Search results for: blood cell count
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6147

Search results for: blood cell count

5487 Nontuberculous Mycobacterium Infection – Still An Important Disease Among People With Late HIV Diagnosis

Authors: Jakub Młoźniak, Adam Szymański, Gabriela Stondzik, Dagny Krankowska, Tomasz Mikuła

Abstract:

Nontuberculous mycobacteria (NTM) are bacterial species that cause diversely manifesting diseases mainly in immunocompromised patients. In people with HIV, NTM infection is an AIDS-defining disease and usually appears when the lymphocyte T CD4 count is below 50 cells/μl. The usage of antiretroviral therapy has decreased the prevalence of NTM among people with HIV, but the disease can still be observed especially among patients with late HIV diagnosis. Common presence in environment, human colonization, clinical similarity with tuberculosis and slow growth on culture makes NTM especially hard to diagnose. The study aimed to analyze the epidemiology and clinical course of NTM among patients with HIV. This study included patients with NTM and HIV admitted to our department between 2017 and 2023. Medical records of patients were analyzed and data on age, sex, median time from HIV diagnosis to identification of NTM infection, median CD4 count at NTM diagnosis, methods of determining NTM infection, type of species of mycobacteria identified, clinical symptoms and treatment course were gathered. Twenty-four patients (20 men, 4 women) with identified NTM were included in this study. Among them, 20 were HIV late presenters. The patients' median age was 40. The main symptoms which patients presented were fever, weight loss and cough. Pulmonary disease confirmed with positive cultures from sputum/bronchoalveolar lavage was present in 18 patients. M. avium was the most common species identified. M. marinum caused disseminated skin lesions in 1 patient. Out of all, 5 people were not treated for NTM caused by lack of symptoms and suspicion of colonization with mycobacterium. Concomitant tuberculosis was present in 6 patients. The median diagnostic time from HIV to NTM infections was 3.5 months. The median CD4 count at NTM identification was 69.5 cells/μl. Median NTM treatment time was 16 months but 7 patients haven’t finished their treatment yet. The most commonly used medications were ethambutol and clarithromycin. Among analyzed patients, 4 of them have died. NTM infections are still an important disease among patients who are HIV late presenters. This disease should be taken into consideration during the differential diagnosis of fever, weight loss and cough in people with HIV with lymphocyte T CD4 count <100 cells/μl. Presence of tuberculosis does not exclude nontuberculous mycobacterium coinfection.

Keywords: mycobacteriosis, HIV, late presenter, epidemiology

Procedia PDF Downloads 39
5486 Reducing the Incidence of Hyperphosphatemia in Patients Receiving Dialysis

Authors: Tsai Su Hui

Abstract:

Background: Hyperphosphatemia in patients receiving dialysis can cause hyperparathyroidism, which can lead to renal osteodystrophy, cardiovascular disease and mortality. Data showed that 26% of patients receiving dialysis had blood phosphate levels of >6.0 mg/dl at this unit from January to March 2017, higher than the Taiwan Society of Nephrology evaluation criteria of < 20%. After analysis, possible reasons included: 1. Incomprehensive education for nurse and lack of relevant training. 2. Insufficient assistive aids for nursing health education instruction. 3. Patients were unsure which foods are high or low in phosphate. 4. Patients did not have habits of taking medicine with them and how to correctly administer the medication. Purpose: To reduce the percentage of patients receiving dialysis with blood phosphate levels of >6.0 mg/dl to less than 20% at this unit. Method: (1) Improve understanding of hyperphosphatemia and food for patients receiving dialysis and their families, (2) Acquire more nursing instruction assistive aids and improve knowledge of hyperphosphatemia for nurse. Results: After implementing the project, the percentage of patients receiving dialysis with blood phosphate levels of >6.0 mg/dl decreased from 26.0% to 18.8% at this unit. By implementing the project, the professional skills of nurse improved, blood phosphate levels of patients receiving dialysis were reduced, and the quality of care for patients receiving dialysis at this unit was enhanced.

Keywords: hemodialysis, hyperphosphatemia, incidence, reducing

Procedia PDF Downloads 121
5485 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools

Authors: Usha Kiran, M. Z. Abdin

Abstract:

Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.

Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein

Procedia PDF Downloads 267
5484 MiRNA Regulation of CXCL12β during Inflammation

Authors: Raju Ranjha, Surbhi Aggarwal

Abstract:

Background: Inflammation plays an important role in infectious and non-infectious diseases. MiRNA is also reported to play role in inflammation and associated cancers. Chemokine CXCL12 is also known to play role in inflammation and various cancers. CXCL12/CXCR4 chemokine axis was involved in pathogenesis of IBD specially UC. Supplementation of CXCL12 induces homing of dendritic cells to spleen and enhances control of plasmodium parasite in BALB/c mice. We looked at the regulation of CXCL12β by miRNA in UC colitis. Prolonged inflammation of colon in UC patient increases the risk of developing colorectal cancer. We looked at the expression differences of CXCl12β and its targeting miRNA in cancer susceptible area of colon of UC patients. Aim: Aim of this study was to find out the expression regulation of CXCL12β by miRNA in inflammation. Materials and Methods: Biopsy samples and blood samples were collected from UC patients and non-IBD controls. mRNA expression was analyzed using microarray and real-time PCR. CXCL12β targeting miRNA were looked by using online target prediction tools. Expression of CXCL12β in blood samples and cell line supernatant was analyzed using ELISA. miRNA target was validated using dual luciferase assay. Results and conclusion: We found miR-200a regulate the expression of CXCL12β in UC. Expression of CXCL12β was increased in cancer susceptible part of colon and expression of its targeting miRNA was decreased in the same part of colon. miR-200a regulate CXCL12β expression in inflammation and may be an important therapeutic target in inflammation associated cancer.

Keywords: inflammation, miRNA, regulation, CXCL12

Procedia PDF Downloads 272
5483 Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer

Authors: Dean Robinson, Miriam Gublebank, Ella Sklan, Tali Tavor Re'em

Abstract:

Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process.

Keywords: cell culture, tissue engineering, spider silk, alginate, bioprinting

Procedia PDF Downloads 190
5482 Surface Display of Lipase on Yarrowia lipolytica Cells

Authors: Evgeniya Y. Yuzbasheva, Tigran V. Yuzbashev, Natalia I. Perkovskaya, Elizaveta B. Mostova

Abstract:

Cell-surface display of lipase is of great interest as it has many applications in the field of biotechnology owing to its unique advantages: simplified product purification, and cost-effective downstream processing. One promising area of application for whole-cell biocatalysts with surface displayed lipase is biodiesel synthesis. Biodiesel is biodegradable, renewable, and nontoxic alternative fuel for diesel engines. Although the alkaline catalysis method has been widely used for biodiesel production, it has a number of limitations, such as rigorous feedstock specifications, complicated downstream processes, including removal of inorganic salts from the product, recovery of the salt-containing by-product glycerol, and treatment of alkaline wastewater. Enzymatic synthesis of biodiesel can overcome these drawbacks. In this study, Lip2p lipase was displayed on Yarrowia lipolytica cells via C- and N-terminal fusion variant. The active site of lipase is located near the C-terminus, therefore to prevent the activity loosing the insertion of glycine-serine linker between Lip2p and C-domains was performed. The hydrolytic activity of the displayed lipase reached 12,000–18,000 U/g of dry weight. However, leakage of enzyme from the cell wall was observed. In case of C-terminal fusion variant, the leakage was occurred due to the proteolytic cleavage within the linker peptide. In case of N-terminal fusion variant, the leaking enzyme was presented as three proteins, one of which corresponded to the whole hybrid protein. The calculated number of recombinant enzyme displayed on the cell surface is approximately 6–9 × 105 molecules per cell, which is close to the theoretical maximum (2 × 106 molecules/cell). Thus, we attribute the enzyme leakage to the limited space available on the cell surface. Nevertheless, cell-bound lipase exhibited greater stability to short-term and long-term temperature treatment than the native enzyme. It retained 74% of original activity at 60°C for 5 min of incubation, and 83% of original activity after incubation at 50°C during 5 h. Cell-bound lipase had also higher stability in organic solvents and detergents. The developed whole-cell biocatalyst was used for recycling biodiesel synthesis. Two repeated cycles of methanolysis yielded 84.1–% and 71.0–% methyl esters after 33–h and 45–h reactions, respectively.

Keywords: biodiesel, cell-surface display, lipase, whole-cell biocatalyst

Procedia PDF Downloads 482
5481 Antidiabetic Evaluation of Pig (Sus scrofa) Bile on Alloxan-Induced BALB/c Mice

Authors: John Lyndon C. Lunnay

Abstract:

This study discerns to evaluate the antidiabetic efficacy of pig bile on alloxan-induced BALB/c mice. The experimental animals were divided and selected using RCBD into 5 groups (n= 4): T1 (negative control), T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg) and T5 (Glibenclamide). Hyperglycemia was induced by injecting 1% alloxan monohydrate intraperitoneally. A glucose tolerance test was performed using a 2g/kg glucose solution, and blood glucose levels were measured at different time intervals. 14 days of monitoring was also done to ensure effectivity and efficacy of the different treatments. Bodyweight was also determined. Results show that administration of treatments on test animals significantly reverted the blood glucose levels of mice in 60 minutes and 120 minutes using an oral glucose tolerance test. After 14 days of monitoring, normal blood glucose levels were seen significantly on T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg), and T5 (Glibenclamide), which only suggests the efficacy of pig bile on lowering glucose levels on alloxan-induced diabetic mice. Bodyweight analysis shows no significant difference. Duncan’s multiple range test (DMRT) shows comparable efficacy and effectivity between T4 (3ml/kg) and T5 (Glibenclamide) on lowering BGL at different day and time intervals.

Keywords: pig bile, BALB/c mice, blood glucose, Gllibenclamide

Procedia PDF Downloads 146
5480 Association of the Time in Targeted Blood Glucose Range of 3.9–10 Mmol/L with the Mortality of Critically Ill Patients with or without Diabetes

Authors: Guo Yu, Haoming Ma, Peiru Zhou

Abstract:

BACKGROUND: In addition to hyperglycemia, hypoglycemia, and glycemic variability, a decrease in the time in the targeted blood glucose range (TIR) may be associated with an increased risk of death for critically ill patients. However, the relationship between the TIR and mortality may be influenced by the presence of diabetes and glycemic variability. METHODS: A total of 998 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The TIR is defined as the percentage of time spent in the target blood glucose range of 3.9–10.0 mmol/L within 24 hours. The relationship between TIR and in-hospital in diabetic and non-diabetic patients was analyzed. The effect of glycemic variability was also analyzed. RESULTS: The binary logistic regression model showed that there was a significant association between the TIR as a continuous variable and the in-hospital death of severely ill non-diabetic patients (OR=0.991, P=0.015). As a classification variable, TIR≥70% was significantly associated with in-hospital death (OR=0.581, P=0.003). Specifically, TIR≥70% was a protective factor for the in-hospital death of severely ill non-diabetic patients. The TIR of severely ill diabetic patients was not significantly associated with in-hospital death; however, glycemic variability was significantly and independently associated with in-hospital death (OR=1.042, P=0.027). Binary logistic regression analysis of comprehensive indices showed that for non-diabetic patients, the C3 index (low TIR & high CV) was a risk factor for increased mortality (OR=1.642, P<0.001). In addition, for diabetic patients, the C3 index was an independent risk factor for death (OR=1.994, P=0.008), and the C4 index (low TIR & low CV) was independently associated with increased survival. CONCLUSIONS: The TIR of non-diabetic patients during ICU hospitalization was associated with in-hospital death even after adjusting for disease severity and glycemic variability. There was no significant association between the TIR and mortality of diabetic patients. However, for both diabetic and non-diabetic critically ill patients, the combined effect of high TIR and low CV was significantly associated with ICU mortality. Diabetic patients seem to have higher blood glucose fluctuations and can tolerate a large TIR range. Both diabetic and non-diabetic critically ill patients should maintain blood glucose levels within the target range to reduce mortality.

Keywords: severe disease, diabetes, blood glucose control, time in targeted blood glucose range, glycemic variability, mortality

Procedia PDF Downloads 215
5479 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)

Authors: He Yuhai, Ahmad Ziad Bin Sulaiman

Abstract:

Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.

Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia

Procedia PDF Downloads 415
5478 Development and Evaluation of a Gut-Brain Axis Chip Based on 3D Printing Interconnecting Microchannel Scaffolds

Authors: Zhuohan Li, Jing Yang, Yaoyuan Cui

Abstract:

The gut-brain axis (GBA), a communication network between gut microbiota and the brain, benefits for investigation of brain diseases. Currently, organ chips are considered one of the potential tools for GBA research. However, most of the available GBA chips have limitations in replicating the three-dimensional (3D) growth environment of cells and lack the required cell types for barrier function. In the present study, a microfluidic chip was developed for GBA interaction. Blood-brain barrier (BBB) module was prepared with HBMEC, HBVP, U87 cells and decellularized matrix (dECM). Intestinal epithelial barrier (IEB) was prepared with Caco-2 and vascular endothelial cells and dECM. GBA microfluidic device was integrated with IEB and BBB modules using 3D printing interconnecting microchannel scaffolds. BBB and IEB interaction on this GBA chip were evaluated with lipopolysaccharide (LPS) exposure. The present GBA chip achieved multicellular three-dimensional cultivation. Compared with the co-culture cell model in the transwell, fluorescein was absorbed more slowly by 5.16-fold (IEB module) and 4.69-fold (BBB module) on the GBA chip. Accumulation of Rhodamine 123 and Hoechst33342 was dramatically decreased. The efflux function of transporters on IEB and BBB was significantly increased on the GBA chip. After lipopolysaccharide (LPS) disrupted the IEB, and then BBB dysfunction was further observed, which confirmed the interaction between IEB and BBB modules. These results demonstrated that this GBA chip may offer a promising tool for gut-brain interaction study.

Keywords: decellularized matrix, gut-brain axis, organ-on-chip, three-dimensional printing.

Procedia PDF Downloads 28
5477 Cervical Cell Classification Using Random Forests

Authors: Dalwinder Singh, Amandeep Verma, Manpreet Kaur, Birmohan Singh

Abstract:

The detection of pre-cancerous changes using a Pap smear test of cervical cell is the important step for the early diagnosis of cervical cancer. The Pap smear test consists of a sample of human cells taken from the cervix which are analysed to detect cancerous and pre-cancerous stage of the given subject. The manual analysis of these cells is labor intensive and time consuming process which relies on expert cytotechnologist. In this paper, a computer assisted system for the automated analysis of the cervical cells has been proposed. We propose a morphology based approach to the nucleus detection and segmentation of the cytoplasmic region of the given single or multiple overlapped cell. Further, various texture and region based features are calculated from these cells to classify these into normal and abnormal cell. Experimental results on public available dataset show that our system has achieved satisfactory success rate.

Keywords: cervical cancer, cervical tissue, mathematical morphology, texture features

Procedia PDF Downloads 522
5476 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 133
5475 Performance and Physiological Responses of Broiler Chickens to Diets Supplemented with Propolis in Breeding, to in Ovo Propolis Feeding or to Propolis Supplementation of Diets for Their Chicks

Authors: Kalbiye Konanc, Ergin Ozturk

Abstract:

To examine the effects of an ethanol liquid extract obtained from raw bee propolis (PE) on fattening performance and physiology such as vaccine-antibody relationship, microbial profile, immune status and some blood parameters of broiler chickens were used a total of 600 broiler (Ross 308) chicks, obtained from eggs of 288, 38-weeks-old broiler breeding. There were 6 groups: CC (Parent-Control and Offspring-Control, CP (Parent-Control and Offspring-propolis extract, Cip (Parent-Control and Offspring-in-ovo propolis extract), Cis (Parent-Control and Chickens-in-ovo saline), PeC (Parent-propolis extract and Offspring-Control), PeP (Parent-Propolis extract and Offspring-Propolis extract). Each group was consisted of 10 replications with 10 broiler offspring, and the experiment was lasted for 6 weeks with ethanol-extracted propolis concentration is 400 ppm/kg diet. While the highest feed consumptions at 0-21 days and 0-42 days were found in PeC, the best feed conversion ratio at 0-42 days was found in CP group. The live weight gains were found not to be different among the groups. The highest alanine aminotransferase activities were found in CC and CP and aspartate aminotransferase activities in PeP and PeC groups. The highest triglyceride and total antioxidant levels were found highest in CC and the highest total oxidant level in Cip group. IgA level in hatched eggs and IgM value after slaughtering were highest in Cip group. The best immune response was obtained for 21st day Newcastle Disease vaccine in CC and Cis groups and for 28th day Infectious Bursal Disease vaccine in CP group. The highest total aerobic microorganism and the lowest total fungi count were found in PeP group. In conclusion, it was determined that in-ovo propolis ethanol extract (Cip) increased the maternal antibody levels, that had not consistent effects on blood biochemical parameters except for triglyceride, that led to decrease in E. coli counts and that it can provide strong immune response against Infectious Bursal Disease.

Keywords: bee propolis, in-ovo feeding, immune parameters, poultry, maternal antibody, microorganisms

Procedia PDF Downloads 285
5474 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 71
5473 The Comparison of Primary B-Cell and NKT-Cell Non-Hodgkin Lymphomas in Nasopharynx, Nasal Cavity, and Paranasal Sinuses

Authors: Jiajia Peng, Jianqing Qiu, Jianjun Ren, Yu Zhao

Abstract:

Background: We aimed to compare clinical and survival differences between B-cell (B-NHL) and NKT-cell non-Hodgkin lymphomas (NKT-NHL) located in the nasal cavity, nasopharynx and paranasal sinuses, which are always categorized as one sinonasal type. Methods: Patients diagnosed with primary B-NHL and NKT-NHL in the nasal cavity, nasopharynx, and paranasal sinuses from the SEER database were included. We identified these patients based on histological types and anatomical sites and subsequently conducted univariate and multivariate Cox regression and Kaplan–Meier analyses to examine cancer-special survival (CSS) outcomes. Results: Overall, most B-NHL cases originated from the nasopharynx, while the majority of NKT-NHL cases occurred in the nasal cavity. Notably, the CSS outcomes improved significantly in all sinonasal B-NHL cases over time, whereas no such improvement trend was observed in each sinonasal NKT-NHL type. Additionally, increasing age was linked with an elevated risk of death in B-NHL, particularly in the nasal cavity (HR:3.37), rather than in NKT-NHL. Compared with B-NHL, the adverse effect of the higher stage on CSS was more evident in NKT-NHL, particularly in its nasopharynx site (HR: 5.12). Furthermore, radiotherapy was beneficial for survival in patients with sinonasal B-NHL and NKT-NHL, except in those with NKT-NHL in the nasopharynx site. However, chemotherapy has only been beneficial for CSS in patients with B-NHL in paranasal sinuses (HR: 0.42) since 2010, rather than in other types of B-NHL or NKT-NHL. Conclusions: Although B-NHL and NKT-NHL in the nasal cavity, nasopharynx and paranasal sinuses have similar anatomical locations, their clinic demographics and prognoses are largely different and should be treated and studied as distinct diseases.

Keywords: B-cell non-Hodgkin lymphomas, NKT-cell non-Hodgkin lymphomas, nasal cavity lymphomas, nasal sinuses lymphomas, nasopharynx lymphomas

Procedia PDF Downloads 98
5472 Polyphytopharmaca Improving Asthma Control Test Value, Biomarker (Eosinophils and Malondialdehyde): Quasi Experimental Test in Patients with Asthma

Authors: Andri Andri, Susanthy Djajalaksana, Iin Noor Chozin

Abstract:

Background: Despite advances in asthma therapies, a proportion of patients with asthma continue to have difficulty in gaining adequate asthma control. Complex immunological mechanisms and oxidative stress affect this condition, including the role of malondialdehyde (MDA) as a marker of inflammation. This research aimed to determine the effect of polyphytopharmaca administration on the value of asthma control test (ACT), blood eosinophils level and markers of MDA serum inflammation in patients with asthma. Method: Quasi experimental approach was conducted toward 15 stable asthma patients who were not fully controlled in outpatient pulmonary clinic, Public Hospital of Dr. Saiful Anwar Malang. Assessments of ACT values, eosinophil levels, and serum MDA levels were carried out before and after administration of polyphytopharmaca which contained a combination of 100 mg Nigella sativa extract, Kleinhovia hospita 100 mg, Curcuma xanthorrhiza 75 mg, and Ophiocephalus striatus 100 mg, three times daily with two capsules for 12 weeks. The ACT value was determined by the researcher by asking the patient directly, blood eosinophil levels were calculated by analyzing blood type counts, and serum MDA levels were detected by the qPCR method. Result: There was a significant enhancement of ACT value (18.07 ± 2.57 to 22.06 ± 1.83, p = 0.001) (from 60% uncontrolled ACT to 93.3% controlled ACT), a significant decrease in blood eosinophils levels (653.15 ± 276.15 pg/mL to 460.66 ± 202.04 pg/mL, p = 0.038), and decreased serum MDA levels (109.64 ± 53.77 ng / ml to 78.68 ± 64.92 ng/ml, p = 0.156). Conclusion: Administration of polyphytopharmaca can increase ACT value, decrease blood eosinophils levels and reduce MDA serum in stable asthma patients who are not fully controlled.

Keywords: asthma control test, eosinophils levels, malondialdehyde, polyphytopharmaca

Procedia PDF Downloads 118
5471 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 249
5470 Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study

Authors: Vijaya Madhuri Devraj, Swarnalatha Guditi, Kiran Kumar Bokara, Gangadhar Taduri

Abstract:

Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection.

Keywords: graft rejection, graft tolerance, macrophage polarization, mesenchymal stem cells, regulatory T cells, transplant immunology

Procedia PDF Downloads 113
5469 Effects of Raw Bee Propolis and Water or Ethanol Extract of Propolis on Performance, Immune System and Some Blood Parameters on Broiler Bredeers

Authors: Hasan Alp Sahin, Ergin Ozturk

Abstract:

The effects of raw bee propolis (RP) and water (WEP) or ethanol (EEP) extract of propolis on growth performance, selected immune parameters (IgA, IgY and IgM) and some blood parameters such as aspartate aminotransferase, alanine aminotransferase, trygliceride, total protein, albumin, calcium, phosphorus, total antioxidant status and total oxidant status were determined. The study was conducted between 15th and 20th weeks (6 weeks) and used a total of 48 broiler breeder pullets (Ross-308). The broiler breeder in control group was fed diet without propolis whereas the birds in RP, WEP and EEP groups were fed diets with RP, WEP and EEP at the level of 1200, 400 and 400 ppm, respectively. All pullets were fed mash form diet with 15% crude protein and 2800 ME kcal/kg. All propolis forms had not a beneficial effect on any studied parameters compared to control group (P > 0.05). The results of the study indicated that both the level of the active matters supplied from the bee propolis has no enough beneficial effect on performance, some immune and blood parameters on broiler breeders or they did not have such a level that would cause a beneficial effect on these variables.

Keywords: antioxidant, bee product , poultry breeders, growth performance, immune parameters, blood chemistry

Procedia PDF Downloads 257
5468 Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery

Authors: Raksit Nanthatanti, Jarruwat Charoensuk, S. Hirai, Manop Masomtop

Abstract:

In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configuration

Keywords: cooling efficiency, channel count, lithium-ion battery, operating

Procedia PDF Downloads 93
5467 Osteogenesis in Thermo-Sensitive Hydrogel Using Mesenchymal Stem Cell Derived from Human Turbinate

Authors: A. Reum Son, Jin Seon Kwon, Seung Hun Park, Hai Bang Lee, Moon Suk Kim

Abstract:

These days, stem cell therapy is focused on for promising source of treatment in clinical human disease. As a supporter of stem cells, in situ-forming hydrogels with growth factors and cells appear to be a promising approach in tissue engineering. To examine osteogenic differentiation of hTMSCs which is one of mesenchymal stem cells in vivo in an injectable hydrogel, we use a methoxy polyethylene glycol-polycaprolactone blockcopolymer (MPEG-PCL) solution with osteogenic factors. We synthesized MPEG-PCL hydrogel and measured viscosity to check sol-gel transition. In order to demonstrate osteogenic ability of hTMSCs, we conducted in vitro osteogenesis experiment. Then, to confirm the cell cytotoxicity, we performed WST-1 with hTMSCs and MPEG-PCL. As the result of in vitro experiment, we implanted cell and hydrogel mixture into animal model and checked degree of osteogenesis with histological analysis and amount of expression genes. Through these experimental data, MPEG-PCL hydrogel has sol-gel transition in temperature change and is biocompatible with stem cells. In histological analysis and gene expression, hTMSCs are very good source of osteogenesis with hydrogel and will use it to tissue engineering as important treatment method. hTMSCs could be a good adult stem cell source for usability of isolation and high proliferation. When hTMSCs are used as cell therapy method with in situ-formed hydrogel, they may provide various benefits like a noninvasive alternative for bone tissue engineering applications.

Keywords: injectable hydrogel, stem cell, osteogenic differentiation, tissue engineering

Procedia PDF Downloads 445
5466 Biophysical Consideration in the Interaction of Biological Cell Membranes with Virus Nanofilaments

Authors: Samaneh Farokhirad, Fatemeh Ahmadpoor

Abstract:

Biological membranes are constantly in contact with various filamentous soft nanostructures that either reside on their surface or are being transported between the cell and its environment. In particular, viral infections are determined by the interaction of viruses (such as filovirus) with cell membranes, membrane protein organization (such as cytoskeletal proteins and actin filament bundles) has been proposed to influence the mechanical properties of lipid membranes, and the adhesion of filamentous nanoparticles influence their delivery yield into target cells or tissues. The goal of this research is to integrate the rapidly increasing but still fragmented experimental observations on the adhesion and self-assembly of nanofilaments (including filoviruses, actin filaments, as well as natural and synthetic nanofilaments) on cell membranes into a general, rigorous, and unified knowledge framework. The global outbreak of the coronavirus disease in 2020, which has persisted for over three years, highlights the crucial role that nanofilamentbased delivery systems play in human health. This work will unravel the role of a unique property of all cell membranes, namely flexoelectricity, and the significance of nanofilaments’ flexibility in the adhesion and self-assembly of nanofilaments on cell membranes. This will be achieved utilizing a set of continuum mechanics, statistical mechanics, and molecular dynamics and Monte Carlo simulations. The findings will help address the societal needs to understand biophysical principles that govern the attachment of filoviruses and flexible nanofilaments onto the living cells and provide guidance on the development of nanofilament-based vaccines for a range of diseases, including infectious diseases and cancer.

Keywords: virus nanofilaments, cell mechanics, computational biophysics, statistical mechanics

Procedia PDF Downloads 88
5465 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 399
5464 Awareness Creation of Benefits of Antitrypsin-Free Nutraceutical Biopowder for Increasing Human Serum Albumin Synthesis as Possible Adjunct for Management of MDRTB or MDRTB-HIV Patients

Authors: Vincent Oghenekevbe Olughor, Olusoji Mayowa Ige

Abstract:

Except for a preexisting liver disease and malnutrition, there are no predilections for low serum albumin (SA) levels in humans. At normal reference levels (4.0-6.0g/dl) SA is a universal marker for mortality and morbidity risks assessments where depletion by 1.0g/dl increases mortality risk by 137% and morbidity by 89%.It has 40 known functions contributing significantly to the sustenance of human life. A depletion in SA to <2.2g/dl, in most clinical settings worldwide, leads to loss of oncotic pressure of blood causing clinical manifestations of bipedal Oedema, in which the patients remain conscious. SA also contributes significantly to buffering of blood to a life-sustaining pH of 7.35-7.45. A drop in blood pH to <6.9 will lead to instant coma and death, which can occur after SA continues to deplete after manifestations of bipedal Oedema. In an intervention study conducted in 2014 following the discovery that “SA is depleted during malaria fever”, a Nutraceutical formulated for use as treatment adjunct to prevent SA depletions during malaria to <2.4g/dl after Efficacy testing was found to be satisfactory. There are five known types of Malaria caused by Apicomplexan parasites, Plasmodium: the most lethal being that caused by Plasmodium falciparum causing malignant tertian malaria, in which the fever was occurring every 48 hours coincides with the dumping of malaria-toxins (Hemozoin) into blood, causing contamination: blood must remain sterile. Other Apicomplexan parasites, Toxoplasma and Cryptosporidium, are opportunistic infections of HIV. Separate studies showed SA depletions in MDRTB (multidrug resistant TB), and MDRTB-HIV patients by the same mechanism discovered with malaria and such depletions will be further complicated whenever Apicomplexan parasitic infections co-exist. Both Apicomplexan parasites and the TB parasite belong to the Obligate-group of Parasites, which are parasites that replicate only inside its host; and most of them have capacities to over-consume host nutrients during parasitaemia. In MDRTB patients the body attempts repeatedly to prevent depletions in SA to critical levels in the presence of adequate nutrients and only for a while in MDRTB-HIV patients. These groups of patients will, therefore, benefit from the already tested Nutraceutical in malaria patients. The Nutraceutical bio-Powder was formulated (to BP 1988 specification) from twelve nature-based food-grade nutrients containing all dedicated nutrients for ensuring improved synthesis of Albumin by the liver. The Nutraceutical was administered daily for 38±2days in 23 children, in a prospective phase-2 clinical trial, and its impact on body weight and core blood parameters were documented at the start and end of efficacy testing period. Sixteen children who did not experience malaria-induced depletions of SA had significant SA increase; seven children who experienced malaria-induced depletions of SA had insignificant SA decrease. The Packed Cell Volume Percentage (PCV %), a measure of the Oxygen carrying capacity of blood and the amount of nutrients the body can absorb, increased in both groups. The total serum proteins (SA+ Globulins) increased or decreased within the continuum of normal. In conclusion, MDRTB and MDRTB-HIV patients will benefit from a variant of this Nutraceutical when used as treatment adjunct.

Keywords: antitrypsin-free Nutraceutical, apicomplexan parasites, no predilections for low serum albumin, toxoplasmosis

Procedia PDF Downloads 285
5463 The Association of Anthropometric Measurements, Blood Pressure Measurements, and Lipid Profiles with Mental Health Symptoms in University Students

Authors: Ammaarah Gamieldien

Abstract:

Depression is a very common and serious mental illness that has a significant impact on both the social and economic aspects of sufferers worldwide. This study aimed to investigate the association between body mass index (BMI), blood pressure, and lipid profiles with mental health symptoms in university students. Secondary objectives included the associations between the variables (BMI, blood pressure, and lipids) with themselves, as they are key factors in cardiometabolic disease. Sixty-three (63) students participated in the study. Thirty-two (32) were assigned to the control group (minimal-mild depressive symptoms), while 31 were assigned to the depressive group (moderate to severe depressive symptoms). Montgomery-Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory (BDI) were used to assess depressive scores. Anthropometric measurements such as weight (kg), height (m), waist circumference (WC), and hip circumference were measured. Body mass index (BMI) and ratios such as waist-to-hip ratio (WHR) and waist-to-height ratio (WtHR) were also calculated. Blood pressure was measured using an automated AfriMedics blood pressure machine, while lipids were measured using a CardioChek plus analyzer machine. Statistics were analyzed via the SPSS statistics program. There were no significant associations between anthropometric measurements and depressive scores (p > 0.05). There were no significant correlations between lipid profiles and depression when running a Spearman’s rho correlation (P > 0.05). However, total cholesterol and LDL-C were negatively associated with depression, and triglycerides were positively associated with depression after running a point-biserial correlation (P < 0.05). Overall, there were no significant associations between blood pressure measurements and depression (P > 0.05). However, there was a significant moderate positive correlation between systolic blood pressure and MADRS scores in males (P < 0.05). Depressive scores positively and strongly correlated to how long it takes participants to fall asleep. There were also significant associations with regard to the secondary objectives. This study indicates the importance of determining the prevalence of depression among university students in South Africa. If the prevalence and factors associated with depression are addressed, depressive symptoms in university students may be improved.

Keywords: depression, blood pressure, body mass index, lipid profiles, mental health symptoms

Procedia PDF Downloads 61
5462 Automatic LV Segmentation with K-means Clustering and Graph Searching on Cardiac MRI

Authors: Hae-Yeoun Lee

Abstract:

Quantification of cardiac function is performed by calculating blood volume and ejection fraction in routine clinical practice. However, these works have been performed by manual contouring,which requires computational costs and varies on the observer. In this paper, an automatic left ventricle segmentation algorithm on cardiac magnetic resonance images (MRI) is presented. Using knowledge on cardiac MRI, a K-mean clustering technique is applied to segment blood region on a coil-sensitivity corrected image. Then, a graph searching technique is used to correct segmentation errors from coil distortion and noises. Finally, blood volume and ejection fraction are calculated. Using cardiac MRI from 15 subjects, the presented algorithm is tested and compared with manual contouring by experts to show outstanding performance.

Keywords: cardiac MRI, graph searching, left ventricle segmentation, K-means clustering

Procedia PDF Downloads 395
5461 A Ferutinin Analogue with Enhanced Potency and Selectivity against Estrogen Receptor Positive Breast Cancer Cells in vitro

Authors: Remi Safi, Aline Hamade, Najat Bteich, Jamal El Saghir, Mona Diab Assaf, Marwan El-Sabban, Fadia Najjar

Abstract:

Estrogen is considered a risk factor for breast cancer since it promotes breast-cell proliferation. The jaesckeanadiol-3-p-hydroxyphenylpropanoate, a hemi-synthetic analogue of the natural phytoestrogen ferutinin (jaesckeanadiol-p-hydroxybenzoate), is designed to be devoid of estrogenic activity. This analogue induces a cytotoxic effect 30 times higher than that of ferutinin towards MCF-7 breast cancer cell line. We compared these two compounds with respect to their effect on proliferation, cell cycle distribution and cancer stem-like cells in the MCF-7 cell line. Treatment with ferutinin (30 μM) and its analogue (1 μM) produced a significant accumulation of cells at the pre G0/G1 cell cycle phase and triggered apoptosis. Importantly, this compound retains its anti-proliferative activity against breast cancer stem/progenitor cells that are naturally insensitive to ferutinin at the same dose. These results position ferutinin analogue as an effective compound inhibiting the proliferation of estrogen-dependent breast cancer cells and consistently targeting their stem-like cells.

Keywords: ferutinin, hemi-synthetic analogue, breast cancer, estrogen, stem/progenitor cells

Procedia PDF Downloads 182
5460 Dynamics of Follicle Vascular Perfusion, Dimensions, Antrum Growth, Circulating Angiogenic Mediators from Deviation to Ovulation

Authors: Elshymaa A. Abdelnaby, Amal M. Abo El-Maaty

Abstract:

This study aimed to investigate dynamics of dominant and subordinate follicles change in dimensions, vascularity and angiogenic hormones after completing deviation till ovulation. Five cyclic mares were subjected to daily blood sampling and rectal Doppler ultrasonographic examination along two estrous cycles. Using electronic calipers, three diameters were recorded for each follicle to estimate area and volume. Leptin, Insulin-like growth factor-I (IGF-1), nitric oxide (NO) and estradiol (E2) were measured. Area of color- and power- Doppler modes with area and circumference of the first (preovulatory) and subordinate follicles were measured in pixels. Follicles were classified into F1O (preovulatory), F2O (subordinate), F3O (third ovulatory) on the dominant ovary and F1C (first contra) and F2C (second contra) on the contralateral ovary. Days before ovulation significantly (P < 0.0001) affected diameter, circumference, area, volume, area/pixel and antrum area of the preovulatory follicle. With the increase of diameter, area, volume area/pixel, antrum area/pixel and circumference of F1O, those of all subordinates were decreasing. The blue blood flow area, power and power minus red blood flow area of F1O increased from day -6 till day of ovulation (day 0), but red blood flow area significantly decreased. F1O had the lowest percent of colored pixels and percent of the colored pixels without antrum. Estradiol and leptin increased from day -6 till day 0 but IGF-1 decreased till day -1 but NO achieved a peak on day -3 then decreased till day 0. In conclusion, antrum growth, blood flow and angiogenic hormones play a role in maturation and ovulation of the dominant follicle in mares.

Keywords: angiogenic hormones, blood flow, mare, preovulatory follicle

Procedia PDF Downloads 307
5459 Antimicrobial Efficacy of 0.75% Metronidazole and 2% Chlorhexidine Gel Applied in Implant Screw Hole: A Clinical Trial

Authors: Mostafa Solati

Abstract:

Objectives: Considering the gap of information regarding the optimal antimicrobial efficacy of metronidazole for application in the implant screw hole, this study aimed to compare the antimicrobial efficacy of 0.75% metronidazole and 2% chlorhexidine (CHX) gel applied in the implant screw hole. Materials and Methods: This randomized controlled clinical trial evaluated 60 implants (20 patients, each requiring three implants) in three groups (n=20). In group 1, 0.75% metronidazole gel was applied to the implant screw hole. In group 2, 2% CHX gel was applied, and in group 3, no material was used. Microbial samples were collected from the screw holes after three months, and the microbial colonies were counted. Data were analyzed using ANOVA. Results: The number of bacteria in the control group was significantly higher than that in 0.75% metronidazole gel and 2% CHX groups (P<0.05). The CHX group caused the maximum reduction in colony count with no significant difference from the metronidazole group (P>0.05). Conclusion: The application of 0.75% metronidazole gel and 2% CHX can effectively decrease the colony count in the implant screw hole and can probably play a role in the preservation of peri-implant tissue health.

Keywords: dental implant, metronidazole, CHX, screw hole

Procedia PDF Downloads 67
5458 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analysed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realised via a two-way coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary lagrangian-eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analysed in the study. The axial velocity at normalised position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, constricted artery, Computational Fluid Dynamics

Procedia PDF Downloads 292