Search results for: harmony search algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3820

Search results for: harmony search algorithms

3160 An Intrusion Detection Systems Based on K-Means, K-Medoids and Support Vector Clustering Using Ensemble

Authors: A. Mohammadpour, Ebrahim Najafi Kajabad, Ghazale Ipakchi

Abstract:

Presently, computer networks’ security rise in importance and many studies have also been conducted in this field. By the penetration of the internet networks in different fields, many things need to be done to provide a secure industrial and non-industrial network. Fire walls, appropriate Intrusion Detection Systems (IDS), encryption protocols for information sending and receiving, and use of authentication certificated are among things, which should be considered for system security. The aim of the present study is to use the outcome of several algorithms, which cause decline in IDS errors, in the way that improves system security and prevents additional overload to the system. Finally, regarding the obtained result we can also detect the amount and percentage of more sub attacks. By running the proposed system, which is based on the use of multi-algorithmic outcome and comparing that by the proposed single algorithmic methods, we observed a 78.64% result in attack detection that is improved by 3.14% than the proposed algorithms.

Keywords: intrusion detection systems, clustering, k-means, k-medoids, SV clustering, ensemble

Procedia PDF Downloads 206
3159 On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents

Authors: Malika Yaici, Kamel Hariche

Abstract:

In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity.

Keywords: block vandermonde matrix, solvents, matrix polynomial, matrix inverse, matrix determinant, parallelization

Procedia PDF Downloads 219
3158 A Systems-Level Approach towards Transition to Electrical Vehicles

Authors: Mayuri Roy Choudhury, Deepti Paul

Abstract:

Many states in the United States are aiming for high renewable energy targets by the year 2045. In order to achieve this goal, they must do transition to Electrical Vehicles (EVS). We first applied the Multi-Level perspective framework to describe the inter-disciplinary complexities associated with the transition to EVs. Thereafter we addressed these complexities by creating an inter-disciplinary policy framework that uses data science algorithms to create evidence-based policies in favor of EVs. Our policy framework uses a systems level approach as it addresses transitions to EVs from a technology, economic, business and social perspective. By Systems-Level we mean approaching a problem from a multi-disciplinary perspective. Our systems-level approach could be a beneficial decision-making tool to a diverse number of stakeholders such as engineers, entrepreneurs, researchers, and policymakers. In addition, it will add value to the literature of electrical vehicles, sustainable energy, energy economics, and management as well as efficient policymaking.

Keywords: transition, electrical vehicles, systems-level, algorithms

Procedia PDF Downloads 211
3157 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 48
3156 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 161
3155 An Integrative Review of Changes of Family Relationship and Mental Health that Chinese Men Experience during Transition to Fatherhood

Authors: Mo Zhou, Samantha Ashby, Lyn Ebert

Abstract:

In China, the changes that men experience in the perinatal period are not well researched. Men are also at risk of maladaptation to parenthood. The aim of this research is to review current studies regarding changes that Chinese men experience during transitioning to parenthood. 5 databases were employed to search relevant papers. The search found 128 articles. Based on the inclusion and exclusion criteria, 35 articles were included in this integrative review. Results showed the changes that Chinese fathers experienced during the transition to parenthood can be divided into two aspects: family relationships and mental problems. During transition to parenthood, fathers usually experienced an increase in their disappointment with marital conflict resolution and decreased sexual intimacy with their partner. Mental health declined, with fathers often feeling depressed and/or anxious during this time. Some men were diagnosed with clinical depression. The predictors of these changes included three domains: personal background (age and income), family background (gender of infant, relationship status and unplanned child) and cultural background (‘doing the month’, Confucianism, policy, social support).

Keywords: China, men, fatherhood, life change, postpartum

Procedia PDF Downloads 150
3154 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 111
3153 A Gene Selection Algorithm for Microarray Cancer Classification Using an Improved Particle Swarm Optimization

Authors: Arfan Ali Nagra, Tariq Shahzad, Meshal Alharbi, Khalid Masood Khan, Muhammad Mugees Asif, Taher M. Ghazal, Khmaies Ouahada

Abstract:

Gene selection is an essential step for the classification of microarray cancer data. Gene expression cancer data (DNA microarray) facilitates computing the robust and concurrent expression of various genes. Particle swarm optimization (PSO) requires simple operators and less number of parameters for tuning the model in gene selection. The selection of a prognostic gene with small redundancy is a great challenge for the researcher as there are a few complications in PSO based selection method. In this research, a new variant of PSO (Self-inertia weight adaptive PSO) has been proposed. In the proposed algorithm, SIW-APSO-ELM is explored to achieve gene selection prediction accuracies. This new algorithm balances the exploration capabilities of the improved inertia weight adaptive particle swarm optimization and the exploitation. The self-inertia weight adaptive particle swarm optimization (SIW-APSO) is used to search the solution. The SIW-APSO is updated with an evolutionary process in such a way that each particle iteratively improves its velocities and positions. The extreme learning machine (ELM) has been designed for the selection procedure. The proposed method has been to identify a number of genes in the cancer dataset. The classification algorithm contains ELM, K- centroid nearest neighbor (KCNN), and support vector machine (SVM) to attain high forecast accuracy as compared to the start-of-the-art methods on microarray cancer datasets that show the effectiveness of the proposed method.

Keywords: microarray cancer, improved PSO, ELM, SVM, evolutionary algorithms

Procedia PDF Downloads 66
3152 Analyzing the Perceptions of Emotions in Aesthetic Music

Authors: Abigail Wiafe, Charles Nutrokpor, Adelaide Oduro-Asante

Abstract:

The advancement of technology is rapidly making people more receptive to music as computer-generated music requires minimal human interventions. Though algorithms are applied to generate music, the human experience of emotions is still explored. Thus, this study investigates the emotions humans experience listening to computer-generated music that possesses aesthetic qualities. Forty-two subjects participated in the survey. The selection process was purely arbitrary since it was based on convenience. Subjects listened and evaluated the emotions experienced from the computer-generated music through an online questionnaire. The Likert scale was used to rate the emotional levels after the music listening experience. The findings suggest that computer-generated music possesses aesthetic qualities that do not affect subjects' emotions as long as they are pleased with the music. Furthermore, computer-generated music has unique creativity, and expressioneven though the music produced is meaningless, the computational models developed are unable to present emotional contents in music as humans do.

Keywords: aesthetic, algorithms, emotions, computer-generated music

Procedia PDF Downloads 120
3151 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm

Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović

Abstract:

This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.

Keywords: genetic algorithms, machining parameters, response surface methodology, turning process

Procedia PDF Downloads 171
3150 Multi-Vehicle Detection Using Histogram of Oriented Gradients Features and Adaptive Sliding Window Technique

Authors: Saumya Srivastava, Rina Maiti

Abstract:

In order to achieve a better performance of vehicle detection in a complex environment, we present an efficient approach for a multi-vehicle detection system using an adaptive sliding window technique. For a given frame, image segmentation is carried out to establish the region of interest. Gradient computation followed by thresholding, denoising, and morphological operations is performed to extract the binary search image. Near-region field and far-region field are defined to generate hypotheses using the adaptive sliding window technique on the resultant binary search image. For each vehicle candidate, features are extracted using a histogram of oriented gradients, and a pre-trained support vector machine is applied for hypothesis verification. Later, the Kalman filter is used for tracking the vanishing point. The experimental results show that the method is robust and effective on various roads and driving scenarios. The algorithm was tested on highways and urban roads in India.

Keywords: gradient, vehicle detection, histograms of oriented gradients, support vector machine

Procedia PDF Downloads 108
3149 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data

Authors: Yuqing Chen, Ying Xu, Renfa Li

Abstract:

The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.

Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier

Procedia PDF Downloads 366
3148 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: Dua Hişam, Serhat İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.

Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting

Procedia PDF Downloads 54
3147 Monomial Form Approach to Rectangular Surface Modeling

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Geometric modeling plays an important role in the constructions and manufacturing of curve, surface and solid modeling. Their algorithms are critically important not only in the automobile, ship and aircraft manufacturing business, but are also absolutely necessary in a wide variety of modern applications, e.g., robotics, optimization, computer vision, data analytics and visualization. The calculation and display of geometric objects can be accomplished by these six techniques: Polynomial basis, Recursive, Iterative, Coefficient matrix, Polar form approach and Pyramidal algorithms. In this research, the coefficient matrix (simply called monomial form approach) will be used to model polynomial rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces. Some examples of the monomial forms for these surface modeling are illustrated in many aspects, e.g., construction, derivatives, model transformation, degree elevation and degress reduction.

Keywords: monomial forms, rectangular surfaces, CAGD curves, monomial matrix applications

Procedia PDF Downloads 137
3146 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms

Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma

Abstract:

Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.

Keywords: image fusion, pyramid, wavelets, principal component analysis

Procedia PDF Downloads 269
3145 Conditions Required for New Sector Emergence: Results from a Systematic Literature Review

Authors: Laurie Prange-Martin, Romeo Turcan, Norman Fraser

Abstract:

The aim of this study is to identify the conditions required and describe the process of emergence for a new economic sector created from new or established businesses. A systematic literature review of English-language studies published from 1983 to 2016 was conducted using the following databases: ABI/INFORM Complete; Business Source Premiere; Google Scholar; Scopus; and Web of Science. The two main terms of business sector and emergence were used in the systematic literature search, along with another seventeen synonyms for each these main terms. From the search results, 65 publications met the requirements of an empirical study discussing and reporting the conditions of new sector emergence. A meta-analysis of the literature examined suggest that there are six favourable conditions and five key individuals or groups required for new sector emergence. In addition, the results from the meta-analysis showed that there are eighteen theories used in the literature to explain the phenomenon of new sector emergence, which can be grouped in three study disciplines. With such diversity in theoretical frameworks used in the 65 empirical studies, the authors of this paper propose the development of a new theory of sector emergence.

Keywords: economic geography, new sector emergence, economic diversification, regional economies

Procedia PDF Downloads 256
3144 A Study of Permission-Based Malware Detection Using Machine Learning

Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud

Abstract:

Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.

Keywords: android malware detection, machine learning, malware, malware analysis

Procedia PDF Downloads 142
3143 Contradictions of Contemporary Culture and Civilization, Processes of Tradition and Innovation

Authors: G. K. Abdigalieva, Z. N. Ismagambetova, T. H. Gabitov, K. A. Biazdikova, A. A. Mukhanbet , B. E. Moldagaliyev, Saira Shamahay

Abstract:

In the article was shown attitude to contemporary traditional culture and cultural heritage preservation issues and features of further development of a culture. Concerning innovation, appeal to cultural heritage, ability of reception of a culture and cultural diffusion in the process of globalization, it is offered further positive development of Kazakhstan’s based human experience and achieved with time. System of traditions is considered as a phenomenon which describes unity, harmony and stability of social body. Contradictions of contemporary culture and civilization, processes of tradition and innovation, cultural changes, and creativities are considered as second side of a society development. Innovation is analyzed as a method of renewal of a culture, tradition and innovation are considered as universal feature of any culture.

Keywords: culture, civilization, innovation, tradition, reality, customs, social relations, morality, values

Procedia PDF Downloads 731
3142 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 271
3141 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 96
3140 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 448
3139 Leveraging Quality Metrics in Voting Model Based Thread Retrieval

Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim

Abstract:

Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.

Keywords: content quality, forum search, thread retrieval, voting techniques

Procedia PDF Downloads 199
3138 Parallels Between Indian Art Music and Western Art Music: The Suppression of the Notion of the 'Melody'

Authors: Kedarnath Awati

Abstract:

Some parallels between Indian Art Music and Western Art Music, such as the identity of the basic heptatonic scale structure, are quite obvious and need no further discussion. Other parallels are far less obvious, and it is one of them that the author is interested in. Specifically, the author would like to make a serious claim that in both types of music, there is an unspoken dependence on melody. Yes, it is true that the techniques that the two systems use for elaboration are very, very different: Western music uses the techniques of harmony, counterpoint, orchestration and motivic variation, while the Indian systems, both the Hindustani and the Carnatic traditions use the technique of raagdaari. The reason that this point is barely spoken about is that both in the West as well as in India, artists tend to think of melody as something elementary or as something 'given'. The Indian musicians would much rather dwell upon this or that meend or taan or other technical device, while the West thinks that melody is passé and would rather discuss the merits and demerits of spectralism and perhaps serialism. The author would like to explore this theme further in his paper.

Keywords: Indian art music, Western art music, melody, raagdaari, motivic variation.

Procedia PDF Downloads 50
3137 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 358
3136 A Fellowship of Philosophy: Übermensch and the Will to Power in Tolkien

Authors: Ali Mirzabayati

Abstract:

This article associates Tolkien’s concept of power with Nietzsche’s Übermensch. Despite his catholic beliefs, Tolkien refuses to create religiously motivated characters, opening room for existentialist decisions. Who is an Übermensch? What Tolkienian character resembles this concept the most? To tend to these questions, the article studies the case of Adolf Hitler and Elisabeth Nietzsche, manipulating Nietzschean philosophy. An investigation of the Nazis’ misuse of philosophy, art, and myth for political advantage introduces a Nazi version of Übermensch, best reflected in Sauron and Saruman. Unlike the Nazi version, Nietzschean Übermensch is proven to emphasize internal power and seek harmony within one’s desires. Tolkien’s best candidates for Übermensch, Aragorn and Bilbo are examined through Nietzsche’s three metamorphoses of becoming a higher spirit. What is more, I will study Nietzsche’s admiration for cheer and eating, the main characteristics of the hobbits, to strengthen his bond with Tolkien.

Keywords: Tolkien, Nietzsche, literature, fantasy, history, philosophy

Procedia PDF Downloads 103
3135 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 112
3134 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 65
3133 Whey Protein in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis

Authors: Zyrah Lou R. Samar, Genecarlo Liwanag

Abstract:

Type 2 Diabetes Mellitus is the more prevalent type, caused by a combination of insulin resistance and inadequate insulin response to hyperglycemia1. Aside from pharmacologic interventions, medical nutrition therapy is an integral part of the management of patients with Type 2 Diabetes Mellitus. Whey protein, which is one of the best protein sources, has been investigated for its applicability in improving glycemic control in patients with Type 2 Diabetes Mellitus. This systematic review and meta-analysis was conducted to measure the magnitude of the effect of whey protein on glycemic control in type 2 diabetes mellitus. The aim of this review is to evaluate the efficacy and safety of whey protein in patients with type 2 diabetes mellitus. Methods: A systematic electronic search for studies in the PubMed and Cochrane Collaboration database was done. Included in this review were randomized controlled trials of whey protein enrolling patients with type 2 diabetes mellitus. Three reviewers independently searched, assessed, and extracted data from the individual studies. Results: A systematic literature search on online databases such as Cochrane Central Registry, PubMed, and Herdin Plus was conducted in April to September 2021 to identify eligible studies. The search yielded 21 randomized controlled trials after removing duplicates. Only 5 articles were included after reviewing the full text, which met the criteria for selection. Conclusion: Whey protein supplementation significantly reduced fasting blood glucose. However, it did not reduce post-prandial blood glucose, HbA1c level, and weight when compared with the placebo. There has been a considerate heterogeneity across all studies, which may have contributed/confounded its effects. A larger sample size and better inclusion, and a more specific study may be included in the future reviews.

Keywords: whey protein, diabetes, nutrition, fasting blood sugar, postprandial glucose, HbA1c, weight reduction

Procedia PDF Downloads 92
3132 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.

Keywords: Javascript, machine learning, artificial intelligence, web development

Procedia PDF Downloads 60
3131 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors

Authors: V. Rashtchi, H. Bizhani, F. R. Tatari

Abstract:

This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.

Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization

Procedia PDF Downloads 621