia) from PXRD. The equilibrium solubility study of OXA-ASPA showed improvement in solubility as compared to pure drug. Therefore, it was envisioned to prepare the co-crystal of oxaprozin with a suitable conformer to modulate its physiochemical properties and consequently, the biopharmaceutical parameters.

Keywords: cocrystals, coformer, oxaprozin, solubility

Procedia PDF Downloads 115
2647 Towards the Effectiveness/ Performance of Spatial Communication within the Composite Interior Spaces: Wayfinding System in the Saudi National Museum as a Case Study

Authors: Afnan T. Bagasi, Donia M. Bettaieb, Abeer Alsobahi

Abstract:

The wayfinding system is related to the course of the museum journey for visitors directly and indirectly. The design aspects of this system play an important role, making it an effective and communication system within the museum space. However, translating the concepts that pertain to its design, such as Intelligibility that is based on integration and connectivity in museum space design, needs more customization in the form of specific design considerations with reference to the most important approaches. Those approaches link the organizational and practical aspects to the semiotic and semantic aspects related to the space syntax by targeting the visual and perceived consistency of visitors. In this context, the study aims to identify how to apply the concept of intelligibility and clarity by employing integration and connectivity to design a wayfinding system in museums as a kind of composite interior space. Using the available plans and images to extrapolate the design considerations used to design the wayfinding system in the Saudi National Museum as a case study, a descriptive-analytical method was used to understand the basic organizational and morphological principles of the museum space through four main aspects in space design: morphological, semantic, semiotic, and pragmatic. The study's findings will assist designers, professionals, and researchers in the field of museum design in understanding the significance of the wayfinding system by delving into it through museum spaces by highlighting the essential aspects using a clear analytical method.

Keywords: wayfinding system, museum journey, intelligibility, integration, connectivity

Procedia PDF Downloads 171
2646 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing

Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.

Abstract:

Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.

Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target

Procedia PDF Downloads 330
2645 A Study on the Personality Traits of Students Who Have Chosen Medicine as Their Career

Authors: Khairani Omar, Shalinawati Ramli, Nurul Azmawati Mohamed, Zarini Ismail, Nur Syahrina Rahim, Nurul Hayati Chamhuri

Abstract:

Choosing a career which matches a student’s personality traits is one of the key factors for future work satisfaction. This is because career satisfaction is at the highest when it is in line with one’s personality strength, values and attitudes. Personality traits play a major role in determining the success of a student in the medical course. In the pre-clinical years, medical theories are being emphasized, thus, conscientious students would perform better than those with lower level of this trait. As the emphasis changes in the clinical years during which patient interaction is important, personality traits which involved interpersonal values become more essential for success. The aim of this study was to determine the personality traits of students who had chosen medicine as their career. It was a cross-sectional study conducted at the Islamic Science University of Malaysia. The respondents consisted of 81 students whose age ranged between 20-21 years old. A set of personality assessment inventory index which has been validated for the local context was used to determine the students’ personality traits. The instrument assessed 15 personality traits namely: aggressive, analytical, autonomy, creativity, extrovert, intellectual, motivation, diversity, resiliency, self-criticism, control, helpful, support, structured and achievement. The scores ranged between 1-100%, and they were categorized into low (1-30%), moderate (40-60%) and high scores (70-100%). The respondents were Year 3 pre-clinical medical students and there were more female students (69%) compared to male students (31%). Majority of them were from middle-income families. Approximately 70% of both parents of the respondents had tertiary education. Majority of the students had high scores in autonomy, creativity, diversity, helpful, structured and achievement. In other words, more than 50% of them scored high (70-100%) in these traits. Scoring high in these traits was beneficial for the medical course. For aggressive trait, 54% of them had moderate scores which is compatible for medicine as this indicated an inclination to being assertive. In the analytical and intellectual components, only 40% and 25% had high scores respectively. These results contradicted the usual expectation of medical students whereby they are expected to be highly analytical and intellectual. It would be an added value if the students had high scores in being extrovert as this reflects on good interpersonal values, however, the students had approximately similar scores in all categories of this trait. Being resilient in the medical school is important as the course is difficult and demanding. The students had good scores in this component in which 46% had high scores while 39% had moderate scores. In conclusion, by understanding their personality traits, strengths and weaknesses, the students will have an opportunity to improve themselves in the areas they lack. This will help them to become better doctors in future.

Keywords: career, medical students, medicine, personality traits

Procedia PDF Downloads 296
2644 Oxidation Assessment of Mayonnaise with Headspace Single-Drop Microextarction (HS-SDME) Coupled with Gas Chromatography-Mass Spectrometry (GC-MS) during Shelf-Life

Authors: Kooshan Nayebzadeh, Maryam Enteshari, Abdorreza Mohammadi

Abstract:

The oxidative stability of mayonnaise under different storage temperatures (4 and 25˚C) during 6-month shelf-life was investigated by different analytical methods. In this study, headspace single-drop microextarction (HS-SDME) combined with gas chromatography-mass spectrometry (GC-MS) as a green, sensitive and rapid technique was applied to evaluate oxidative state in mayonnaise. Oxidation changes of extracted oil from mayonnaise were monitored by analytical parameters including peroxide value (PV), p-Anisidine value (p-An V), thiobarbituric acid value (TBA), and oxidative stability index (OSI). Hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-SDME/GC-MS method in mayonnaise matrix. The rate of oxidation in mayonnaises increased during storage and it was determined greater at 25 ˚C. The values of Anisidine and TBA were gradually enhanced during 6 months, while the amount of OSI decreased. At both temperatures, the content of hexanal was higher than heptanal during all storage periods. Also significant increments in hexanal and heptanal concentrations in the second and sixth month of storage have been observed. Hexanal concentrations in mayonnaises which were stored at 25 ˚C and during storage time showed the highest values. It can be concluded that the temperature and duration of storage time are definitive parameters which affect on quality and oxidative stability of mayonnaise. Additionally, hexanal content in comparison to heptanal is a more reliable oxidative indicator and HS-SDME/GC-MS can be applied in a quick and simple manner.

Keywords: oxidative stability, mayonnaise, headspace single-drop microextarction (HS-SDME), shelf-life

Procedia PDF Downloads 419
2643 Language Transfer in Graduate Candidates’ Essays

Authors: Erika Martínez Lugo

Abstract:

Candidates to some graduate studies are asked to write essays in English to prove their competence to write essays and to do it in English. In the present study, language transfer (LT) in 15 written essays is identified, documented, analyzed, and classified. The essays were written in 2019, and the graduate program is a Masters in Modern Languages in a North-Western Mexican city border with USA. This study is of interest since it is important to determine whether or not some errors have been fossilized and have become mistakes, or if it is part of the candidates’ interlanguage. The results show that most language transfer is negative and syntactic, where the influence of candidates L1 (Spanish) is evident in their use of L2 (English).

Keywords: language transfer, cross-linguistic influence, interlanguage, error vs mistake

Procedia PDF Downloads 177
2642 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube

Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego

Abstract:

The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).

Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation

Procedia PDF Downloads 315
2641 Analytic Hierarchy Process and Multi-Criteria Decision-Making Approach for Selecting the Most Effective Soil Erosion Zone in Gomati River Basin

Authors: Rajesh Chakraborty, Dibyendu Das, Rabindra Nath Barman, Uttam Kumar Mandal

Abstract:

In the present study, the objective is to find out the most effective zone causing soil erosion in the Gumati river basin located in the state of Tripura, a north eastern state of India using analytical hierarchy process (AHP) and multi-objective optimization on the basis of ratio analysis (MOORA).The watershed is segmented into 20 zones based on Area. The watershed is considered by pointing the maximum elevation from sea lever from Google earth. The soil erosion is determined using the universal soil loss equation. The different independent variables of soil loss equation bear different weightage for different soil zones. And therefore, to find the weightage factor for all the variables of soil loss equation like rainfall runoff erosivity index, soil erodibility factor etc, analytical hierarchy process (AHP) is used. And thereafter, multi-objective optimization on the basis of ratio analysis (MOORA) approach is used to select the most effective zone causing soil erosion. The MCDM technique concludes that the maximum soil erosion is occurring in the zone 14.

Keywords: soil erosion, analytic hierarchy process (AHP), multi criteria decision making (MCDM), universal soil loss equation (USLE), multi-objective optimization on the basis of ratio analysis (MOORA)

Procedia PDF Downloads 538
2640 Investigating The Effect Of Convection On The Rating Of Buried Cables Using The Finite Element Method

Authors: Sandy J. M. Balla, Jerry J. Walker, Isaac K. Kyere

Abstract:

The heat transfer coefficient at the soil–air interface is important in calculating underground cable ampacity when convection occurs. Calculating the heat transfer coefficient accurately is complex because of the temperature variations at the earth's surface. This paper presents the effect of convection heat flow across the ground surface on the rating of three single-core, 132kV, XLPE cables buried underground. The Finite element method (FEM) is a numerical analysis technique used to determine the cable rating of buried cables under installation conditions that are difficult to support when using the analytical method. This study demonstrates the use of FEM to investigate the effect of convection on the rating ofburied cables in flat formation using QuickField finite element simulation software. As a result, developing a model to simulate this type of situation necessitates important considerations such as the following boundary conditions: burial depth, soil thermal resistivity, and soil temperature, which play an important role in the simulation's accuracy and reliability. The results show that when the ground surface is taken as a convection interface, the conductor temperature rises and may exceed the maximum permissible temperature when rated current flows. This is because the ground surface acts as a convection interface between the soil and the air (fluid). This result correlates and is compared with the rating obtained using the IEC60287 analytical method, which is based on the condition that the ground surface is an isotherm.

Keywords: finite element method, convection, buried cables, steady-state rating

Procedia PDF Downloads 131
2639 A Cohort and Empirical Based Multivariate Mortality Model

Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong

Abstract:

This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.

Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management

Procedia PDF Downloads 53
2638 Analysis of Security Vulnerabilities for Mobile Health Applications

Authors: Yuli Paola Cifuentes Sanabria, Lina Paola Beltrán Beltrán, Leonardo Juan Ramírez López

Abstract:

The availability to deploy mobile applications for healthcare is increasing daily thru different mobile app stores. But within these capabilities the number of hacking attacks has also increased, in particular into medical mobile applications. The security vulnerabilities in medical mobile apps can be triggered by errors in code, incorrect logic, poor design, among other parameters. This is usually used by malicious attackers to steal or modify the users’ information. The aim of this research is to analyze the vulnerabilities detected in mobile medical apps according to risk factor standards defined by OWASP in 2014.

Keywords: mHealth apps, OWASP, protocols, security vulnerabilities, risk factors

Procedia PDF Downloads 517
2637 Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection

Authors: Viviana Ventre, Giacomo Di Tollo, Roberta Martino

Abstract:

The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios.

Keywords: analytical hierarchical process, consensus building, false consensus effect, markov chains, portfolio selection problem

Procedia PDF Downloads 93
2636 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 495
2635 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 278
2634 A Compressor Map Optimizing Tool for Prediction of Compressor Off-Design Performance

Authors: Zhongzhi Hu, Jie Shen, Jiqiang Wang

Abstract:

A high precision aeroengine model is needed when developing the engine control system. Compared with other main components, the axial compressor is the most challenging component to simulate. In this paper, a compressor map optimizing tool based on the introduction of a modifiable β function is developed for FWorks (FADEC Works). Three parameters (d density, f fitting coefficient, k₀ slope of the line β=0) are introduced to the β function to make it modifiable. The comparison of the traditional β function and the modifiable β function is carried out for a certain type of compressor. The interpolation errors show that both methods meet the modeling requirements, while the modifiable β function can predict compressor performance more accurately for some areas of the compressor map where the users are interested in.

Keywords: beta function, compressor map, interpolation error, map optimization tool

Procedia PDF Downloads 267
2633 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: extraneous materials, food contamination, foreign matter, surveillance

Procedia PDF Downloads 359
2632 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load

Authors: Sanjin Kršćanski, Josip Brnić

Abstract:

Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.

Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending

Procedia PDF Downloads 305
2631 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller

Authors: K. Boumediene, S. E. Belhenniche

Abstract:

This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.

Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance

Procedia PDF Downloads 499
2630 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 204
2629 The Platform for Digitization of Georgian Documents

Authors: Erekle Magradze, Davit Soselia, Levan Shughliashvili, Irakli Koberidze, Shota Tsiskaridze, Victor Kakhniashvili, Tamar Chaghiashvili

Abstract:

Since the beginning of active publishing activity in Georgia, voluminous printed material has been accumulated, the digitization of which is an important task. Digitized materials will be available to the audience, and it will be possible to find text in them and conduct various factual research. Digitizing scanned documents means scanning documents, extracting text from the scanned documents, and processing the text into a corresponding language model to detect inaccuracies and grammatical errors. Implementing these stages requires a unified, scalable, and automated platform, where the digital service developed for each stage will perform the task assigned to it; at the same time, it will be possible to develop these services dynamically so that there is no interruption in the work of the platform.

Keywords: NLP, OCR, BERT, Kubernetes, transformers

Procedia PDF Downloads 144
2628 Simplified Stress Gradient Method for Stress-Intensity Factor Determination

Authors: Jeries J. Abou-Hanna

Abstract:

Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress gradient

Procedia PDF Downloads 135
2627 The Role of the Child's Previous Inventory in Verb Overgeneralization in Spanish Child Language: A Case Study

Authors: Mary Rosa Espinosa-Ochoa

Abstract:

The study of overgeneralization in inflectional morphology provides evidence for understanding how a child's mind works when applying linguistic patterns in a novel way. High-frequency inflectional forms in the input cause inappropriate use in contexts related to lower-frequency forms. Children learn verbs as lexical items and new forms develop only gradually, around their second year: most of the utterances that children produce are closely related to what they have previously produced. Spanish has a complex verbal system that inflects for person, mood, and tense. Approximately 200 verbs are irregular, and bare roots always require an inflected form, which represents a challenge for the memory. The aim of this research is to investigate i) what kinds of overgeneralization errors children make in verb production, ii) to what extent these errors are related to verb forms previously produced, and iii) whether the overgeneralized verb components are also frequent in children’s linguistic inventory. It consists of a high-density longitudinal study of a middle-class girl (1;11,24-2;02,24) from Mexico City, whose utterances were recorded almost daily for three months to compile a unique corpus in the Spanish language. Of the 358 types of inflected verbs produced by the child, 9.11% are overgeneralizations. Not only are inflected forms (verbal and pronominal clitics) overgeneralized, but also verbal roots. Each of the forms can be traced to previous utterances, and they show that the child is detecting morphological patterns. Neither verbal roots nor inflected forms are associated with high frequency patterns in her own speech. For example, the child alternates the bare roots of an irregular verb, cáye-te* and cáiga-te* (“fall down”), to express the imperative of the verb cá-e-te (fall down.IMPERATIVE-PRONOMINAL.CLITIC), although cay-ó (PAST.PERF.3SG) is the most frequent form of her previous complete inventory, and the combined frequency of caer (INF), cae (PRES.INDICATIVE.3SG), and caes (PRES.INDICATIVE.2SG) is the same as that of as caiga (PRES.SUBJ.1SG and 3SG). These results provide evidence that a) two forms of the same verb compete in the child’s memory, and b) although the child uses her own inventory to create new forms, these forms are not necessarily frequent in her memory storage, which means that her mind is more sensitive to external stimuli. Language acquisition is a developing process, given the sensitivity of the human mind to linguistic interaction with the outside world.

Keywords: inflection, morphology, child language acquisition, Spanish

Procedia PDF Downloads 101