Search results for: imaging analysis (NMR
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28713

Search results for: imaging analysis (NMR

28053 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 590
28052 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 138
28051 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.

Keywords: sub-group analysis, social media, social network analysis, recommender systems

Procedia PDF Downloads 363
28050 Classifications of Neuroscientific-Radiological Findings on “Practicing” in Mathematics Learning

Authors: Felicitas Pielsticker, Christoph Pielsticker, Ingo Witzke

Abstract:

Many people know ‘Mathematics needs practice!’ statement or similar ones from their mathematics lessons. It seems important to practice when learning mathematics. At the same time, it also seems important to practice how to learn mathematics. This paper places neuroscientific-radiological findings on “practicing” while learning mathematics in a context of mathematics education. To accomplish this, we use a literature-based discussion of our case study on practice. We want to describe neuroscientific-radiological findings in the context of mathematics education and point out stimulating connections between both perspectives. From a connective perspective we expect incentives that lead discussions in future research in the field of mathematics education.

Keywords: functional magnetic resonance imaging, fMRI, education, mathematics learning, practicing

Procedia PDF Downloads 340
28049 A Rare Case Report of Wandering Spleen Torsion

Authors: Steven Robinson, Adriana Dager, Param Patel

Abstract:

Wandering spleen is a rare variant where there is abnormal development of the ligamentous peritoneal attachments of the spleen which normally anchor it in the left upper quadrant of the abdomen. Ligamentous abnormalities can be congenital, or acquired through pregnancy, injury, or iatrogenic causes. Absence or laxity of these ligaments allows migration of the spleen into ectopic portions of the abdomen, which is also associated with an elongated vascular pedicle. Incidence of wandering spleen is reported at less than 0.25% with a female to male ratio of approximately 6:1. The most common complication of a wandering spleen is torsion around its vascular pedicle which can lead to thrombosis and infarction. Torsion of a wandering spleen is a rare but important cause of an acute abdomen. Imaging, and specifically CT or ultrasound, is crucial in the diagnosis. We present a case of a torsed wandering spleen which was treated with splenectomy.

Keywords: Wandering Spleen, Torsion, Splenic Torsion, Spleen

Procedia PDF Downloads 81
28048 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 713
28047 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning

Authors: Jehan Fahim M. Alsulami

Abstract:

Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.

Keywords: bibliometric analysis, sentiment analysis, social networks, social media

Procedia PDF Downloads 218
28046 Evaluation of Residual Stresses in Human Face as a Function of Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of living tissues to mechanical loads is necessary for a wide range of developing fields such as prosthetics design or computerassisted surgical interventions. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically, growth is one of the main sources. Extracting body organ’s shapes from medical imaging does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is gravity since an organ grows under its influence from birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. This paper presents an original computational framework based on gradual growth to determine the residual stresses due to growth. To illustrate the method, we apply it to a finite element model of a healthy human face reconstructed from medical images. The distribution of residual stress in facial tissues is computed, which can overcome the effect of gravity and maintain tissues firmness. Our assumption is that tissue wrinkles caused by aging could be a consequence of decreasing residual stress and thus not counteracting gravity. Taking into account these stresses seems therefore extremely important in maxillofacial surgery. It would indeed help surgeons to estimate tissues changes after surgery.

Keywords: finite element method, growth, residual stress, soft tissue

Procedia PDF Downloads 270
28045 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 487
28044 Call-Back Laterality and Bilaterality: Possible Screening Mammography Quality Metrics

Authors: Samson Munn, Virginia H. Kim, Huija Chen, Sean Maldonado, Michelle Kim, Paul Koscheski, Babak N. Kalantari, Gregory Eckel, Albert Lee

Abstract:

In terms of screening mammography quality, neither the portion of reports that advise call-back imaging that should be bilateral versus unilateral nor how much the unilateral call-backs may appropriately diverge from 50–50 (left versus right) is known. Many factors may affect detection laterality: display arrangement, reflections preferentially striking one display location, hanging protocols, seating positions with respect to others and displays, visual field cuts, health, etc. The call-back bilateral fraction may reflect radiologist experience (not in our data) or confidence level. Thus, laterality and bilaterality of call-backs advised in screening mammography reports could be worthy quality metrics. Here, laterality data did not reveal a concern until drilling down to individuals. Bilateral screening mammogram report recommendations by five breast imaging, attending radiologists at Harbor-UCLA Medical Center (Torrance, California) 9/1/15--8/31/16 and 9/1/16--8/31/17 were retrospectively reviewed. Recommended call-backs for bilateral versus unilateral, and for left versus right, findings were counted. Chi-square (χ²) statistic was applied. Year 1: of 2,665 bilateral screening mammograms, reports of 556 (20.9%) recommended call-back, of which 99 (17.8% of the 556) were for bilateral findings. Of the 457 unilateral recommendations, 222 (48.6%) regarded the left breast. Year 2: of 2,106 bilateral screening mammograms, reports of 439 (20.8%) recommended call-back, of which 65 (14.8% of the 439) were for bilateral findings. Of the 374 unilateral recommendations, 182 (48.7%) regarded the left breast. Individual ranges of call-backs that were bilateral were 13.2–23.3%, 10.2–22.5%, and 13.6–17.9%, by year(s) 1, 2, and 1+2, respectively; these ranges were unrelated to experience level; the two-year mean was 15.8% (SD=1.9%). The lowest χ² p value of the group's sidedness disparities years 1, 2, and 1+2 was > 0.4. Regarding four individual radiologists, the lowest p value was 0.42. However, the fifth radiologist disfavored the left, with p values of 0.21, 0.19, and 0.07, respectively; that radiologist had the greatest number of years of experience. There was a concerning, 93% likelihood that bias against left breast findings evidenced by one of our radiologists was not random. Notably, very soon after the period under review, he retired, presented with leukemia, and died. We call for research to be done, particularly by large departments with many radiologists, of two possible, new, quality metrics in screening mammography: laterality and bilaterality. (Images, patient outcomes, report validity, and radiologist psychological confidence levels were not assessed. No intervention nor subsequent data collection was conducted. This uncomplicated collection of data and simple appraisal were not designed, nor had there been any intention to develop or contribute, to generalizable knowledge (per U.S. DHHS 45 CFR, part 46)).

Keywords: mammography, screening mammography, quality, quality metrics, laterality

Procedia PDF Downloads 162
28043 Task Based Functional Connectivity within Reward Network in Food Image Viewing Paradigm Using Functional MRI

Authors: Preetham Shankapal, Jill King, Kori Murray, Corby Martin, Paula Giselman, Jason Hicks, Owen Carmicheal

Abstract:

Activation of reward and satiety networks in the brain while processing palatable food cues, as well as functional connectivity during rest has been studied using functional Magnetic Resonance Imaging of the brain in various obesity phenotypes. However, functional connectivity within the reward and satiety network during food cue processing is understudied. 14 obese individuals underwent two fMRI scans during viewing of Macronutrient Picture System images. Each scan included two blocks of images of High Sugar/High Fat (HSHF), High Carbohydrate/High Fat (HCHF), Low Sugar/Low Fat (LSLF) and also non-food images. Seed voxels within seven food reward relevant ROIs: Insula, putamen and cingulate, precentral, parahippocampal, medial frontal and superior temporal gyri were isolated based on a prior meta-analysis. Beta series correlation for task-related functional connectivity between these seed voxels and the rest of the brain was computed. Voxel-level differences in functional connectivity were calculated between: first and the second scan; individuals who saw novel (N=7) vs. Repeated (N=7) images in the second scan; and between the HC/HF, HSHF blocks vs LSLF and non-food blocks. Computations and analysis showed that during food image viewing, reward network ROIs showed significant functional connectivity with each other and with other regions responsible for attentional and motor control, including inferior parietal lobe and precentral gyrus. These functional connectivity values were heightened among individuals who viewed novel HS/HF images in the second scan. In the second scan session, functional connectivity was reduced within the reward network but increased within attention, memory and recognition regions, suggesting habituation to reward properties and increased recollection of previously viewed images. In conclusion it can be inferred that Functional Connectivity within reward network and between reward and other brain regions, varies by important experimental conditions during food photography viewing, including habituation to shown foods.

Keywords: fMRI, functional connectivity, task-based, beta series correlation

Procedia PDF Downloads 270
28042 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space

Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson

Abstract:

Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.

Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling

Procedia PDF Downloads 235
28041 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
28040 Rasagiline Improves Metabolic Function and Reduces Tissue Injury in the Substantia Nigra in Parkinson's Disease: A Longitudinal In-Vivo Advanced MRI Study

Authors: Omar Khan, Shana Krstevska, Edwin George, Veronica Gorden, Fen Bao, Christina Caon, NP-C, Carla Santiago, Imad Zak, Navid Seraji-Bozorgzad

Abstract:

Objective: To quantify cellular injury in the substantia nigra (SN) in patients with Parkinson's disease (PD) and to examine the effect of rasagiline of tissue injury in the SN in patients with PD. Background: N-acetylaspartate (NAA) quantified with MRS is a reliable marker of neuronal metabolic function. Fractional anisotropy (FA) and mean diffusivity (MD) obtained with DTI, characterize tissue alignment and integrity. Rasagline, has been shown to exert anti-apototic effect. We applied these advanced MRI techniques to examine: (i) the effect of rasagiline on cellular injury and metabolism in patients with early PD, and (ii) longitudinal changes seen over time in PD. Methods: We conducted a prospective longitudinal study in patients with mild PD, naive to dopaminergic treatment. The imaging protocol included multi-voxel proton-MRS and DTI of the SN, acquired on a 3T scanner. Scans were performed at baseline and month 3, during which the patient was on no treatment. At that point, rasagiline 1 mg orally daily was initiated and MRI scans are were obtained at 6 and 12 months after starting rasagiline. The primary objective was to compare changes during the 3-month period of “no treatment” to the changes observed “on treatment” with rasagiline at month 12. Age-matched healthy controls were also imaged. Image analysis was performed blinded to treatment allocation and period. Results: 25 patients were enrolled in this study. Compared to the period of “no treatment”, there was significant increase in the NAA “on treatment” period (-3.04 % vs +10.95 %, p= 0.0006). Compared to the period of “no treatment”, there was significant increase in following 12 month in the FA “on treatment” (-4.8% vs +15.3%, p<0.0001). The MD increased during “no treatment” and decreased in “on treatment” (+2.8% vs -7.5%, p=0.0056). Further analysis and clinical correlation are ongoing. Conclusions: Advanced MRI techniques quantifying cellular injury in the SN in PD is a feasible approach to investigate dopaminergic neuronal injury and could be developed as an outcome in exploratory studies. Rasagiline appears to have a stabilizing effect on dopaminergic cell loss and metabolism in the SN in PD, that warrants further investigation in long-term studies.

Keywords: substantia nigra, Parkinson's disease, MRI, neuronal loss, biomarker

Procedia PDF Downloads 315
28039 Development of Long and Short Range Ordered Domains in a High Specific Strength Steel

Authors: Nikhil Kumar, Aparna Singh

Abstract:

Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties.

Keywords: Anti-phase domain boundaries, BCC, FCC, Light Weight Steel

Procedia PDF Downloads 141
28038 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 411
28037 Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

Authors: Sahabeh Safarpour, Khiruddin Abdullah, Hwee San Lim, Mohsen Dadras

Abstract:

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000-2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer, and winter and ordinary kriging yielded the best results for fall.

Keywords: aerosol optical depth, MODIS, spatial interpolation techniques, Radial Basis Functions

Procedia PDF Downloads 407
28036 Oral Administration of Azithromycin Ameliorates Trypanosomosis in Trypanosoma congolense and T. Brucei Brucei Infected Mice

Authors: Nthatisi I. Molefe-Nyembe, Keisuke Suganuma, Oriel M. M. Thekisoe, Xuan Xuenan, Noboru Inoue

Abstract:

African trypanosomosis is a devastating disease of animals caused by parasites of the genus Trypanosoma negatively affecting the economic status of more than 36 African countries. Few available drugs for the treatment of trypanosomosis remain inaccessible in remote areas, are associated with severe toxicity and most importantly, resistance has widely developed against their usage. Therefore, safe, effective and easily administrable drugs are urgently in need. The objective of the current study was to determine efficacy of azithromycin (AZM), on T. congolense, T. brucei brucei in vitro and in vivo. A 96 well luciferase assay was conducted to determine the trypanocidal effect of AZM on T. congolense, T. b. brucei and T. evansi as well as the cytotoxicity effect on the MDBK and NIH 3T3 cells. Additionally, TEM analysis was conducted to determine the morphological alteration on the AZM treated samples. Mice were infected with T. congolense and T. b. brucei and orally treated with AZM for 7 and 28 days referred to as the short and the long-term treatment. The in vitro IC50 values of AZM on T. congolense, T. b. brucei and T. evansi was 0.19 ± 0.17; 3.69 ± 2.26 and 1.81 ± 1.82 μg/mL, respectively, while the cytotoxicity effects values were greater than 25 μg/mL. A vacuole-like structure was observed in the TEM imaging of AZM treated T. congolense, while the presence of glycosomes and acidocalcisome-like structured were detected in T. b. brucei samples. In vivo, AZM was more effective against T. congolense infected mice than T. b. brucei. In conclusion, AZM exhibited the trypanocidal effects on T. congolense and T. b. brucei infected mice. However, further studies are necessary to determine the metabolic pathway responsible for the observed efficacy.

Keywords: animal trypanosomosis, azithromycin, oral administration, trypanosoma congolense

Procedia PDF Downloads 65
28035 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 143
28034 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 63
28033 Type A Quadricuspid Aortic Valve; Rarer than a Four-Leaf Clover, an Example of Availability Heuristic

Authors: Frazer Kirk, Rohen Skiba, Pankaj Saxena

Abstract:

The natural history of the QAV is poorly understood due to the exceeding rarity of the condition. Incidence rates vary between 0.00028-1%. Classically patients present with Aortic Regurgitation (AR) between 40-60 years of age experiencing palpitations, chest pain, or heart failure. (1, 2) Echocardiography is the mainstay of diagnosis for this condition; however, given the rarity of this condition, it can easily be overlooked, as demonstrated here. The case report that follows serves as a reminder of the condition to reduce the innate cognitive bias to overlook the diagnosis due to the availability heuristic. Intraoperative photography, echocardiographic and magnetic resonance imaging from this case for reference to demonstrate that while the diagnosis of Aortic regurgitation was recognized early, the valve morphology was underappreciated.

Keywords: quadricuspid aortic valve, cardiac surgery, echocardiography, congenital

Procedia PDF Downloads 162
28032 Kinematic Gait Analysis Is a Non-Invasive, More Objective and Earlier Measurement of Impairment in the Mdx Mouse Model of Duchenne Muscular Dystrophy

Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K. Lehtimäki, A. Nurmi, D. Wells

Abstract:

Duchenne muscular dystrophy (DMD) is caused by an X linked mutation in the dystrophin gene; lack of dystrophin causes a progressive muscle necrosis which leads to a progressive decrease in mobility in those suffering from the disease. The MDX mouse, a mutant mouse model which displays a frank dystrophinopathy, is currently widely employed in pre clinical efficacy models for treatments and therapies aimed at DMD. In general the end-points examined within this model have been based on invasive histopathology of muscles and serum biochemical measures like measurement of serum creatine kinase (sCK). It is established that a “critical period” between 4 and 6 weeks exists in the MDX mouse when there is extensive muscle damage that is largely sub clinical but evident with sCK measurements and histopathological staining. However, a full characterization of the MDX model remains largely incomplete especially with respect to the ability to aggravate of the muscle damage beyond the critical period. The purpose of this study was to attempt to aggravate the muscle damage in the MDX mouse and to create a wider, more readily translatable and discernible, therapeutic window for the testing of potential therapies for DMD. The study consisted of subjecting 15 male mutant MDX mice and 15 male wild-type mice to an intense chronic exercise regime that consisted of bi-weekly (two times per week) treadmill sessions over a 12 month period. Each session was 30 minutes in duration and the treadmill speed was gradually built up to 14m/min for the entire session. Baseline plasma creatine kinase (pCK), treadmill training performance and locomotor activity were measured after the “critical period” at around 10 weeks of age and again at 14 weeks of age, 6 months, 9 months and 12 months of age. In addition, kinematic gait analysis was employed using a novel analysis algorithm in order to compare changes in gait and fine motor skills in diseased exercised MDX mice compared to exercised wild type mice and non exercised MDX mice. In addition, a morphological and metabolic profile (including lipid profile), from the muscles most severely affected, the gastrocnemius muscle and the tibialis anterior muscle, was also measured at the same time intervals. Results indicate that by aggravating or exacerbating the underlying muscle damage in the MDX mouse by exercise a more pronounced and severe phenotype in comes to light and this can be picked up earlier by kinematic gait analysis. A reduction in mobility as measured by open field is not apparent at younger ages nor during the critical period, but changes in gait are apparent in the mutant MDX mice. These gait changes coincide with pronounced morphological and metabolic changes by non-invasive anatomical MRI and proton spectroscopy (1H-MRS) we have reported elsewhere. Evidence of a progressive asymmetric pathology in imaging parameters as well as in the kinematic gait analysis was found. Taken together, the data show that chronic exercise regime exacerbates the muscle damage beyond the critical period and the ability to measure through non-invasive means are important factors to consider when performing preclinical efficacy studies in the MDX mouse.

Keywords: Gait, muscular dystrophy, Kinematic analysis, neuromuscular disease

Procedia PDF Downloads 276
28031 How Acupuncture Improve Migraine: A Literature Review

Authors: Hsiang-Chun Lai, Hsien-Yin Liao, Yi-Wen Lin

Abstract:

Migraine is a primary headache disorder which presented as recurrent and moderate to severe headaches and affects nearly fifteen percent of people’s daily life. In East Asia, acupuncture is a common treatment for migraine prevention. Acupuncture can modulate migraine through both peripheral and central mechanism and decrease the allodynia process. Molecular pathway suggests that acupuncture relief migraine by regulating neurotransmitters/neuromodulators. This process was also proven by neural imaging. Acupuncture decrease the headache frequency and intensity compared to routine care. We also review the most common chosen acupoints to treat migraine and its treatment protocol. As a result, we suggested that acupuncture can serve as an option to migraine treatment and prevention. However, more studies are needed to establish the mechanism and therapeutic roles of acupuncture in treating migraine.

Keywords: acupuncture, allodynia, headache, migraine

Procedia PDF Downloads 265
28030 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 216
28029 Evaluation of the Radiolabelled 68GA-DOTATOC Complex in Adenocarcinoma Breast Cancer

Authors: S. Zolghadri, M. Naderi, H. Yousefnia, B. Alirzapour, A. R. Jalilian, A. Ramazani

Abstract:

Nowadays, 68Ga-DOTATOC has been known as a potential agent for the detection of neuroendocrine tumours and it has indicated higher sensitivity compared with the 111In-Octeroetide. The aim of this study was to evaluate the effectiveness of this new agent in the diagnosis of adenocarcinoma breast cancer. 68Ga-DOTATOC was prepared with the radiochemical purity of higher than 98% and by the specific activity of 39.6 TBq/mmol. 37 MBq of the complex was injected intravenously into the BULB/c mice with adenocarcinoma breast cancer. PET/CT images were acquired after 30, 60 and 90 min post injection demonstrated significant accumulation in the tumour sites. Also, considerable activity was observed in the kidney and bladder as the main routs of excretion. Generally, the results showed that 68Ga-DOTATOC can be considered as a suitable complex for diagnosis of the adenocarcinoma breast cancer using PET procedure.

Keywords: adenocarcinoma breast cancer, 68Ga, octreotide, imaging

Procedia PDF Downloads 341
28028 Cytotoxic and Biocompatible Evaluation of Silica Coated Silver Nanoparticle Against Nih-3t3 Cells

Authors: Chen-En Lin, Lih-Rou Rau, Jiunn-Woei Liaw, Shiao-Wen Tsai

Abstract:

The unique optical properties of plasmon resonance metallic particles have attracted considerable applications in the fields of physics, chemistry and biology. Metal-Enhanced Fluorescence (MEF) effect is one of the useful applications. MEF effect stated that fluorescence intensity can be quenched or be enhanced depending on the distance between fluorophores and the metal nanoparticles. Silver nanoparticles have used widely in antibacterial studies. However, the major limitation for silver nanoparticles (AgNPs) in biomedical application is well-known cytotoxicity on cells. There were numerous literatures have been devoted to overcome the disadvantage. The aim of the study is to evaluate the cytotoxicity and biocompatibility of silica coated AgNPs against NIH-3T3 cells. The results were shown that NIH-3T3 cells started to detach, shrink, become rounded and finally be irregular in shape after 24 h of exposure at 10 µg/ml AgNPs. Besides, compared with untreated cells, the cell viability significantly decreased to 60% and 40% which were exposed to 10 µg/ml and 20 µg/ml AgNPs respectively. The result was consistent with previously reported findings that AgNPs induced cytotoxicity was concentration dependent. However, the morphology and cell viability of cells appeared similar to the control group when exposed to 20 µg/ml of silica coated AgNPs. We further utilized the dark-field hyperspectral imaging system to analysis the optical properties of the intracellular nanoparticles. The image displayed that the red shift of the surface plasmonic resonances band of the enclosed AgNPs further confirms the agglomerate of the AgNPs rather than their distribution in cytoplasm. In conclusion, the study demonstrated the silica coated of AgNPs showed well biocompatibility and significant lower cytotoxicity compared with bare AgNPs.

Keywords: silver nanoparticles, silica, cell viability, morphology

Procedia PDF Downloads 394
28027 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 407
28026 Cost Based Analysis of Risk Stratification Tool for Prediction and Management of High Risk Choledocholithiasis Patients

Authors: Shreya Saxena

Abstract:

Background: Choledocholithiasis is a common complication of gallstone disease. Risk scoring systems exist to guide the need for further imaging or endoscopy in managing choledocholithiasis. We completed an audit to review the American Society for Gastrointestinal Endoscopy (ASGE) scoring system for prediction and management of choledocholithiasis against the current practice at a tertiary hospital to assess its utility in resource optimisation. We have now conducted a cost focused sub-analysis on patients categorized high-risk for choledocholithiasis according to the guidelines to determine any associated cost benefits. Method: Data collection from our prior audit was used to retrospectively identify thirteen patients considered high-risk for choledocholithiasis. Their ongoing management was mapped against the guidelines. Individual costs for the key investigations were obtained from our hospital financial data. Total cost for the different management pathways identified in clinical practice were calculated and compared against predicted costs associated with recommendations in the guidelines. We excluded the cost of laparoscopic cholecystectomy and considered a set figure for per day hospital admission related expenses. Results: Based on our previous audit data, we identified a77% positive predictive value for the ASGE risk stratification tool to determine patients at high-risk of choledocholithiasis. 47% (6/13) had an magnetic resonance cholangiopancreatography (MRCP) prior to endoscopic retrograde cholangiopancreatography (ERCP), whilst 53% (7/13) went straight for ERCP. The average length of stay in the hospital was 7 days, with an additional day and cost of £328.00 (£117 for ERCP) for patients awaiting an MRCP prior to ERCP. Per day hospital admission was valued at £838.69. When calculating total cost, we assumed all patients had admission bloods and ultrasound done as the gold standard. In doing an MRCP prior to ERCP, there was a 130% increase in cost incurred (£580.04 vs £252.04) per patient. When also considering hospital admission and the average length of stay, it was an additional £1166.69 per patient. We then calculated the exact costs incurred by the department, over a three-month period, for all patients, for key investigations or procedures done in the management of choledocholithiasis. This was compared to an estimate cost derived from the recommended pathways in the ASGE guidelines. Overall, 81% (£2048.45) saving was associated with following the guidelines compared to clinical practice. Conclusion: MRCP is the most expensive test associated with the diagnosis and management of choledocholithiasis. The ASGE guidelines recommend endoscopy without an MRCP in patients stratified as high-risk for choledocholithiasis. Our audit that focused on assessing the utility of the ASGE risk scoring system showed it to be relatively reliable for identifying high-risk patients. Our cost analysis has shown significant cost savings per patient and when considering the average length of stay associated with direct endoscopy rather than an additional MRCP. Part of this is also because of an increased average length of stay associated with waiting for an MRCP. The above data supports the ASGE guidelines for the management of high-risk for choledocholithiasis patients from a cost perspective. The only caveat is our small data set that may impact the validity of our average length of hospital stay figures and hence total cost calculations.

Keywords: cost-analysis, choledocholithiasis, risk stratification tool, general surgery

Procedia PDF Downloads 98
28025 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: radar, FMCW Radar, IQ mismatch, six port

Procedia PDF Downloads 152
28024 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 138