Search results for: homogeneous catalysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 728

Search results for: homogeneous catalysis

68 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)

Authors: Bencherif Kada

Abstract:

In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.

Keywords: forest, oaks, remote sensing, biodiversity, shrublands

Procedia PDF Downloads 24
67 An Analysis of Fundamentals and Factors of Positive Thinking and the Ways of Its Emergence in Islam and the New Testament

Authors: Zahra Mohagheghian, Fatema Agharebparast

Abstract:

The comparative study of religions is one of the ways which provides peace and makes the believers of religions closer together. Finding the common notions could be a foundation for the dialog among the monotheistic religions and a background to eliminate the misunderstandings and to reach common point of views. The cornerstone of all the common efforts of the believers of the religions is to reach an understanding for building a better world where true peace is established. So, the article seeks to verify the notion of positive thinking in the religious resources of Islam and Christianity. In order to understand the foundations of the religious teachings and to provide a better understanding among the believers, then, the article tries to discover the common fundamentals and the opposing points about the positive thinking in these two religions. We first try to explain the notion of positive thinking in Islam and Christianity and then offer recommended ways in both religions to create and to strengthen this way of thinking. As the different parts of the New Testament is not theologically homogeneous, this collection has been verified and explained in four different parts: Three Gospels (Matthew, Mark and Luke), John's thoughts, thoughts and ideas of Paul and finally the Christian sects . The findings of the survey show that the notion of positive thinking in the monotheistic religions of Islam and Christianity can be traced back by the keyword "hope". It is only the hope which could finally create the soul of positive attitude and thinking inside the humankind. This hope is accompanied by the prospect and causes the humankind to work hard to reach their goals. However, there are some opposing points in these two religions about the basic foundation of this true hope. From the Quran viewpoint, the main foundation of the hope is God and the human is obliged to follow his worldly goals in accordance with this foundation as well as faith to God and avoidance of committing sins. On the other hand, the basic foundation of hope in the Three Gospels (Matthew, Mark and Luke) and the teachings of Paul is the promise of a coming Kingdom. Although there are some opposing views about the meaning of this as well as the ways to attain this hope, this hope is generally related to the purpose of human life and afterlife. The Christ, in the John's thoughts, is the source of hope and everybody, believing in God, must also have hope for Jesus Christ. Effects and functions of such hope are strengthening the spirit of love and kindness to others. Hence, in Christianity, the hope and positive thinking about the future, along with good deeds, reflects different viewpoints. On the other hand, in Quran, this is faith to God and fulfilling the Sharia orders which ignite and strengthen this hope and way of thinking. This is the base that continues nowadays with Vilāya and the love for Ahlulbeit in the Shiite views.

Keywords: God, new testament, positive thinking, Quran

Procedia PDF Downloads 447
66 High Purity Lignin for Asphalt Applications: Using the Dawn Technology™ Wood Fractionation Process

Authors: Ed de Jong

Abstract:

Avantium is a leading technology development company and a frontrunner in renewable chemistry. Avantium develops disruptive technologies that enable the production of sustainable high value products from renewable materials and actively seek out collaborations and partnerships with like-minded companies and academic institutions globally, to speed up introductions of chemical innovations in the marketplace. In addition, Avantium helps companies to accelerate their catalysis R&D to improve efficiencies and deliver increased sustainability, growth, and profits, by providing proprietary systems and services to this regard. Many chemical building blocks and materials can be produced from biomass, nowadays mainly from 1st generation based carbohydrates, but potential for competition with the human food chain leads brand-owners to look for strategies to transition from 1st to 2nd generation feedstock. The use of non-edible lignocellulosic feedstock is an equally attractive source to produce chemical intermediates and an important part of the solution addressing these global issues (Paris targets). Avantium’s Dawn Technology™ separates the glucose, mixed sugars, and lignin available in non-food agricultural and forestry residues such as wood chips, wheat straw, bagasse, empty fruit bunches or corn stover. The resulting very pure lignin is dense in energy and can be used for energy generation. However, such a material might preferably be deployed in higher added value applications. Bitumen, which is fossil based, are mostly used for paving applications. Traditional hot mix asphalt emits large quantities of the GHG’s CO₂, CH₄, and N₂O, which is unfavorable for obvious environmental reasons. Another challenge for the bitumen industry is that the petrochemical industry is becoming more and more efficient in breaking down higher chain hydrocarbons to lower chain hydrocarbons with higher added value than bitumen. This has a negative effect on the availability of bitumen. The asphalt market, as well as governments, are looking for alternatives with higher sustainability in terms of GHG emission. The usage of alternative sustainable binders, which can (partly) replace the bitumen, contributes to reduce GHG emissions and at the same time broadens the availability of binders. As lignin is a major component (around 25-30%) of lignocellulosic material, which includes terrestrial plants (e.g., trees, bushes, and grass) and agricultural residues (e.g., empty fruit bunches, corn stover, sugarcane bagasse, straw, etc.), it is globally highly available. The chemical structure shows resemblance with the structure of bitumen and could, therefore, be used as an alternative for bitumen in applications like roofing or asphalt. Applications such as the use of lignin in asphalt need both fundamental research as well as practical proof under relevant use conditions. From a fundamental point of view, rheological aspects, as well as mixing, are key criteria. From a practical point of view, behavior in real road conditions is key (how easy can the asphalt be prepared, how easy can it be applied on the road, what is the durability, etc.). The paper will discuss the fundamentals of the use of lignin as bitumen replacement as well as the status of the different demonstration projects in Europe using lignin as a partial bitumen replacement in asphalts and will especially present the results of using Dawn Technology™ lignin as partial replacement of bitumen.

Keywords: biorefinery, wood fractionation, lignin, asphalt, bitumen, sustainability

Procedia PDF Downloads 149
65 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 237
64 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 124
63 Comparison Between Two Techniques (Extended Source to Surface Distance & Field Alignment) Of Craniospinal Irradiation (CSI) In the Eclipse Treatment Planning System

Authors: Naima Jannat, Ariful Islam, Sharafat Hossain

Abstract:

Due to the involvement of the large target volume, Craniospinal Irradiation makes it challenging to achieve a uniform dose, and it requires different isocenters. This isocentric junction needs to shift after every five fractions to overcome the possibility of hot and cold spots. This study aims to evaluate the Planning Target Volume coverage & sparing Organ at Risk between two techniques and shows that the Field Alignment Technique does not need replanning and resetting. Planning method for Craniospinal Irradiation by Eclipse treatment planning system Field Alignment and Extended Source to Surface Distance technique was developed where 36 Gy in 20 Fraction at the rate of 1.8 Gy was prescribed. The patient was immobilized in the prone position. In the Field Alignment technique, the plan consists of half beam blocked parallel opposed cranium and a single posterior cervicospine field was developed by sharing the same isocenter, which obviates divergence matching. Further, a single field was created to treat the remaining lumbosacral spine. Matching between the inferior diverging edge of the cervicospine field and the superior diverging edge of a lumbosacral field, the field alignment option was used, which automatically matches the field edge divergence as per the field alignment rule in Eclipse Treatment Planning System where the couch was set to 2700. In the Extended Source to Surface Distance technique, two parallel opposed fields were created for the cranium, and a single posterior cervicospine field was created where the Source to Surface Distance was from 120-140 cm. Dose Volume Histograms were obtained for each organ contoured and for each technique used. In all, the patient’s maximum dose to Planning Target Volume is higher for the Extended Source to Surface Distance technique to Field Alignment technique. The dose to all surrounding structures was increased with the use of a single Extended Source to Surface Distance when compared to the Field Alignment technique. The average mean dose to Eye, Brain Steam, Kidney, Oesophagus, Heart, Liver, Lung, and Ovaries were respectively (58% & 60 %), (103% & 98%), (13% & 15%), (10% & 63%), (12% & 16%), (33% & 30%), (14% & 18%), (69% & 61%) for Field Alignment and Extended Source to Surface Distance technique. However, the clinical target volume at the spine junction site received a less homogeneous dose with the Field Alignment technique as compared to Extended Source to Surface Distance. We conclude that, although the use of a single field Extended Source to Surface Distance delivered a more homogenous, but its maximum dose is higher than the Field Alignment technique. Also, a huge advantage of the Field Alignment technique for Craniospinal Irradiation is that it doesn’t need replanning and resetting up of patients after every five fractions and 95% prescribed dose was received by more than 95% of the Planning Target Volume in all the plane with the acceptable hot spot.

Keywords: craniospinalirradiation, cranium, cervicospine, immobilize, lumbosacral spine

Procedia PDF Downloads 106
62 Development and Characterization of Novel Topical Formulation Containing Niacinamide

Authors: Sevdenur Onger, Ali Asram Sagiroglu

Abstract:

Hyperpigmentation is a cosmetically unappealing skin problem caused by an overabundance of melanin in the skin. Its pathophysiology is caused by melanocytes being exposed to paracrine melanogenic stimuli, which can upregulate melanogenesis-related enzymes (such as tyrosinase) and cause melanosome formation. Tyrosinase is linked to the development of melanosomes biochemically, and it is the main target of hyperpigmentation treatment. therefore, decreasing tyrosinase activity to reduce melanosomes has become the main target of hyperpigmentation treatment. Niacinamide (NA) is a natural chemical found in a variety of plants that is used as a skin-whitening ingredient in cosmetic formulations. NA decreases melanogenesis in the skin by inhibiting melanosome transfer from melanocytes to covering keratinocytes. Furthermore, NA protects the skin from reactive oxygen species and acts as a main barrier with the skin, reducing moisture loss by increasing ceramide and fatty acid synthesis. However, it is very difficult for hydrophilic compounds such as NA to penetrate deep into the skin. Furthermore, because of the nicotinic acid in NA, it is an irritant. As a result, we've concentrated on strategies to increase NA skin permeability while avoiding its irritating impacts. Since nanotechnology can affect drug penetration behavior by controlling the release and increasing the period of permanence on the skin, it can be a useful technique in the development of whitening formulations. Liposomes have become increasingly popular in the cosmetics industry in recent years due to benefits such as their lack of toxicity, high penetration ability in living skin layers, ability to increase skin moisture by forming a thin layer on the skin surface, and suitability for large-scale production. Therefore, liposomes containing NA were developed for this study. Different formulations were prepared by varying the amount of phospholipid and cholesterol and examined in terms of particle sizes, polydispersity index (PDI) and pH values. The pH values of the produced formulations were determined to be suitable with the pH value of the skin. Particle sizes were determined to be smaller than 250 nm and the particles were found to be of homogeneous size in the formulation (pdi<0.30). Despite the important advantages of liposomal systems, they have low viscosity and stability for topical use. For these reasons, in this study, liposomal cream formulations have been prepared for easy topical application of liposomal systems. As a result, liposomal cream formulations containing NA have been successfully prepared and characterized. Following the in-vitro release and ex-vivo diffusion studies to be conducted in the continuation of the study, it is planned to test the formulation that gives the most appropriate result on the volunteers after obtaining the approval of the ethics committee.

Keywords: delivery systems, hyperpigmentation, liposome, niacinamide

Procedia PDF Downloads 108
61 A World Map of Seabed Sediment Based on 50 Years of Knowledge

Authors: T. Garlan, I. Gabelotaud, S. Lucas, E. Marchès

Abstract:

Production of a global sedimentological seabed map has been initiated in 1995 to provide the necessary tool for searches of aircraft and boats lost at sea, to give sedimentary information for nautical charts, and to provide input data for acoustic propagation modelling. This original approach had already been initiated one century ago when the French hydrographic service and the University of Nancy had produced maps of the distribution of marine sediments of the French coasts and then sediment maps of the continental shelves of Europe and North America. The current map of the sediment of oceans presented was initiated with a UNESCO's general map of the deep ocean floor. This map was adapted using a unique sediment classification to present all types of sediments: from beaches to the deep seabed and from glacial deposits to tropical sediments. In order to allow good visualization and to be adapted to the different applications, only the granularity of sediments is represented. The published seabed maps are studied, if they present an interest, the nature of the seabed is extracted from them, the sediment classification is transcribed and the resulted map is integrated in the world map. Data come also from interpretations of Multibeam Echo Sounder (MES) imagery of large hydrographic surveys of deep-ocean. These allow a very high-quality mapping of areas that until then were represented as homogeneous. The third and principal source of data comes from the integration of regional maps produced specifically for this project. These regional maps are carried out using all the bathymetric and sedimentary data of a region. This step makes it possible to produce a regional synthesis map, with the realization of generalizations in the case of over-precise data. 86 regional maps of the Atlantic Ocean, the Mediterranean Sea, and the Indian Ocean have been produced and integrated into the world sedimentary map. This work is permanent and permits a digital version every two years, with the integration of some new maps. This article describes the choices made in terms of sediment classification, the scale of source data and the zonation of the variability of the quality. This map is the final step in a system comprising the Shom Sedimentary Database, enriched by more than one million punctual and surface items of data, and four series of coastal seabed maps at 1:10,000, 1:50,000, 1:200,000 and 1:1,000,000. This step by step approach makes it possible to take into account the progresses in knowledge made in the field of seabed characterization during the last decades. Thus, the arrival of new classification systems for seafloor has improved the recent seabed maps, and the compilation of these new maps with those previously published allows a gradual enrichment of the world sedimentary map. But there is still a lot of work to enhance some regions, which are still based on data acquired more than half a century ago.

Keywords: marine sedimentology, seabed map, sediment classification, world ocean

Procedia PDF Downloads 229
60 Strategies for Incorporating Intercultural Intelligence into Higher Education

Authors: Hyoshin Kim

Abstract:

Most post-secondary educational institutions have offered a wide variety of professional development programs and resources in order to advance the quality of education. Such programs are designed to support faculty members by focusing on topics such as course design, behavioral learning objectives, class discussion, and evaluation methods. These are based on good intentions and might help both new and experienced educators. However, the fundamental flaw is that these ‘effective methods’ are assumed to work regardless of what we teach and whom we teach. This paper is focused on intercultural intelligence and its application to education. It presents a comprehensive literature review on context and cultural diversity in terms of beliefs, values and worldviews. What has worked well with a group of homogeneous local students may not work well with more diverse and international students. It is because students hold different notions of what is means to learn or know something. It is necessary for educators to move away from certain sets of generic teaching skills, which are based on a limited, particular view of teaching and learning. The main objective of the research is to expand our teaching strategies by incorporating what students bring to the course. There have been a growing number of resources and texts on teaching international students. Unfortunately, they tend to be based on the deficiency model, which treats diversity not as strengths, but as problems to be solved. This view is evidenced by the heavy emphasis on assimilationist approaches. For example, cultural difference is negatively evaluated, either implicitly or explicitly. Therefore the pressure is on culturally diverse students. The following questions reflect the underlying assumption of deficiencies: - How can we make them learn better? - How can we bring them into the mainstream academic culture?; and - How can they adapt to Western educational systems? Even though these questions may be well-intended, there seems to be something fundamentally wrong as the assumption of cultural superiority is embedded in this kind of thinking. This paper examines how educators can incorporate intercultural intelligence into the course design by utilizing a variety of tools such as pre-course activities, peer learning and reflective learning journals. The main goal is to explore ways to engage diverse learners in all aspects of learning. This can be achieved by activities designed to understand their prior knowledge, life experiences, and relevant cultural identities. It is crucial to link course material to students’ diverse interests thereby enhancing the relevance of course content and making learning more inclusive. Internationalization of higher education can be successful only when cultural differences are respected and celebrated as essential and positive aspects of teaching and learning.

Keywords: intercultural competence, intercultural intelligence, teaching and learning, post-secondary education

Procedia PDF Downloads 208
59 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies

Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari

Abstract:

Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.

Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy

Procedia PDF Downloads 166
58 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities

Authors: Margarida Franca

Abstract:

The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.

Keywords: geography of religion, sacred places, territoriality, Catholic Church

Procedia PDF Downloads 318
57 Development and Obtaining of Solid Dispersions to Increase the Solubility of Efavirenz in Anti-HIV Therapy

Authors: Salvana P. M. Costa, Tarcyla A. Gomes, Giovanna C. R. M. Schver, Leslie R. M. Ferraz, Cristovão R. Silva, Magaly A. M. Lyra, Danilo A. F. Fonte, Larissa A. Rolim, Amanda C. Q. M. Vieira, Miracy M. Albuquerque, Pedro J. Rolim-neto

Abstract:

Efavirenz (EFV) is considered one of the most widely used anti-HIV drugs. However, it is classified as a drug class II (poorly soluble, highly permeable) according to the biopharmaceutical classification system, presenting problems of absorption in the gastrointestinal tract and thereby inadequate bioavailability for its therapeutic action. This study aimed to overcome these barriers by developing and obtaining solid dispersions (SD) in order to increase the EFZ bioavailability. For the development of SD with EFV, theoretical and practical studies were initially performed. Thus, there was a choice of a carrier to be used. For this, it was analyzed the various criteria such as glass transition temperature of the polymer, intra- and intermolecular interactions of hydrogen bonds between drug and polymer, the miscibility between the polymer and EFV. The choice of the obtainment method of the SD came from the analysis of which method is the most consolidated in both industry and literature. Subsequently, the choice of drug and carrier concentrations in the dispersions was carried out. In order to obtain DS to present the drug in its amorphous form, as the DS were obtained, they were analyzed by X-ray diffraction (XRD). SD are more stable the higher the amount of polymer present in the formulation. With this assumption, a SD containing 10% of drug was initially prepared and then this proportion was increased until the XRD showed the presence of EFV in its crystalline form. From this point, it was not produced SD with a higher concentration of drug. Thus, it was allowed to select PVP-K30, PVPVA 64 and the SOLUPLUS formulation as carriers, once it was possible the formation of hydrogen bond between EFV and polymers since these have hydrogen acceptor groups capable of interacting with the donor group of the drug hydrogen. It is worth mentioning also that the films obtained, independent of concentration used, were presented homogeneous and transparent. Thus, it can be said that the EFV is miscible in the three polymers used in the study. The SD and Physical Mixtures (PM) with these polymers were prepared by the solvent method. The EFV diffraction profile showed main peaks at around 2θ of 6,24°, in addition to other minor peaks at 14,34°, 17,08°, 20,3°, 21,36° and 25,06°, evidencing its crystalline character. Furthermore, the polymers showed amorphous nature, as evidenced by the absence of peaks in their XRD patterns. The XRD patterns showed the PM overlapping profile of the drug with the polymer, indicating the presence of EFV in its crystalline form. Regardless the proportion of drug used in SD, all the samples showed the same characteristics with no diffraction peaks EFV, demonstrating the behavior amorphous products. Thus, the polymers enabled, effectively, the formation of amorphous SD, probably due to the potential hydrogen bonds between them and the drug. Moreover, the XRD analysis showed that the polymers were able to maintain its amorphous form in a concentration of up to 80% drug.

Keywords: amorphous form, Efavirenz, solid dispersions, solubility

Procedia PDF Downloads 564
56 Evaluating the Effect of 'Terroir' on Volatile Composition of Red Wines

Authors: María Luisa Gonzalez-SanJose, Mihaela Mihnea, Vicente Gomez-Miguel

Abstract:

The zoning methodology currently recommended by the OIVV as official methodology to carry out viticulture zoning studies and to define and delimit the ‘terroirs’ has been applied in this study. This methodology has been successfully applied on the most significant an important Spanish Oenological D.O. regions, such as Ribera de Duero, Rioja, Rueda and Toro, but also it have been applied around the world in Portugal, different countries of South America, and so on. This is a complex methodology that uses edaphoclimatic data but also other corresponding to vineyards and other soils’ uses The methodology is useful to determine Homogeneous Soil Units (HSU) to different scale depending on the interest of each study, and has been applied from viticulture regions to particular vineyards. It seems that this methodology is an appropriate method to delimit correctly the medium in order to enhance its uses and to obtain the best viticulture and oenological products. The present work is focused on the comparison of volatile composition of wines made from grapes grown in different HSU that coexist in a particular viticulture region of Castile-Lion cited near to Burgos. Three different HSU were selected for this study. They represented around of 50% of the global area of vineyards of the studied region. Five different vineyards on each HSU under study were chosen. To reduce variability factors, other criteria were also considered as grape variety, clone, rootstocks, vineyard’s age, training systems and cultural practices. This study was carried out during three consecutive years, then wine from three different vintage were made and analysed. Different red wines were made from grapes harvested in the different vineyards under study. Grapes were harvested to ‘Technological maturity’, which are correlated with adequate levels of sugar, acidity, phenolic content (nowadays named phenolic maturity), good sanitary stages and adequate levels of aroma precursors. Results of the volatile profile of the wines produced from grapes of each HSU showed significant differences among them pointing out a direct effect of the edaphoclimatic characteristic of each UHT on the composition of the grapes and then on the volatile composition of the wines. Variability induced by HSU co-existed with the well-known inter-annual variability correlated mainly with the specific climatic conditions of each vintage, however was most intense, so the wine of each HSU were perfectly differenced. A discriminant analysis allowed to define the volatiles with discriminant capacities which were 21 of the 74 volatiles analysed. Detected discriminant volatiles were chemical different, although .most of them were esters, followed by were superior alcohols and fatty acid of short chain. Only one lactone and two aldehydes were selected as discriminant variable, and no varietal aroma compounds were selected, which agree with the fact that all the wine were made from the same grape variety.

Keywords: viticulture zoning, terroir, wine, volatile profile

Procedia PDF Downloads 213
55 Glass-Ceramics for Emission in the IR Region

Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz

Abstract:

Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.

Keywords: glass, glass-ceramics, multicomponent systems, NIR emission

Procedia PDF Downloads 4
54 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads

Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani

Abstract:

The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.

Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology

Procedia PDF Downloads 23
53 A Markov Model for the Elderly Disability Transition and Related Factors in China

Authors: Huimin Liu, Li Xiang, Yue Liu, Jing Wang

Abstract:

Background: As one of typical case for the developing countries who are stepping into the aging times globally, more and more older people in China might face the problem of which they could not maintain normal life due to the functional disability. While the government take efforts to build long-term care system and further carry out related policies for the core concept, there is still lack of strong evidence to evaluating the profile of disability states in the elderly population and its transition rate. It has been proved that disability is a dynamic condition of the person rather than irreversible so it means possible to intervene timely on them who might be in a risk of severe disability. Objective: The aim of this study was to depict the picture of the disability transferring status of the older people in China, and then find out individual characteristics that change the state of disability to provide theory basis for disability prevention and early intervention among elderly people. Methods: Data for this study came from the 2011 baseline survey and the 2013 follow-up survey of the China Health and Retirement Longitudinal Study (CHARLS). Normal ADL function, 1~2 ADLs disability,3 or above ADLs disability and death were defined from state 1 to state 4. Multi-state Markov model was applied and the four-state homogeneous model with discrete states and discrete times from two visits follow-up data was constructed to explore factors for various progressive stages. We modeled the effect of explanatory variables on the rates of transition by using a proportional intensities model with covariate, such as gender. Result: In the total sample, state 2 constituent ratio is nearly about 17.0%, while state 3 proportion is blow the former, accounting for 8.5%. Moreover, ADL disability statistics difference is not obvious between two years. About half of the state 2 in 2011 improved to become normal in 2013 even though they get elder. However, state 3 transferred into the proportion of death increased obviously, closed to the proportion back to state 2 or normal functions. From the estimated intensities, we see the older people are eleven times as likely to develop at 1~2 ADLs disability than dying. After disability onset (state 2), progression to state 3 is 30% more likely than recovery. Once in state 3, a mean of 0.76 years is spent before death or recovery. In this model, a typical person in state 2 has a probability of 0.5 of disability-free one year from now while the moderate disabled or above has a probability of 0.14 being dead. Conclusion: On the long-term care cost considerations, preventive programs for delay the disability progression of the elderly could be adopted based on the current disabled state and main factors of each stage. And in general terms, those focusing elderly individuals who are moderate or above disabled should go first.

Keywords: Markov model, elderly people, disability, transition intensity

Procedia PDF Downloads 286
52 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 116
51 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: mortality map, spatial patterns, statistical area, variation

Procedia PDF Downloads 252
50 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 309
49 Anti-DNA Antibodies from Patients with Schizophrenia Hydrolyze DNA

Authors: Evgeny A. Ermakov, Lyudmila P. Smirnova, Valentina N. Buneva

Abstract:

Schizophrenia associated with dysregulation of neurotransmitter processes in the central nervous system and disturbances in the humoral immune system resulting in the formation of antibodies (Abs) to the various components of the nervous tissue. Abs to different neuronal receptors and DNA were detected in the blood of patients with schizophrenia. Abs hydrolyzing DNA were detected in pool of polyclonal autoantibodies in autoimmune and infectious diseases, such catalytic Abs were named abzymes. It is believed that DNA-hydrolyzing abzymes are cytotoxic, cause nuclear DNA fragmentation and induce cell death by apoptosis. Abzymes with DNAase activity are interesting because of the mechanism of formation and the possibility of use as diagnostic markers. Therefore, in our work we have set following goals: to determine the level anti-DNA Abs in the serum of patients with schizophrenia and to study DNA-hydrolyzing activity of IgG of patients with schizophrenia. Materials and methods: In our study there were included 41 patients with a verified diagnosis of paranoid or simple schizophrenia and 24 healthy donors. Electrophoretically and immunologically homogeneous IgGs were obtained by sequential affinity chromatography of the serum proteins on protein G-Sepharose and gel filtration. The levels of anti-DNA Abs were determined using ELISA. DNA-hydrolyzing activity was detected as the level of supercoiled pBluescript DNA transition in circular and linear forms, the hydrolysis products were analyzed by agarose electrophoresis followed by ethidium bromide stain. To correspond the registered catalytic activity directly to the antibodies we carried out a number of strict criteria: electrophoretic homogeneity of the antibodies, gel filtration (acid shock analysis) and in situ activity. Statistical analysis was performed in ‘Statistica 9.0’ using the non-parametric Mann-Whitney test. Results: The sera of approximately 30% of schizophrenia patients displayed a higher level of Abs interacting with single-stranded (ssDNA) and double-stranded DNA (dsDNA) compared with healthy donors. The average level of Abs interacting with ssDNA was only 1.1-fold lower than that for interacting with dsDNA. IgG of patient with schizophrenia were shown to possess DNA hydrolyzing activity. Using affinity chromatography, electrophoretic analysis of isolated IgG homogeneity, gel filtration in acid shock conditions and in situ DNAse activity analysis we proved that the observed activity is intrinsic property of studied antibodies. We have shown that the relative DNAase activity of IgG in patients with schizophrenia averaged 55.4±32.5%, IgG of healthy donors showed much lower activity (average of 9.1±6.5%). It should be noted that DNAase activity of IgG in patients with schizophrenia with a negative symptoms was significantly higher (73.3±23.8%), than in patients with positive symptoms (43.3±33.1%). Conclusion: Anti-DNA Abs of patients with schizophrenia not only bind DNA, but quite efficiently hydrolyze the substrate. The data show a correlation with the level of DNase activity and leading symptoms of patients with schizophrenia.

Keywords: anti-DNA antibodies, abzymes, DNA hydrolysis, schizophrenia

Procedia PDF Downloads 320
48 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 132
47 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 63
46 Modified Graphene Oxide in Ceramic Composite

Authors: Natia Jalagonia, Jimsher Maisuradze, Karlo Barbakadze, Tinatin Kuchukhidze

Abstract:

At present intensive scientific researches of ceramics, cermets and metal alloys have been conducted for improving materials physical-mechanical characteristics. In purpose of increasing impact strength of ceramics based on alumina, simple method of graphene homogenization was developed. Homogeneous distribution of graphene (homogenization) in pressing composite became possible through the connection of functional groups of graphene oxide (-OH, -COOH, -O-O- and others) and alumina superficial OH groups with aluminum organic compounds. These two components connect with each other with -O-Al–O- bonds, and by their thermal treatment (300–500°C), graphene and alumina phase are transformed. Thus, choosing of aluminum organic compounds for modification is stipulated by the following opinion: aluminum organic compounds fragments fixed on graphene and alumina finally are transformed into an integral part of the matrix. By using of other elements as modifier on the matrix surface (Al2O3) other phases are transformed, which change sharply physical-mechanical properties of ceramic composites, for this reason, effect caused by the inclusion of graphene will be unknown. Fixing graphene fragments on alumina surface by alumoorganic compounds result in new type graphene-alumina complex, in which these two components are connected by C-O-Al bonds. Part of carbon atoms in graphene oxide are in sp3 hybrid state, so functional groups (-OH, -COOH) are located on both sides of graphene oxide layer. Aluminum organic compound reacts with graphene oxide at the room temperature, and modified graphene oxide is obtained: R2Al-O-[graphene]–COOAlR2. Remaining Al–C bonds also reacts rapidly with surface OH groups of alumina. In a result of these process, pressing powdery composite [Al2O3]-O-Al-O-[graphene]–COO–Al–O–[Al2O3] is obtained. For the purpose, graphene oxide suspension in dry toluene have added alumoorganic compound Al(iC4H9)3 in toluene with equimolecular ratio. Obtained suspension has put in the flask and removed solution in a rotary evaporate presence nitrogen atmosphere. Obtained powdery have been researched and used to consolidation of ceramic materials based on alumina. Ceramic composites are obtained in high temperature vacuum furnace with different temperature and pressure conditions. Received ceramics do not have open pores and their density reaches 99.5 % of TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), device of spark-plasma synthesis, induction furnace, Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM-800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer and others.

Keywords: graphene oxide, alumo-organic, ceramic

Procedia PDF Downloads 304
45 Strength Evaluation by Finite Element Analysis of Mesoscale Concrete Models Developed from CT Scan Images of Concrete Cube

Authors: Nirjhar Dhang, S. Vinay Kumar

Abstract:

Concrete is a non-homogeneous mix of coarse aggregates, sand, cement, air-voids and interfacial transition zone (ITZ) around aggregates. Adoption of these complex structures and material properties in numerical simulation would lead us to better understanding and design of concrete. In this work, the mesoscale model of concrete has been prepared from X-ray computerized tomography (CT) image. These images are converted into computer model and numerically simulated using commercially available finite element software. The mesoscale models are simulated under the influence of compressive displacement. The effect of shape and distribution of aggregates, continuous and discrete ITZ thickness, voids, and variation of mortar strength has been investigated. The CT scan of concrete cube consists of series of two dimensional slices. Total 49 slices are obtained from a cube of 150mm and the interval of slices comes approximately 3mm. In CT scan images, the same cube can be CT scanned in a non-destructive manner and later the compression test can be carried out in a universal testing machine (UTM) for finding its strength. The image processing and extraction of mortar and aggregates from CT scan slices are performed by programming in Python. The digital colour image consists of red, green and blue (RGB) pixels. The conversion of RGB image to black and white image (BW) is carried out, and identification of mesoscale constituents is made by putting value between 0-255. The pixel matrix is created for modeling of mortar, aggregates, and ITZ. Pixels are normalized to 0-9 scale considering the relative strength. Here, zero is assigned to voids, 4-6 for mortar and 7-9 for aggregates. The value between 1-3 identifies boundary between aggregates and mortar. In the next step, triangular and quadrilateral elements for plane stress and plane strain models are generated depending on option given. Properties of materials, boundary conditions, and analysis scheme are specified in this module. The responses like displacement, stresses, and damages are evaluated by ABAQUS importing the input file. This simulation evaluates compressive strengths of 49 slices of the cube. The model is meshed with more than sixty thousand elements. The effect of shape and distribution of aggregates, inclusion of voids and variation of thickness of ITZ layer with relation to load carrying capacity, stress-strain response and strain localizations of concrete have been studied. The plane strain condition carried more load than plane stress condition due to confinement. The CT scan technique can be used to get slices from concrete cores taken from the actual structure, and the digital image processing can be used for finding the shape and contents of aggregates in concrete. This may be further compared with test results of concrete cores and can be used as an important tool for strength evaluation of concrete.

Keywords: concrete, image processing, plane strain, interfacial transition zone

Procedia PDF Downloads 237
44 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 119
43 Stability in Slopes Related to Expansive Soils

Authors: Ivelise M. Strozberg, Lucas O. Vale, Maria V. V. Morais

Abstract:

Expansive soils are characterized by their significant volumetric variations, tending to suffer an increase of this volume when added water in their voids and a decrease of volume when this water is removed. The parameters of resistance (especially the angle of friction, cohesion and specific weight) of expansive or non-expansive soils of the same field present differences, as found in laboratory tests. What is expected is that, through this research, demonstrate that this variation directly affects the results of the calculation of factors of safety for slope stability. The expansibility due to specific clay minerals such as montmorillonites and vermiculites is the most common form of expansion of soils or rocks, causing expansion pressures. These pressures can become an aggravating problem in regions across the globe that, when not previously studied, may present high risks to the enterprise, such as cracks, fissures, movements in structures, breaking of retaining walls, drilling of wells, among others. The study provides results based on analyzes carried out in the Slide 2018 software belonging to the Rocsience group, where the software is a two-dimensional equilibrium slope stability program that calculates the factor of safety or probability of failure of certain surfaces composed of soils or rocks (or both, depending on the situation), - through the methods of: Bishop simplified, Fellenius and Janbu corrected. This research compares the factors of safety of a homogeneous earthfill dam geometry, analysed for operation and end-of-construction situations, having a height of approximately 35 meters, with a slope of 1.5: 1 in the slope downstream and 2: 1 on the upstream slope. As the water level is 32.73m high and the water table is drawn automatically by the Slide program using the finite element method for the operating situation, considering two hypotheses for the use of materials - the first with soils with characteristics of expansion and the second with soils without expansibility. For this purpose, soil samples were collected from the region of São Bento do Una - Pernambuco, Brazil and taken to the soil mechanics laboratory to characterize and determine the percentage of expansibility. There were found 2 types of soils in that area: 1 site of expansive soils (8%) and another with non- expansive ones. Based on the results found, the analysis of the values of factors of safety indicated, both upstream and downstream slopes, the highest values were obtained in the case where there is no presence of materials with expansibility resulting, for one of the situations, values of 1.353 (Fellenius), 1,295 (Janbu corrected) and 1,409 (Bishop simplified). There is a considerable drop in safety factors in cases where soils are potentially expansive, resulting in values for the same situation of 0.859 (Fellenius), 0.809 (Janbu corrected) and 0.842 (Bishop simplified), in the case of higher expansibility (8 %). This shows that the expansibility is a determinant factor in the fall of resistance of soil, determined by the factors of cohesion and angle of friction.

Keywords: dam. slope. software. swelling soil

Procedia PDF Downloads 112
42 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 383
41 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra

Procedia PDF Downloads 226
40 Combustion Characteristics and Pollutant Emissions in Gasoline/Ethanol Mixed Fuels

Authors: Shin Woo Kim, Eui Ju Lee

Abstract:

The recent development of biofuel production technology facilitates the use of bioethanol and biodiesel on automobile. Bioethanol, especially, can be used as a fuel for gasoline vehicles because the addition of ethanol has been known to increase octane number and reduce soot emissions. However, the wide application of biofuel has been still limited because of lack of detailed combustion properties such as auto-ignition temperature and pollutant emissions such as NOx and soot, which has been concerned mainly on the vehicle fire safety and environmental safety. In this study, the combustion characteristics of gasoline/ethanol fuel were investigated both numerically and experimentally. For auto-ignition temperature and NOx emission, the numerical simulation was performed on the well-stirred reactor (WSR) to simulate the homogeneous gasoline engine and to clarify the effect of ethanol addition in the gasoline fuel. Also, the response surface method (RSM) was introduced as a design of experiment (DOE), which enables the various combustion properties to be predicted and optimized systematically with respect to three independent variables, i.e., ethanol mole fraction, equivalence ratio and residence time. The results of stoichiometric gasoline surrogate show that the auto-ignition temperature increases but NOx yields decrease with increasing ethanol mole fraction. This implies that the bioethanol added gasoline is an eco-friendly fuel on engine running condition. However, unburned hydrocarbon is increased dramatically with increasing ethanol content, which results from the incomplete combustion and hence needs to adjust combustion itself rather than an after-treatment system. RSM results analyzed with three independent variables predict the auto-ignition temperature accurately. However, NOx emission had a big difference between the calculated values and the predicted values using conventional RSM because NOx emission varies very steeply and hence the obtained second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, NOx emission is taken as common logarithms and worked again with RSM. NOx emission predicted through logarithm transformation is in a fairly good agreement with the experimental results. For more tangible understanding of gasoline/ethanol fuel on pollutant emissions, experimental measurements of combustion products were performed in gasoline/ethanol pool fires, which is widely used as a fire source of laboratory scale experiments. Three measurement methods were introduced to clarify the pollutant emissions, i.e., various gas concentrations including NOx, gravimetric soot filter sampling for elements analysis and pyrolysis, thermophoretic soot sampling with transmission electron microscopy (TEM). Soot yield by gravimetric sampling was decreased dramatically as ethanol was added, but NOx emission was almost comparable regardless of ethanol mole fraction. The morphology of the soot particle was investigated to address the degree of soot maturing. The incipient soot such as a liquid like PAHs was observed clearly on the soot of higher ethanol containing gasoline, and the soot might be matured under the undiluted gasoline fuel.

Keywords: gasoline/ethanol fuel, NOx, pool fire, soot, well-stirred reactor (WSR)

Procedia PDF Downloads 209
39 The Role of Intraluminal Endoscopy in the Diagnosis and Treatment of Fluid Collections in Patients With Acute Pancreatitis

Authors: A. Askerov, Y. Teterin, P. Yartcev, S. Novikov

Abstract:

Introduction: Acute pancreatitis (AP) is a socially significant problem for public health and continues to be one of the most common causes of hospitalization of patients with pathology of the gastrointestinal tract. It is characterized by high mortality rates, which reaches 62-65% in infected pancreatic necrosis. Aims & Methods: The study group included 63 patients who underwent transluminal drainage (TLD) fluid collection (FC). All patients were performed transabdominal ultrasound, computer tomography of the abdominal cavity and retroperitoneal organs and endoscopic ultrasound (EUS) of the pancreatobiliary zone. The EUS was used as a final diagnostic method to determine the characteristics of FC. The indications for TLD were: the distance between the wall of the hollow organ and the FC was not more than 1 cm, the absence of large vessels on the puncture trajectory (more than 3 mm), and the size of the formation was more than 5 cm. When a homogeneous cavity with clear, even contours was detected, a plastic stent with rounded ends (“double pig tail”) was installed. The indication for the installation of a fully covered self-expanding stent was the detection of nonhomogeneous anechoic FC with hyperechoic inclusions and cloudy purulent contents. In patients with necrotic forms after drainage of the purulent cavity, a cystonasal drainage with a diameter of 7Fr was installed in its lumen under X-ray control to sanitize the cavity with a 0.05% aqueous solution of chlorhexidine. Endoscopic necrectomy was performed every 24-48 hours. The plastic stent was removed in 6 month, the fully covered self-expanding stent - in 1 month after the patient was discharged from the hospital. Results: Endoscopic TLD was performed in 63 patients. The FC corresponding to interstitial edematous pancreatitis was detected in 39 (62%) patients who underwent TLD with the installation of a plastic stent with rounded ends. In 24 (38%) patients with necrotic forms of FC, a fully covered self-expanding stent was placed. Communication with the ductal system of the pancreas was found in 5 (7.9%) patients. They underwent pancreaticoduodenal stenting. A complicated postoperative period was noted in 4 (6.3%) cases and was manifested by bleeding from the zone of pancreatogenic destruction. In 2 (3.1%) cases, this required angiography and endovascular embolization a. gastroduodenalis, in 1 (1.6%) case, endoscopic hemostasis was performed by filling the cavity with 4 ml of Hemoblock hemostatic solution. The combination of both methods was used in 1 (1.6%) patient. There was no evidence of recurrent bleeding in these patients. Lethal outcome occurred in 4 patients (6.3%). In 3 (4.7%) patients, the cause of death was multiple organ failure, in 1 (1.6%) - severe nosocomial pneumonia that developed on the 32nd day after drainage. Conclusions: 1. EUS is not only the most important method for diagnosing FC in AP, but also allows you to determine further tactics for their intraluminal drainage.2. Endoscopic intraluminal drainage of fluid zones in 45.8% of cases is the final minimally invasive method of surgical treatment of large-focal pancreatic necrosis. Disclosure: Nothing to disclose.

Keywords: acute pancreatitis, fluid collection, endoscopy surgery, necrectomy, transluminal drainage

Procedia PDF Downloads 103