Search results for: feed forward network
6181 Combined Odd Pair Autoregressive Coefficients for Epileptic EEG Signals Classification by Radial Basis Function Neural Network
Authors: Boukari Nassim
Abstract:
This paper describes the use of odd pair autoregressive coefficients (Yule _Walker and Burg) for the feature extraction of electroencephalogram (EEG) signals. In the classification: the radial basis function neural network neural network (RBFNN) is employed. The RBFNN is described by his architecture and his characteristics: as the RBF is defined by the spread which is modified for improving the results of the classification. Five types of EEG signals are defined for this work: Set A, Set B for normal signals, Set C, Set D for interictal signals, set E for ictal signal (we can found that in Bonn university). In outputs, two classes are given (AC, AD, AE, BC, BD, BE, CE, DE), the best accuracy is calculated at 99% for the combined odd pair autoregressive coefficients. Our method is very effective for the diagnosis of epileptic EEG signals.Keywords: epilepsy, EEG signals classification, combined odd pair autoregressive coefficients, radial basis function neural network
Procedia PDF Downloads 3466180 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure
Authors: Reza Behtash, Enayat Enayati
Abstract:
The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.Keywords: boiler, pressure, pool condenser, partition plate
Procedia PDF Downloads 3846179 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 1296178 End-to-End Performance of MPPM in Multihop MIMO-FSO System Over Dependent GG Atmospheric Turbulence Channels
Authors: Hechmi Saidi, Noureddine Hamdi
Abstract:
The performance of decode and forward (DF) multihop free space optical (FSO) scheme deploying multiple input multiple output (MIMO) configuration under gamma-gamma (GG) statistical distribution, that adopts M-ary pulse position modulation (MPPM) coding, is investigated. We have extracted exact and estimated values of symbol-error rates (SERs) respectively. The probability density function (PDF)’s closed-form formula is expressed for our designed system. Thanks to the use of DF multihop MIMO FSO configuration and MPPM signaling, atmospheric turbulence is combatted; hence the transmitted signal quality is improved.Keywords: free space optical, gamma gamma channel, radio frequency, decode and forward, multiple-input multiple-output, M-ary pulse position modulation, symbol error rate
Procedia PDF Downloads 2506177 The Acceptance of Online Social Network Technology for Tourism Destination
Authors: Wanida Suwunniponth
Abstract:
The purpose of this research was to investigate the relationship between the factors of using online social network for tourism destination in case of Bangkok area in Thailand, by extending the use of technology acceptance model (TAM). This study employed by quantitative research and the target population were entrepreneurs and local people in Bangkok who use social network-Facebook concerning tourist destinations in Bangkok. Questionnaire was used to collect data from 300 purposive samples. The multiple regression analysis and path analysis were used to analyze data. The results revealed that most people who used Facebook for promoting tourism destinations in Bangkok perceived ease of use, perceived usefulness, perceived trust in using Facebook and influenced by social normative as well as having positive attitude towards using this application. Addition, the hypothesis results indicate that acceptance of online social network-Facebook was related to the positive attitude towards using of Facebook and related to their intention to use this application for tourism.Keywords: Facebook, online social network, technology acceptance model, tourism destination
Procedia PDF Downloads 3446176 The Research about Environmental Assessment Index of Brownfield Redevelopment in Taiwan - A Case Study on Formosa Chemicals and Fibre Corporation, Changhua Branch
Authors: Yang, Min-chih, Shih-Jen Feng, Bo-Tsang Li
Abstract:
The concept of “Brownfield” has been developed for nearly 35 years since it was put forward in 《Comprehensive Environmental Response, Compensation, and Liability Act, CERCLA》of USA in 1980 for solving the problem of soil contamination of those old industrial lands, and later, many countries have put forward relevant policies and researches continuously. But the related concept in Taiwan, a country has developed its industry for 60 years, is still in its infancy. This leads to the slow development of Brownfield related research and policy in Taiwan. When it comes to build the foundation of Brownfield development, we have to depend on the related experience and research of other countries. They are four aspects about Brownfield: 1. Contaminated Land; 2. Derelict Land; 3. Vacant Land; 4. Previously Development Land. This study will focus on and deeply investigate the Vacant land and contaminated land.Keywords: brownfield, industrial land, redevelopment, assessment index
Procedia PDF Downloads 4666175 Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms
Authors: Behzad Niknam, Kourosh Shahriar, Hassan Madani
Abstract:
This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length.Keywords: tunnel fire, flame length, ANN, genetic algorithm
Procedia PDF Downloads 6476174 Green Supply Chain Network Optimization with Internet of Things
Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen
Abstract:
Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling
Procedia PDF Downloads 3296173 A Time Delay Neural Network for Prediction of Human Behavior
Authors: A. Hakimiyan, H. Namazi
Abstract:
Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time
Procedia PDF Downloads 6646172 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 3696171 Image Inpainting Model with Small-Sample Size Based on Generative Adversary Network and Genetic Algorithm
Authors: Jiawen Wang, Qijun Chen
Abstract:
The performance of most machine-learning methods for image inpainting depends on the quantity and quality of the training samples. However, it is very expensive or even impossible to obtain a great number of training samples in many scenarios. In this paper, an image inpainting model based on a generative adversary network (GAN) is constructed for the cases when the number of training samples is small. Firstly, a feature extraction network (F-net) is incorporated into the GAN network to utilize the available information of the inpainting image. The weighted sum of the extracted feature and the random noise acts as the input to the generative network (G-net). The proposed network can be trained well even when the sample size is very small. Secondly, in the phase of the completion for each damaged image, a genetic algorithm is designed to search an optimized noise input for G-net; based on this optimized input, the parameters of the G-net and F-net are further learned (Once the completion for a certain damaged image ends, the parameters restore to its original values obtained in the training phase) to generate an image patch that not only can fill the missing part of the damaged image smoothly but also has visual semantics.Keywords: image inpainting, generative adversary nets, genetic algorithm, small-sample size
Procedia PDF Downloads 1306170 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 976169 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 1906168 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling
Procedia PDF Downloads 4526167 Medical Image Augmentation Using Spatial Transformations for Convolutional Neural Network
Authors: Trupti Chavan, Ramachandra Guda, Kameshwar Rao
Abstract:
The lack of data is a pain problem in medical image analysis using a convolutional neural network (CNN). This work uses various spatial transformation techniques to address the medical image augmentation issue for knee detection and localization using an enhanced single shot detector (SSD) network. The spatial transforms like a negative, histogram equalization, power law, sharpening, averaging, gaussian blurring, etc. help to generate more samples, serve as pre-processing methods, and highlight the features of interest. The experimentation is done on the OpenKnee dataset which is a collection of knee images from the openly available online sources. The CNN called enhanced single shot detector (SSD) is utilized for the detection and localization of the knee joint from a given X-ray image. It is an enhanced version of the famous SSD network and is modified in such a way that it will reduce the number of prediction boxes at the output side. It consists of a classification network (VGGNET) and an auxiliary detection network. The performance is measured in mean average precision (mAP), and 99.96% mAP is achieved using the proposed enhanced SSD with spatial transformations. It is also seen that the localization boundary is comparatively more refined and closer to the ground truth in spatial augmentation and gives better detection and localization of knee joints.Keywords: data augmentation, enhanced SSD, knee detection and localization, medical image analysis, openKnee, Spatial transformations
Procedia PDF Downloads 1546166 Livability and Growth Performance of Noiler Chickens Fed with Different Biotic Additives
Authors: Idowu Kemi Ruth, Adeyemo Adedayo Akinade, Iyanda Adegboyega Ibukun, Idowu Olubukola Precious Akinade
Abstract:
Liveability and mortality rate is a germane aspect of product performance that cannot be overlooked in poultry production, while the disease is a major threat in the poultry industry which can cause a major loss for the farmer and a reduction in the total income generated from the stock. Therefore, efforts must be made to enhance the health status of chickens to reduce mortality. The study was conducted to investigate the effect of different biotic additives (prebiotic, probiotic and synbiotic ) on the performance of Noiler females at the growing phase (forty-nine days) till the point of the first egg across the biotic additive. A total of one hundred and twenty-eight female Noiler were used for the experiment. Experimental treatment consisted of prebiotic, probiotic, synbiotic and control at the inclusion rate of a gram into a kilogram of feed. Parameters measured are Feed intake, feed conversion ratio, the weight of the first egg, age of the first egg and livability. Data collected were subjected to a one-way analysis of variance. The result obtained revealed a better growth performance across the treatments than the control group with the least final weight at nineteen weeks of point of lay. Prebiotic treatment had the best age at first lay on day one hundred and thirty seven followed by other treatments on day one hundred and fifty four. However, the size of the eggs was not significantly influenced by the biotic additive. Hence, the experiment can be concluded that the inclusion of different biotic additives influenced the growth performance; likewise, the Prebiotic had a significant effect on the age of first laying in Noiler chicken, and livability was a hundred percent throughout the duration of the experiment.Keywords: prebiotic, probiotic, synbiotic, noiler
Procedia PDF Downloads 956165 How to Modernise the ECN
Authors: Dorota Galeza
Abstract:
This paper argues that networks, such as the ECN and the American network, are affected by certain small events which are inherent to path dependence and preclude the full evolution towards efficiency. It is advocated that the American network is superior to the ECN in many respects due to its greater flexibility and longer history. This stems in particular from the creation of the American network, which was based on a small number of cases. Such structure encourages further changes and modifications which are not necessarily radical. The ECN, by contrast, was established by legislative action, which explains its rigid structure and resistance to change. It might be the case that the ECN is subject not so much to path dependence but to past dependence. It might have to be replaced, as happened to its predecessor. This paper is an attempt to transpose the superiority of the American network on to the ECN. It looks at concepts such as judicial cooperation, harmonization of procedure, peer review and regulatory impact assessments (RIAs), and dispute resolution procedures. The aim is to adopt these concepts into the EU setting without recourse to legal transplantation. The major difficulty is that many of these concepts have been tested only in the US and it is difficult to tell whether they could be modified to meet EU standards. Concepts such as judicial cooperation might be difficult due to different language traditions in EU member states. It is hoped that greater flexibility, as in the American network, would boost legitimacy and transparency.Keywords: ECN, networks, regulation, competition
Procedia PDF Downloads 4306164 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator
Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula
Abstract:
A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.Keywords: ISA, neural network, Brain Float-16, DUT
Procedia PDF Downloads 956163 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia
Authors: Edward P. Guillen, A. Karina Martinez Barliza
Abstract:
Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution
Procedia PDF Downloads 2686162 Mobile Network Users Amidst Ultra-Dense Networks in 5G Using an Improved Coordinated Multipoint (CoMP) Technology
Authors: Johnson O. Adeogo, Ayodele S. Oluwole, O. Akinsanmi, Olawale J. Olaluyi
Abstract:
In this 5G network, very high traffic density in densely populated areas, most especially in densely populated areas, is one of the key requirements. Radiation reduction becomes one of the major concerns to secure the future life of mobile network users in ultra-dense network areas using an improved coordinated multipoint technology. Coordinated Multi-Point (CoMP) is based on transmission and/or reception at multiple separated points with improved coordination among them to actively manage the interference for the users. Small cells have two major objectives: one, they provide good coverage and/or performance. Network users can maintain a good quality signal network by directly connecting to the cell. Two is using CoMP, which involves the use of multiple base stations (MBS) to cooperate by transmitting and/or receiving at the same time in order to reduce the possibility of electromagnetic radiation increase. Therefore, the influence of the screen guard with rubber condom on the mobile transceivers as one major piece of equipment radiating electromagnetic radiation was investigated by mobile network users amidst ultra-dense networks in 5g. The results were compared with the same mobile transceivers without screen guards and rubber condoms under the same network conditions. The 5 cm distance from the mobile transceivers was measured with the help of a ruler, and the intensity of Radio Frequency (RF) radiation was measured using an RF meter. The results show that the intensity of radiation from various mobile transceivers without screen guides and condoms was higher than the mobile transceivers with screen guides and condoms when call conversation was on at both ends.Keywords: ultra-dense networks, mobile network users, 5g, coordinated multi-point.
Procedia PDF Downloads 1076161 Computational Neurosciences: An Inspiration from Biological Neurosciences
Authors: Harsh Sadawarti, Kamal Malik
Abstract:
Humans are the unique and the most powerful creature on this planet just because of the high level of intelligence gifted by nature. Computational Intelligence is highly influenced by the term natural intelligence, neurosciences and mathematics. To deal with the in-depth study of computational intelligence and to utilize it in real-life applications, it is quite important to understand its simulation with the human brain. In this paper, the three important parts, Frontal Lobe, Occipital Lobe and Parietal Lobe of the human brain, are compared with the ANN(Artificial Neural Network), CNN(Convolutional Neural network), and RNN(Recurrent Neural Network), respectively. Intelligent computational systems are created by combining deductive reasoning, logical concepts and high-level algorithms with the simulation and study of the human brain. Human brain is a combination of Physiology, Psychology, emotions, calculations and many other parameters which are of utmost importance that determines the overall intelligence. To create intelligent algorithms, smart machines and to simulate the human brain in an effective manner, it is quite important to have an insight into the human brain and the basic concepts of biological neurosciences.Keywords: computational intelligence, neurosciences, convolutional neural network, recurrent neural network, artificial neural network, frontal lobe, occipital lobe, parietal lobe
Procedia PDF Downloads 1126160 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction
Authors: Luis C. Parra
Abstract:
The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms
Procedia PDF Downloads 1086159 Exploring Twitter Data on Human Rights Activism on Olympics Stage through Social Network Analysis and Mining
Authors: Teklu Urgessa, Joong Seek Lee
Abstract:
Social media is becoming the primary choice of activists to make their voices heard. This fact is coupled by two main reasons. The first reason is the emergence web 2.0, which gave the users opportunity to become content creators than passive recipients. Secondly the control of the mainstream mass media outlets by the governments and individuals with their political and economic interests. This paper aimed at exploring twitter data of network actors talking about the marathon silver medalists on Rio2016, who showed solidarity with the Oromo protesters in Ethiopia on the marathon race finish line when he won silver. The aim is to discover important insight using social network analysis and mining. The hashtag #FeyisaLelisa was used for Twitter network search. The actors’ network was visualized and analyzed. It showed the central influencers during first 10 days in August, were international media outlets while it was changed to individual activist in September. The degree distribution of the network is scale free where the frequency of degrees decay by power low. Text mining was also used to arrive at meaningful themes from tweet corpus about the event selected for analysis. The semantic network indicated important clusters of concepts (15) that provided different insight regarding the why, who, where, how of the situation related to the event. The sentiments of the words in the tweets were also analyzed and indicated that 95% of the opinions in the tweets were either positive or neutral. Overall, the finding showed that Olympic stage protest of the marathoner brought the issue of Oromo protest to the global stage. The new research framework is proposed based for event-based social network analysis and mining based on the practical procedures followed in this research for event-based social media sense making.Keywords: human rights, Olympics, social media, network analysis, social network ming
Procedia PDF Downloads 2586158 The Effects of Seasonal Variation on the Microbial-N Flow to the Small Intestine and Prediction of Feed Intake in Grazing Karayaka Sheep
Authors: Mustafa Salman, Nurcan Cetinkaya, Zehra Selcuk, Bugra Genc
Abstract:
The objectives of the present study were to estimate the microbial-N flow to the small intestine and to predict the digestible organic matter intake (DOMI) in grazing Karayaka sheep based on urinary excretion of purine derivatives (xanthine, hypoxanthine, uric acid, and allantoin) by the use of spot urine sampling under field conditions. In the trial, 10 Karayaka sheep from 2 to 3 years of age were used. The animals were grazed in a pasture for ten months and fed with concentrate and vetch plus oat hay for the other two months (January and February) indoors. Highly significant linear and cubic relationships (P<0.001) were found among months for purine derivatives index, purine derivatives excretion, purine derivatives absorption, microbial-N and DOMI. Through urine sampling and the determination of levels of excreted urinary PD and Purine Derivatives / Creatinine ratio (PDC index), microbial-N values were estimated and they indicated that the protein nutrition of the sheep was insufficient. In conclusion, the prediction of protein nutrition of sheep under the field conditions may be possible with the use of spot urine sampling, urinary excreted PD and PDC index. The mean purine derivative levels in spot urine samples from sheep were highest in June, July and October. Protein nutrition of pastured sheep may be affected by weather changes, including rainfall. Spot urine sampling may useful in modeling the feed consumption of pasturing sheep. However, further studies are required under different field conditions with different breeds of sheep to develop spot urine sampling as a model.Keywords: Karayaka sheep, spot sampling, urinary purine derivatives, PDC index, microbial-N, feed intake
Procedia PDF Downloads 5296157 Comparison of an Upflow Anaerobic Sludge Blanket and an Anaerobic Filter for Treating Wheat Straw Washwater
Authors: Syazwani Idrus, S. Charles J. Banks, Sonia Heaven
Abstract:
The study compared the performance of upflow anaerobic sludge blanket (UASB) reactors and anaerobic filters (AF) for the treatment of wheat straw washwater (WSW) which has a high concentration of Potassium ions. The trial was conducted at mesophilic temperatures (37 °C). The digesters were started up over a 48-day period using a synthetic wastewater feed and reached an organic loading rate (OLR) of 6 g COD L^-1 day^-1 with a specific methane production (SMP) of 0.333 L CH4 g^-1 COD. When the feed was switched to WSW it was not possible to maintain the same loading rate as the SMP in all reactors fell sharply to less than 0.1 L CH4 g^-1 COD, with the AF affected more than the UASB. On reducing the OLR to 3 g COD L^-1 day^-1 the reactors recovered to produce 0.21 L CH4 g^-1 CODadded and gave 82% COD removal. A discrepancy between the COD consumed and the methane produced could be accounted for through increased maintenance energy requirement of the microbial community for osmo-regulation as K+ was found to accumulate in the sludge and in the UASB reached a concentration of 4.5 mg K g^-1 wet weight of granules.Keywords: anaerobic digestion, osmotic stress, chemical oxygen demand, specific methane production
Procedia PDF Downloads 6566156 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network
Authors: Habtemariam Alemu
Abstract:
It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink
Procedia PDF Downloads 5176155 Success Factors for Innovations in SME Networks
Authors: J. Gochermann
Abstract:
Due to complex markets and products, and increasing need to innovate, cooperation between small and medium size enterprises arose during the last decades, which are not prior driven by process optimization or sales enhancement. Especially small and medium sized enterprises (SME) collaborate increasingly in innovation and knowledge networks to enhance their knowledge and innovation potential, and to find strategic partners for product and market development. These networks are characterized by dual objectives, the superordinate goal of the total network, and the specific objectives of the network members, which can cause target conflicts. Moreover, most SMEs do not have structured innovation processes and they are not accustomed to collaborate in complex innovation projects in an open network structure. On the other hand, SMEs have suitable characteristics for promising networking. They are flexible and spontaneous, they have flat hierarchies, and the acting people are not anonymous. These characteristics indeed distinguish them from bigger concerns. Investigation of German SME networks have been done to identify success factors for SME innovation networks. The fundamental network principles, donation-return and confidence, could be confirmed and identified as basic success factors. Further factors are voluntariness, adequate number of network members, quality of communication, neutrality and competence of the network management, as well as reliability and obligingness of the network services. Innovation and knowledge networks with an appreciable number of members from science and technology institutions need also active sense-making to bring different disciplines into successful collaboration. It has also been investigated, whether and how the involvement in an innovation network impacts the innovation structure and culture inside the member companies. The degree of reaction grows with time and intensity of commitment.Keywords: innovation and knowledge networks, SME, success factors, innovation structure and culture
Procedia PDF Downloads 2846154 Upon One Smoothing Problem in Project Management
Authors: Dimitri Golenko-Ginzburg
Abstract:
A CPM network project with deterministic activity durations, in which activities require homogenous resources with fixed capacities, is considered. The problem is to determine the optimal schedule of starting times for all network activities within their maximal allowable limits (in order not to exceed the network's critical time) to minimize the maximum required resources for the project at any point in time. In case when a non-critical activity may start only at discrete moments with the pregiven time span, the problem becomes NP-complete and an optimal solution may be obtained via a look-over algorithm. For the case when a look-over requires much computational time an approximate algorithm is suggested. The algorithm's performance ratio, i.e., the relative accuracy error, is determined. Experimentation has been undertaken to verify the suggested algorithm.Keywords: resource smoothing problem, CPM network, lookover algorithm, lexicographical order, approximate algorithm, accuracy estimate
Procedia PDF Downloads 3026153 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network
Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.Keywords: multi-hop communication, parking monitoring system, TDMA, wireless sensor network
Procedia PDF Downloads 3036152 Research Activity in Computational Science Using High Performance Computing: Co-Authorship Network Analysis
Authors: Sul-Ah Ahn, Youngim Jung
Abstract:
The research activities of the computational scientists using high-performance computing are analyzed using bibliometric approaches. This study aims at providing computational scientists using high-performance computing and relevant policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of computational scientists using high-performance computing as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2006-2015. We extracted the author rank in the computational science field using high-performance computing by the number of papers published during ten years from 2006. Finally, we drew the co-authorship network for 50 top-authors and their coauthors and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.Keywords: co-authorship network analysis, computational science, high performance computing, research activity
Procedia PDF Downloads 323