Search results for: electrical characteristics of capacitive touchscreen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9283

Search results for: electrical characteristics of capacitive touchscreen

8623 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.

Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO

Procedia PDF Downloads 533
8622 Graphene Oxide Fiber with Different Exfoliation Time and Activated Carbon Particle

Authors: Nuray Uçar, Mervin Ölmez, Özge Alptoğa, Nilgün K. Yavuz, Ayşen Önen

Abstract:

In recent years, research on continuous graphene oxide fibers has been intensified. Therefore, many factors of production stages are being studied. In this study, the effect of exfoliation time and presence of activated carbon particle (ACP) on graphene oxide fiber’s properties has been analyzed. It has been seen that cross-sectional appearance of sample with ACP is harsh and porous because of ACP. The addition of ACP did not change the electrical conductivity. However, ACP results in an enormous decrease of mechanical properties. Longer exfoliation time results to higher crystallinity degree, C/O ratio and less d space between layers. The breaking strength and electrical conductivity of sample with less exfoliation time is some higher than sample with high exfoliation time.

Keywords: activated carbon, coagulation by wet spinning, exfoliation, graphene oxide fiber

Procedia PDF Downloads 343
8621 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 176
8620 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.

Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic

Procedia PDF Downloads 90
8619 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter

Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang

Abstract:

Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.

Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide

Procedia PDF Downloads 300
8618 Integrated Manufacture of Polymer and Conductive Tracks for Functional Objects Fabrication

Authors: Barbara Urasinska-Wojcik, Neil Chilton, Peter Todd, Christopher Elsworthy, Gregory J. Gibbons

Abstract:

The recent increase in the application of Additive Manufacturing (AM) of products has resulted in new demands on capability. The ability to integrate both form and function within printed objects is the next frontier in the 3D printing area. To move beyond prototyping into low volume production, we demonstrate a UK-designed and built AM hybrid system that combines polymer based structural deposition with digital deposition of electrically conductive elements. This hybrid manufacturing system is based on a multi-planar build approach to improve on many of the limitations associated with AM, such as poor surface finish, low geometric tolerance, and poor robustness. Specifically, the approach involves a multi-planar Material Extrusion (ME) process in which separated build stations with up to 5 axes of motion replace traditional horizontally-sliced layer modeling. The construction of multi-material architectures also involved using multiple print systems in order to combine both ME and digital deposition of conductive material. To demonstrate multi-material 3D printing, three thermoplastics, acrylonitrile butadiene styrene (ABS), polyamide 6,6/6 copolymers (CoPA) and polyamide 12 (PA) were used to print specimens, on top of which our high viscosity Ag-particulate ink was printed in a non-contact process, during which drop characteristics such as shape, velocity, and volume were assessed using a drop watching system. Spectroscopic analysis of these 3D printed materials in the IR region helped to determine the optimum in-situ curing system for implementation into the AM system to achieve improved adhesion and surface refinement. Thermal Analyses were performed to determine the printed materials glass transition temperature (Tg), stability and degradation behavior to find the optimum annealing conditions post printing. Electrical analysis of printed conductive tracks on polymer surfaces during mechanical testing (static tensile and 3-point bending and dynamic fatigue) was performed to assess the robustness of the electrical circuits. The tracks on CoPA, ABS, and PA exhibited low electrical resistance, and in case of PA resistance values of tracks remained unchanged across hundreds of repeated tensile cycles up to 0.5% strain amplitude. Our developed AM printer has the ability to fabricate fully functional objects in one build, including complex electronics. It enables product designers and manufacturers to produce functional saleable electronic products from a small format modular platform. It will make 3D printing better, faster and stronger.

Keywords: additive manufacturing, conductive tracks, hybrid 3D printer, integrated manufacture

Procedia PDF Downloads 168
8617 Hydrodynamic Analysis of Journal Bearing Operating With Nanolubricants

Authors: R. Hariprakash, K. Prabhakaran Nair

Abstract:

In this paper, the static and dynamic characteristics of hydrodynamic journal bearings operating under nano lubricants are presented. Hydrodynamic journal bearings are used in turbo machines of power plants to support heavy load. In power plants, bearings are getting failure because of its inability to support the heavy load due to various reasons. Failures of bearings make the power plant to be shutdown. The load carrying capacity of journal bearing mainly depends upon the viscosity of the lubricants. The addition of nano particles on commercially available lubricant may enhance the viscosity of lubricant and in turn, change the performance characteristics. In the literature, though many studies have been carried out for the hydrodynamic bearing operating under Newtonian and non-Newtonian lubricants, studies on hydrodynamic bearings operating under nano lubricants is scarce. Thus, it is felt that there is a need to recompute the performance characteristics of journal bearings operating under nano lubricants.

Keywords: hydrodynamic, journal, bearing, analysis

Procedia PDF Downloads 435
8616 Mediating Role of Experiential Value Added by the Sales Force

Authors: Said Echchakoui

Abstract:

This paper aims to investigate how experiential value added by the salesperson mediates the relationship between perceived salesperson source characteristics and his performance. Structural equation modelling was employed to assess the proposed research model empirically. The empirical results revealed that the three dimensions of experiential value economic benefit, service productivity and enjoyable interaction, mediated the relationship between perceived salesperson source characteristics and his performance. Managerial implications are addressed.

Keywords: sales force, experiential added value, customer perceived value, performance

Procedia PDF Downloads 433
8615 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.

Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis

Procedia PDF Downloads 502
8614 Analysis of Heat Transfer and Energy Saving Characteristics for Bobsleigh/Skeleton Ice Track

Authors: Zichu Liu, Zhenhua Quan, Xin Liu, Yaohua Zhao

Abstract:

Enhancing the heat transfer characteristics of the bobsleigh/skeleton ice track and reducing the energy consumption of the bobsleigh/skeleton ice track plays an important role in energy saving of the refrigeration systems. In this study, a track ice-making test rig was constructed to verify the accuracy of the established ice track heat transfer model. The different meteorological conditions on the variations in the heat transfer characteristics of the ice surface, ice temperature, and evaporation temperature with or without Terrain Weather Protection System (TWPS) were investigated, and the influence of the TWPS with and without low emissivity materials on these indexes was also compared. In addition, the influence of different pipe spacing and diameters of refrigeration pipe on the heat transfer resistance of the track is also analyzed. The results showed that compared with the ice track without sunshade facilities, TWPS could reduce the heat transfer between ice surface and air by 17.6% in the transition season, and TWPS with low emissivity material could reduce the heat transfer by 37%. The thermal resistance of the ice track decreased by 8.9×10⁻⁴ m²·°C/W, and the refrigerant evaporation temperature increased by 0.25 °C when the cooling pipes spacing decreased by every 10 mm. The thermal resistance decreased by 1.46×10⁻³ m²·°C/W, and the refrigerant evaporation temperature increased by 0.3 °C when the pipe diameter increased by one nominal diameter.

Keywords: bobsleigh/skeleton ice track, calculation model, heat transfer characteristics, refrigeration

Procedia PDF Downloads 111
8613 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 181
8612 Characteristics of Butterfly Communities according to Habitat Types of Jeongmaek in Korea

Authors: Ji-Suk Kim, Dong-Pil Kim, Kee-Rae Gang, Yoon Ho Choi

Abstract:

This study was conducted to investigate the characteristics of butterfly communities according to the habitat characteristics of Korean veins. The survey sites were 12 mountains located in the vein, and 12~30 quadrats (200 in total) were set. The species richness and biodiversity were different according to land use type. Two types of land use (forest and graveyard) showed lower species diversity index values ​​than other land use types. The species abundance was low in the forest and graveyards, and grasslands, forest tops, cultivated areas and urban areas showed relatively high species richness. The altitude was not statistically significant with the number of species of butterflies and biodiversity index. The degree of canopy closure showed a negative correlation. As a result of interspecific correlation analysis, it was confirmed that there was a very high correlation (R2=0.746) between Lycaena phlaeas and Pseudozizeeria maha argia, Choaspes benjaminii japonica and Argyronome ruslana.

Keywords: land use type, species diversity index, correlation, canopy closure

Procedia PDF Downloads 160
8611 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller

Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)

Procedia PDF Downloads 477
8610 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: nickel doped cobalt sulfide, counter electrodes, dye-sensitized solar cells, quasi-solid state electrolyte, hybrid organic-inorganic materials

Procedia PDF Downloads 760
8609 Geophysical Mapping of Anomalies Associated with Sediments of Gwandu Formation Around Argungu and Its Environs NW, Nigeria

Authors: Adamu Abubakar, Abdulganiyu Yunusa, Likkason Othniel Kamfani, Abdulrahman Idris Augie

Abstract:

This research study is being carried out in accordance with the Gwandu formation's potential exploratory activities in the inland basin of northwest Nigeria.The present research aims to identify and characterize subsurface anomalies within Gwandu formation using electrical resistivity tomography (ERT) and magnetic surveys, providing valuable insights for mineral exploration. The study utilizes various data enhancement techniques like derivatives, upward continuation, and spectral analysis alongside 2D modeling of electrical imaging profiles to analyze subsurface structures and anomalies. Data was collected through ERT and magnetic surveys, with subsequent processing including derivatives, spectral analysis, and 2D modeling. The results indicate significant subsurface structures such as faults, folds, and sedimentary layers. The study area's geoelectric and magnetic sections illustrate the depth and distribution of sedimentary formations, enhancing understanding of the geological framework. Thus, showed that the entire formations of Eocene sediment of Gwandu are overprinted by the study area's Tertiary strata. The NE to SW and E to W cross-profile for the pseudo geoelectric sections beneath the study area were generated using a two-dimensional (2D) electrical resistivity imaging. 2D magnetic modelling, upward continuation, and derivative analysis are used to delineate the signatures of subsurface magnetic anomalies. The results also revealed The sediment thickness by surface depth ranges from ∼4.06 km and ∼23.31 km. The Moho interface, the lower and upper mantle crusts boundary, and magnetic crust are all located at depths of around ∼10.23 km. The vertical distance between the local models of the foundation rocks to the north and south of the Sokoto Group was approximately ∼6 to ∼8 km and ∼4.5 km, respectively.

Keywords: high-resolution aeromagnetic data, electrical resistivity imaging, subsurface anomalies, 2d dorward modeling

Procedia PDF Downloads 17
8608 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 303
8607 Reburning Characteristics of Biomass Syngas in a Pilot Scale Heavy Oil Furnace

Authors: Sang Heon Han, Daejun Chang, Won Yang

Abstract:

NOx reduction characteristics of syngas fuel were numerically investigated for the 2MW pilot scale heavy oil furnace of KITECH (Korea Institute of Industrial Technology). The secondary fuel and syngas was fed into the furnace with two purposes- partial replacement of main fuel and reburning of NOx. Some portion of syngas was fed into the flame zone to partially replace the heavy oil, while the other portion was fed into the furnace downstream to reduce NOx generation. The numerical prediction was verified by comparing it with the experimental results. Syngas of KITECH’s experiment, assumed to be produced from biomass, had very low calorific value and contained 3% hydrocarbon. This study investigated the precise behavior of NOx generation and NOx reduction as well as thermo-fluidic characteristics inside the furnace, which was unavailable with experiment. In addition to 3% hydrocarbon syngas, 5%, and 7% hydrocarbon syngas were numerically tested as reburning fuels to analyze the effect of hydrocarbon proportion to NOx reduction. The prediction showed that the 3% hydrocarbon syngas is as much effective as 7% hydrocarbon syngas in reducing NOx.

Keywords: syngas, reburning, heavy oil, furnace

Procedia PDF Downloads 445
8606 Design, Construction and Characterization of a 3He Proportional Counter for Detecting Thermal Neutron

Authors: M. Fares, S. Mameri, I. Abdlani, K. Negara

Abstract:

Neutron detectors in general, proportional counters gas filling based isotope 3He in particular are going to be essential for monitoring and control of certain nuclear facilities, monitoring of experimentation around neutron beams and channels nuclear research reactors, radiation protection instruments and other tools multifaceted exploration and testing of materials, etc. This work consists of a measurement campaign features two Proportional Counters 3He (3He: LND252/USA CP, CP prototype: 3He LND/DDM). This is to make a comparison study of a CP 3He LND252/USA reference one hand, and in the context of routine periodic monitoring of the characteristics of the detectors for controlling the operation especially for laboratory prototypes. In this paper, we have described the different characteristics of the detectors and the experimental protocols used. Tables of measures have been developed and the different curves were plotted. The experimental campaign at stake: 2 PC 3He were thus characterized: Their characteristics (sensitivity, energy pulse height distribution spectra, gas amplification etc.) Were identified: 01 PC 3He 1'' Type: prototype DEDIN/DDM, 01 PC 3He 1'' Type: LND252/USA.

Keywords: PC 3He, sensitivity, pulse height distribution spectra, gas amplification

Procedia PDF Downloads 444
8605 Entrepreneurial Determinants Contributing to the Long Term Growth of Young Hi-Technology Start-Ups

Authors: A. Binnui, O. Kalinowska-Beszczynska, G. Shaw

Abstract:

It is postulated that innovative deployment of entrepreneurial activities leads to firm's growth. This paper draws upon the key predictions of the core theories on entrepreneurship and innovation to formulate a conceptual framework which can be used to depict the casual chain of events from which entrepreneurs can manage more innovatively and ultimately deliver higher growth which benefits of the regional and national economies. It examines the key firm-based factors extracted from the theories, namely the characteristics of entrepreneurial hi-tech firms, characteristics of innovating firms, and firm growth dynamics that lead to enhanced economic growth. The framework postulates that the key determinants extracted such as entrepreneurial demographics, firm characteristic, skills and competencies, research and development, product/service characteristics, market development, financial of the firm and internationalization might lead to the survival and long term development of high-technology startups.

Keywords: innovative entrepreneurial activities, entrepreneuship, determinants, growth, hi-technology start-upws

Procedia PDF Downloads 141
8604 Study of the Hysteretic I-V Characteristics in a Polystyrene/ZnO-Nanorods Stack Layer

Authors: You-Lin Wu, Yi-Hsing Sung, Shih-Hung Lin, Jing-Jenn Lin

Abstract:

Performance improvement in optoelectronic devices such as solar cells and photodetectors has been reported when a polymer/ZnO nanorods stack is used. Resistance switching of polymer/ZnO nanocrystals (or nanorods) hybrid has also gained a lot of research interests recently. It has been reported that high- and low-resistance states of a metal/insulator/metal (MIM) structure diode with a polystyrene (PS) and ZnO hybrid as the insulator layer can be switched by applied bias after a high-voltage forming process, while the same device structure merely with a PS layer does not show any forming behavior. In this work, we investigated the current-voltage (I-V) characteristics of an MIM device with a PS/ZnO nanorods stack deposited on fluorine-doped tin oxide (FTO) glass substrate. The ZnO nanorods were grown by a hydrothermal method using a mixture of zinc nitrate, hexamethylenetetramine, and DI water. Following that, a PS layer was deposited by spin coating. Finally, the device with a structure of Ti/ PS/ZnO nanorods/FTO was completed by e-gun evaporated Ti layer on top of the PS layer. Semiconductor parameters analyzer Agilent 4156C was then used to measure the I-V characteristics of the device by applying linear ramp sweep voltage with sweep sequence of 0V → 4V → 0V → 3V → 0V → 2V → 0V → 1V → 0V in both positive and negative directions. It is interesting to find that the I-V characteristics are bias dependent and hysteretic, indicating that the device Ti/PS/ZnO nanorods/FTO structure has ferroelectricity. Our results also show that the maximum hysteresis loop height of the I-V characteristics as well as the voltage at which the maximum hysteresis loop height of each scan occurs increase with increasing maximum sweep voltage. It should be noticed that, although ferroelectricity has been found in ZnO at its melting temperature (1975℃) and in Li- or Co-doped ZnO, neither PS nor ZnO has ferroelectricity at room temperature. Using the same structure but with a PS or ZnO layer only as the insulator does not give and hysteretic I-V characteristics. It is believed that a charge polarization layer is induced near the PS/ZnO nanorods stack interface and thus causes the ferroelectricity in the device with Ti/PS/ZnO nanorods/FTO structure. Our results show that the PS/ZnO stack can find a potential application in a resistive switching memory device with MIM structure.

Keywords: ferroelectricity, hysteresis, polystyrene, resistance switching, ZnO nanorods

Procedia PDF Downloads 312
8603 Dielectric Properties of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ Ceramics at Microwave Frequency

Authors: Yih-Chien Chen, Tse-Lung Lin

Abstract:

The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are studied to determine the feasibility of their use in the liquid sensor. The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are determined using X-ray diffraction (XRD) patterns. The permittivity (𝜀r) of NdTi₍₀.₄₉₎Ge₀.₀₁Mo₀.₅O₄ that is sintered at 1425 ℃ for 4 h is 17.6, the unloaded quality factor (Qu×f) is 33,400 GHz, and it has a temperature coefficient at the resonance frequency (TCF) of -30.7 ppm/℃. The proposed liquid sensor is at the 5G FR1 bands.

Keywords: NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄, X-ray diffraction pattern, permittivity, Unloaded quality factor

Procedia PDF Downloads 295
8602 Factor Influencing Pharmacist Engagement and Turnover Intention in Thai Community Pharmacist: A Structural Equation Modelling Approach

Authors: T. Nakpun, T. Kanjanarach, T. Kittisopee

Abstract:

Turnover of community pharmacist can affect continuity of patient care and most importantly the quality of care and also the costs of a pharmacy. It was hypothesized that organizational resources, job characteristics, and social supports had direct effect on pharmacist turnover intention, and indirect effect on pharmacist turnover intention via pharmacist engagement. This research aimed to study influencing factors on pharmacist engagement and pharmacist turnover intention by testing the proposed structural hypothesized model to explain the relationship among organizational resources, job characteristics, and social supports that effect on pharmacist turnover intention and pharmacist engagement in Thai community pharmacists. A cross sectional study design with self-administered questionnaire was conducted in 209 Thai community pharmacists. Data were analyzed using Structural Equation Modeling technique with analysis of a moment structures AMOS program. The final model showed that only organizational resources had significant negative direct effect on pharmacist turnover intention (β =-0.45). Job characteristics and social supports had significant positive relationship with pharmacist engagement (β = 0.44, and 0.55 respectively). Pharmacist engagement had significant negative relationship with pharmacist turnover intention (β = - 0.24). Thus, job characteristics and social supports had significant negative indirect effect on turnover intention via pharmacist engagement (β =-0.11 and -0.13, respectively). The model fit the data well (χ2/ degree of freedom (DF) = 2.12, the goodness of fit index (GFI)=0.89, comparative fit index (CFI) = 0.94 and root mean square error of approximation (RMSEA) = 0.07). This study can be concluded that organizational resources were the most important factor because it had direct effect on pharmacist turnover intention. Job characteristics and social supports were also help decrease pharmacist turnover intention via pharmacist engagement.

Keywords: community pharmacist, influencing factor, turnover intention, work engagement

Procedia PDF Downloads 207
8601 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 190
8600 The Comparison of the Effect of Mindfulness-Based Relaxation Training and Trans Cranial Electrical Stimulation and Their Combination on Decreasing Physiological Distress in Patients with Type-2 Diabetes

Authors: Gholam Hossein Javanmard, Roghayeh Mohammadi Garegozlo

Abstract:

The present study was a randomized three-group double-blind clinical trial with repeated measures designs which aimed to determine the pure effect and combined effect of mindfulness based-relaxation (MBR) technique and Transcranial Electrical Simulation (tCES) on psychological distress decreasing of patients with type-2 diabetes. The sample of the study consisted of 30 patients with type-2 diabetes who were selected from the Diabetes Association of Bonab city in Iran. The participants were matched and then randomly assigned to the three groups of 10 subjects (MBR, CES, MBR+CES). The subjects received interventions related to their group in 10 individual sessions. Pre-test, post-test, and one-month follow-up were conducted using DASS-42. Analysis of variance with repeated measures showed a significant change in psychological distress. Multivariate covariance analysis and the paired interpersonal comparative test of Ben Foruni indicated that both interventions of MBR and CES have a similar effect on psychological distress decreasing in the post-test and follow-up phase. But, the combined therapy of MBR+CES was more efficient, and it had a more stable effect. However, all three interventions, especially combined intervention of MBR+CES, as efficient and stable treatment, are suggested for improving the psychological status of diabetic patients.

Keywords: mindfulness based-relaxation, transcranial electrical simulation, type 2 diabetes, psychological distress

Procedia PDF Downloads 131
8599 Passenger Flow Characteristics of Seoul Metropolitan Subway Network

Authors: Kang Won Lee, Jung Won Lee

Abstract:

Characterizing the network flow is of fundamental importance to understand the complex dynamics of networks. And passenger flow characteristics of the subway network are very relevant for an effective transportation management in urban cities. In this study, passenger flow of Seoul metropolitan subway network is investigated and characterized through statistical analysis. Traditional betweenness centrality measure considers only topological structure of the network and ignores the transportation factors. This paper proposes a weighted betweenness centrality measure that incorporates monthly passenger flow volume. We apply the proposed measure on the Seoul metropolitan subway network involving 493 stations and 16 lines. Several interesting insights about the network are derived from the new measures. Using Kolmogorov-Smirnov test, we also find out that monthly passenger flow between any two stations follows a power-law distribution and other traffic characteristics such as congestion level and throughflow traffic follow exponential distribution.

Keywords: betweenness centrality, correlation coefficient, power-law distribution, Korea traffic DB

Procedia PDF Downloads 291
8598 Evaluation of the Cities Specific Characteristics in the Formation of the Safavid Period Mints

Authors: Mahmood Seyyed, Akram Salehi Heykoei, Hamidreza Safakish Kashani

Abstract:

Among the remaining resource of the past, coins considered as an authentic documents among the most important documentary sources. The coins were minted in a place that called mint. The number and position of the mints in each period reflects the amount of economic power, political security and business growth, which was always fluctuated its position with changing the political and economic condition. Considering that, trade has more growth during the Safavid period than previous ones, the mint also has been in greater importance. It seems the one hand, the growth of economic in Safavid period has a direct link with the number and places of the mints at that time and in the other hand, the mints have been formed in some places because of the specific characteristic of cities and regions. Increasing the number of mints in the north of the country due to the growth of silk trade and in the west and northwest due to the political and commercial relation with Ottoman Empire, also the characteristics such as existence of mines, located in the Silk Road and communication ways, all are the results of this investigation. Accordingly, in this article researcher tries to examine the characteristics that give priority to a city for having mint. With considering that in the various historical periods, the mints were based in the most important cities in terms of political and social, at that time, this article examines the cities specific characteristics in the formation of the mints in Safavid period.

Keywords: documentary sources, coins, mint, city, Safavid

Procedia PDF Downloads 268
8597 Cd1−xMnxSe Thin Films Preparation by Cbd: Aspect on Optical and Electrical Properties

Authors: Jaiprakash Dargad

Abstract:

CdMnSe dilute semiconductor or semimagnetic semiconductors have become the focus of intense research due to their interesting combination of magnetic and semiconducting properties, and are employed in a variety of devices including solar cells, gas sensors etc. A series of thin films of this material, Cd1−xMnxSe (0 ≤ x ≤ 0.5), were therefore synthesized onto precleaned amorphous glass substrates using a solution growth technique. The sources of cadmium (Cd2+) and manganese (Mn2+) were aqueous solutions of cadmium sulphate and manganese sulphate, and selenium (Se2−) was extracted from a reflux of sodium selenosulphite. The different deposition parameters such as temperature, time of deposition, speed of mechanical churning, pH of the reaction mixture etc were optimized to yield good quality deposits. The as-grown samples were thin, relatively uniform, smooth and tightly adherent to the substrate support. The colour of the deposits changed from deep red-orange to yellowish-orange as the composition parameter, x, was varied from 0 to 0.5. The terminal layer thickness decreased with increasing value of, x. The optical energy gap decreased from 1.84 eV to 1.34 eV for the change of x from 0 to 0.5. The coefficient of optical absorption is of the order of 10-4 - 10-5 cm−1 and the type of transition (m = 0.5) is of the band-to-band direct type. The dc electrical conductivities were measured at room temperature and in the temperature range 300 K - 500 K. It was observed that the room temperature electrical conductivity increased with the composition parameter x up to 0.1, gradually decreasing thereafter. The thermo power measurements showed n-type conduction in these films.

Keywords: dilute semiconductor, reflux, CBD, thin film

Procedia PDF Downloads 232
8596 Issues on Optimizing the Structural Parameters of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Analytical expressions of the current and angular errors, as well as the frequency characteristics of an induction converter describing the relation with its structural parameters, the core and winding characteristics are obtained. Based on estimation of the dependences obtained, a mathematical problem of parametric optimization is formulated which can successfully be used for investigation and diagnosing an induction converter.

Keywords: induction converters, magnetic circuit material, current and angular errors, frequency response, mathematical formulation, structural parameters

Procedia PDF Downloads 345
8595 Feasibility Assessment of High-Temperature Superconducting AC Cable Lines Implementation in Megacities

Authors: Andrey Kashcheev, Victor Sytnikov, Mikhail Dubinin, Elena Filipeva, Dmitriy Sorokin

Abstract:

Various variants of technical solutions aimed at improving the reliability of power supply to consumers of 110 kV substation are considered. For each technical solution, the results of calculation and analysis of electrical modes and short-circuit currents in the electrical network are presented. The estimation of electric energy consumption for losses within the boundaries of substation reconstruction was carried out in accordance with the methodology for determining the standards of technological losses of electricity during its transmission through electric networks. The assessment of the technical and economic feasibility of the use of HTS CL compared with the complex reconstruction of the 110 kV substation was carried out. It is shown that the use of high-temperature superconducting AC cable lines is a possible alternative to traditional technical solutions used in the reconstruction of substations.

Keywords: superconductivity, cable lines, superconducting cable, AC cable, feasibility

Procedia PDF Downloads 99
8594 Study of Physico-Chimical Properties of a Silty Soil

Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef

Abstract:

Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.

Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties

Procedia PDF Downloads 473