Search results for: acid tolerance
3276 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents
Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef
Abstract:
Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation
Procedia PDF Downloads 613275 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies
Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz
Abstract:
The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment
Procedia PDF Downloads 1983274 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques
Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti
Abstract:
Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS
Procedia PDF Downloads 2043273 Investigation of the Excitotoxicity Pathways in Neuroblastoma Cells
Authors: Merve Colak, Gizem Donmez Yalcin
Abstract:
Glutamate has many neurological functions in the central nervous system and is found at high concentrations in the brain. Increased levels of glutamate in the neuronal space are toxic, causing neuron damage and death. This is called glutamate-induced excitotoxicity. Excitotoxicity is among the causes of many neurological diseases such as trauma, cerebral ischemia, epilepsy, Parkinson's Disease, Alzheimer's Disease. Since neuroblastoma cells are known to be excitotoxic, we propose that excitotoxicity can be studied in neuroblastoma cells. Excitotoxicity can be induced using kainic acid in neuroblastoma cells. Measuring the secretion of glutamate, excitotoxicity can be analyzed in neuroblastoma cells.Keywords: glutamate, excitotoxicity, kainic acid, Sirt4
Procedia PDF Downloads 1583272 Screening Some Accessions of Lentil (Lens culinaris M.) for Salt Tolerance at Germination and Early Seedling Stage in Eastern Ethiopia
Authors: Azene Tesfaye, Yohannes Petros, Habtamu Zeleke
Abstract:
To evaluate genetic variation among Ethiopian lentil, laboratory experiment were conducted to screen 12 accessions of lentil (Lens culinaris M.) for salt tolerance. Seeds of 12 Lentil accessions were grown at laboratory (Petri dish) condition with different levels of salinity (0, 2, 4, and 8 dSm-1 NaCl) for 4 weeks. The experimental design was completely randomized design (CRD) in factorial combination with three replications. Data analysis was carried out using SAS software. Average germination time, germination percentage, seedling shoot and root traits, seedling shoot and root weight were evaluated. The two way ANOVA for varieties revealed statistically significant variation among lentil accession, NaCl level and their interactions (p<0.001) with respect to the entire parameters. It was found that salt stress significantly delays germination rate and decreases germination percentage, shoot and root length, seedling shoot and root weight of lentil accessions. The degree of decrement varied with accessions and salinity levels. Accessions 36120, 9235 and 36004 were better salt tolerant than the other accessions. As the result, it is recommended to be used as a genetic resource for the development of lentil accession and other very salt sensitive crop with improved germination under salt stress condition.Keywords: accession, germination, lentil, NaCl, screening, seedling stage
Procedia PDF Downloads 3393271 Development of 90y-Chitosan Complex for Radiosynovectomy
Authors: A. Mirzaei, S. Zolghadri, M. Athari-Allaf, H. Yousefnia, A. R. Jalilian
Abstract:
Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively.Keywords: chitosan, Y-90, radiosynovectomy, biodistribution
Procedia PDF Downloads 4833270 Chemical Analysis and Sensory Evaluation of 'Domiati Cheese' Using Strains Isolated from Algerian Goat's Milk
Authors: A. Cheriguene, F. Chougrani
Abstract:
A total of 120 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity, and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci. Autolytic activity was generally higher for most strains, more particularly lactobacilli. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. The survey of the profile of the texture, the proteolysis as well as the development of the flavor in the Domiati cheese made on the basis of our isolated strains have been led during the ripening. The sensory assessment shows that the cheese salted in milk received the best scores in relation to cheese salted after drainage. Textural characteristics, such as hardness, cohesiveness, gumminess, and chewiness decreased in the two treatments during the 60 days of ripening. Otherwise, it has been noted that adhesiveness and adhesive force increased in the cheese salted in milk.Keywords: lactic acid bacteria, technological properties, acidification, exopolysaccharide, bacteriocin, textural properties
Procedia PDF Downloads 1603269 Biosorption of Lead (II) from Lead Acid Battery Industry Wastewater by Immobilized Dead Isolated Bacterial Biomass
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
Over the past many years, many sites in the world have been contaminated with heavy metals, which are the largest class of contaminants. Lead is one of the toxic heavy metals contaminated in the environment. Lead is not biodegradable, that’s why it is accumulated in the human body and impacts all the systems of the human body when it has been taken by humans. The accumulation of lead in the water environment has been showing adverse effects on the public health. So the removal of lead from the water environment by the biosorption process, which is emerged as a potential method for the lead removal, is an efficient approach. This work was focused to examine the removal of Lead [Pb (II)] ions from aqueous solution and effluent from battery industry. Lead contamination in water is a widespread problem throughout the world and mainly results from lead acid battery manufacturing effluent. In this work, isolated bacteria from wastewater of lead acid battery industry has been utilized for the removal of lead. First effluent from the lead acid battery industry was characterized by the inductively coupled plasma atomic emission spectrometry (ICP – AES). Then the bacteria was isolated from the effluent and used it’s immobilized dead mass for the biosorption of lead. Scanning electron microscopic (SEM) and Atomic force microscopy (AFM) studies clearly suggested that the Lead (Pb) was adsorbed efficiently. The adsorbed percentage of lead (II) from waste was 97.40 the concentration of lead (II) is measured by Atomic Absorption Spectroscopy (AAS). From the result of AAS it can be concluded that immobilized isolated dead mass was well efficient and useful for biosorption of lead contaminated waste water.Keywords: biosorption, ICP-AES, lead (Pb), SEM
Procedia PDF Downloads 3843268 Inhibitory Effect of Coumaroyl Lupendioic Acid on Inflammation Mediator Generation in Complete Freund’s Adjuvant-Induced Arthritis
Authors: Rayhana Begum, Manju Sharma
Abstract:
Careya arborea Roxb. belongs to the Lecythidaceae family, is traditionally used in tumors, anthelmintic, bronchitis, epileptic fits, astringents, inflammation, an antidote to snake-venom, skin disease, diarrhea, dysentery with bloody stools, dyspepsia, ulcer, toothache, and ear pain. The present study was focused on investigating the anti-arthritic effect of coumaroyl lupendioic acid, a new lupane-type triterpene from Careya arborea stem bark in the chronic inflammatory model and further assessing its possible mechanism on the modulation of inflammatory biomarkers. Arthritis was induced by injecting 0.1 ml of Complete Freund’s Adjuvant (5 mg/ml of heat killed Mycobacterium tuberculosis) into the subplantar region of the left hind paw. Treatment with coumaroyl lupendioic acid (10 and 20 mg/kg, p.o.) and reference drugs (indomethacin and dexamethasone at the dose of 5 mg/kg, p.o.) were started on the day of induction and continued up to 28 days. The progression of arthritis was evaluated by measuring paw volume, tibio tarsal joint diameters, and arthritic index. The effect of coumaroyl lupendioic acid (CLA) on the production PGE₂, NO, MPO, NF-κB, TNF-α, IL-1β, and IL-6 on serum level as well as inflamed paw tissue were also assessed. In addition, ankle joints and spleen were collected and prepared for histological examination. CLA in inflamed rats resulted in significant amelioration of paw edema, tibio-tarsal joint swelling and arthritic score as compared to CFA control group. The results indicated that CLA treated groups markedly decreased the levels of inflammatory mediators (PGE₂, NO, MPO and NF-κB levels) and down-regulated the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in paw tissue homogenates as well as in serum. However, the more pronounced effect was observed in the inflamed paw tissue homogenates. CLA also revealed a protective effect to the tibio-tarsal joint cartilage and spleen. These results suggest that coumaroyl lupendioic acid inhibits inflammation may be through the suppression of the cascade of proinflammatory mediators via the down-regulation of NF-ҡB.Keywords: complete Freund’s adjuvant , Coumaroyl lupendioic acid, pro-inflammatory cytokines, prostaglandin E2
Procedia PDF Downloads 1413267 Functionalized Single Walled Carbon Nanotubes: Targeting, Cellular Uptake, and Applications in Photodynamic Therapy
Authors: Prabhavathi Sundaram, Heidi Abrahamse
Abstract:
In recent years, nanotechnology coupled with photodynamic therapy (PDT) has received considerable attention in terms of improving the effectiveness of drug delivery in cancer therapeutics. The development of functionalized single-walled carbon nanotubes (SWCNTs) has become revolutionary in targeted photosensitizers delivery since it improves the therapeutic index of drugs. The objective of this study was to prepare, characterize and evaluate the potential of functionalized SWCNTs using hyaluronic acid and loading it with photosensitizer and to effectively target colon cancer cells. The single-walled carbon nanotubes were covalently functionalized with hyaluronic acid and the loaded photosensitizer by non-covalent interaction. The photodynamic effect of SWCNTs is detected under laser irradiation in vitro. The hyaluronic acid-functionalized nanocomposites had a good affinity with CD44 receptors, and it avidly binds on to the surface of CACO-2 cells. The cellular uptake of nanocomposites was studied using fluorescence microscopy using lyso tracker. The anticancer activity of nanocomposites was analyzed in CACO-2 cells using different studies such as cell morphology, cell apoptosis, and nuclear morphology. The combined effect of nanocomposites and PDT improved the therapeutic effect of cancer treatment. The study suggested that the nanocomposites and PDT have great potential in the treatment of colon cancer.Keywords: colon cancer, hyaluronic acid, single walled carbon nanotubes, photosensitizers, photodynamic therapy
Procedia PDF Downloads 1163266 Probabilistic Study of Impact Threat to Civil Aircraft and Realistic Impact Energy
Authors: Ye Zhang, Chuanjun Liu
Abstract:
In-service aircraft is exposed to different types of threaten, e.g. bird strike, ground vehicle impact, and run-way debris, or even lightning strike, etc. To satisfy the aircraft damage tolerance design requirements, the designer has to understand the threatening level for different types of the aircraft structures, either metallic or composite. Exposing to low-velocity impacts may produce very serious internal damages such as delaminations and matrix cracks without leaving visible mark onto the impacted surfaces for composite structures. This internal damage can cause significant reduction in the load carrying capacity of structures. The semi-probabilistic method provides a practical and proper approximation to establish the impact-threat based energy cut-off level for the damage tolerance evaluation of the aircraft components. Thus, the probabilistic distribution of impact threat and the realistic impact energy level cut-offs are the essential establishments required for the certification of aircraft composite structures. A new survey of impact threat to civil aircraft in-service has recently been carried out based on field records concerning around 500 civil aircrafts (mainly single aisles) and more than 4.8 million flight hours. In total 1,006 damages caused by low-velocity impact events had been screened out from more than 8,000 records including impact dents, scratches, corrosions, delaminations, cracks etc. The impact threat dependency on the location of the aircraft structures and structural configuration was analyzed. Although the survey was mainly focusing on the metallic structures, the resulting low-energy impact data are believed likely representative to general civil aircraft, since the service environments and the maintenance operations are independent of the materials of the structures. The probability of impact damage occurrence (Po) and impact energy exceedance (Pe) are the two key parameters for describing the statistic distribution of impact threat. With the impact damage events from the survey, Po can be estimated as 2.1x10-4 per flight hour. Concerning the calculation of Pe, a numerical model was developed using the commercial FEA software ABAQUS to backward estimate the impact energy based on the visible damage characteristics. The relationship between the visible dent depth and impact energy was established and validated by drop-weight impact experiments. Based on survey results, Pe was calculated and assumed having a log-linear relationship versus the impact energy. As the product of two aforementioned probabilities, Po and Pe, it is reasonable and conservative to assume Pa=PoxPe=10-5, which indicates that the low-velocity impact events are similarly likely as the Limit Load events. Combing Pa with two probabilities Po and Pe obtained based on the field survey, the cutoff level of realistic impact energy was estimated and valued as 34 J. In summary, a new survey was recently done on field records of civil aircraft to investigate the probabilistic distribution of impact threat. Based on the data, two probabilities, Po and Pe, were obtained. Considering a conservative assumption of Pa, the cutoff energy level for the realistic impact energy has been determined, which provides potential applicability in damage tolerance certification of future civil aircraft.Keywords: composite structure, damage tolerance, impact threat, probabilistic
Procedia PDF Downloads 3083265 Use of Plant Growth Regulators in the Amaryllis Production (Hippeastrum X Hybridum Hort. CV Orange Souvereign)
Authors: Maximiliano K. Pagliarini, Ana Carolina T. Malavolta, Isabela M. Morita, Regina Maria M. Castilho
Abstract:
Among the ornamental plants, the Amaryllis (Hippeastrum X hybridum Hort.) is one of the most cultivated plants in Brazil because of their large and showy flowers. Thus, the consumer market wants better quality plants or to flourish more in less time. One of the devices that can make such improvements or accelerate the flowering process is the use of growth regulators. The objective of this research was to evaluate the use of different Stimulate® growth regulator doses and its constituents separately in the development and flowering of Hippeastrum X hybridum Hort. Cv Orange Souvereign. The experiment was conducted in a Pad & Fan greenhouse at UNESP, São Paulo State, Brazil from August to October 2014. The bulbs were placed in black vases of 1.2 L filled with commercial substrate and divided into 9 treatments: T1 – 10 mL L-1 of Stimulate®, T2 – 5 mL L-1 of Stimulate®, T3 – 0.5 mg L-1 of gibberellic acid (GA), T4 – 0.25 mg L-1 of GA, T5 – 0.45 mg L-1 of kinetin, T6 – 0.9 mg L-1 of kinetin, T7 – 0.5 mg L-1 of indolbutiric acid (IBA), T8 – 0.25 mg L-1 of IBA and T9 – distilled water (control). All treatments were diluted in water. The used design was completely randomized with six repetitions and two vessels, totalling 12 vessels per treatment. The evaluated characteristics were: number of leaves, length of leaf, number of rods, maximum height of rods, maximum diameter of rods, maximum number of flowers, beginning of flowering, flowering duration, and weight of bulbs. The results showed that the Stimulate® was not efficient in the conducted experiment conditions. However, the best treatment was 0.5 mg L-1 of IBA.Keywords: bulbs, gibberellic acid, indolbutiric acid, kinetin, ornamental plants
Procedia PDF Downloads 5543264 Nutritional Evaluation of Different Quercus Species in Temperate Regions of Himachal Pradesh
Authors: Ankush Verma, Rohit Bishist
Abstract:
The present investigation was carried out at different locations of Shimla and Kinnaur district and nutrient analysis was done in the laboratory of Department of Silviculture and Agroforestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Distt. Solan, Himachal Pradesh during 2019-2020 with the objectives to study the seasonal variation in the nutritive value of different Quercus species and to study the farmers’ preference rating of fodder tress species. From each location leaf samples were collected at 3 months interval from each Quercus spp. The findings of the present study revealed that the nutritional traits of leaves of different Quercus species varied among different seasons throughout the year. The dry matter (61.12 to 64.99%), ether extract (4.07 to 4.42%), crude fibre (34.38 to 37.85%), neutral detergent fibre (57.70 to 61.54%), acid detergent fibre (44.64 to 48.51%), total ash (3.57 to 3.91%), acid insoluble ash (44.64 to 48.51%) and calcium (1.31 to 1.53%) increased with the maturity in the leaves of different Quercus species. While, crude protein (9.10 to 10.61%), nitrogen free extract (44.73 to 47.41%), organic matter (96.09 to 96.43%), and phosphorus (0.16 to 0.31%) decreased with the advancing maturity in the leaves of different Quercus species. Maximum mean values for dry matter (65.05%), ether extract (4.45%), crude fibre (40.82%), neutral detergent fibre (61.48%), acid detergent fibre (48.44%), and organic matter (96.67%) among different Quercus species were recorded in Quercus ilex, while, Maximum mean values for crude protein (10.54%), nitrogen free extract (50.53%), total ash (4.05%), acid insoluble ash (0.59%), calcium (1.61%) and phosphorus (0.40%) were recorded in Quercus leucotrichophora.Keywords: nutritional evaluation, fodder species, crude protein, carbohydrates
Procedia PDF Downloads 873263 Inhibitory Effect of Lactic Acid Bacteria on Uropathogenic Escherichia coli-Induced Urinary Tract Infections
Authors: Cheng-Chih Tsai, Yu-Hsuan Liu, Cheng-Ying Ho, Chun-Chin Huang
Abstract:
The aim of this study evaluated the in vitro and in vivo antimicrobial activity of selected lactic acid bacteria (LAB) against Uropathogenic Escherichia coli (UPEC) for prevention and amelioration of UTIs. We screened LAB strains with antimicrobial effects on UPEC using a well-diffusion assay, bacterial adherence to the uroepithelium cell line SV-HUC-1 (BCRC 60358), and a coculture inhibition assay. The results showed that the 7 LAB strains (Lactobacillus paracasei, L. salivarius, two Pediococcus pentosaceus strains, two L. plantarum strains, and L. crispatus) and the fermented probiotic products produced by these multi-LAB strains exhibited potent zones of inhibition against UPEC. Moreover, the LAB strains and probiotic products adhered strongly to the uroepithelium SV-HUC-1 cell line. The growth of UPEC strains was also markedly inhibited after co-culture with the LAB strains and probiotic products in human urine. In addition, the enhanced levels of IL-6, IL-8 and lactic acid dehydrogenase were significantly decreased by treatments with the LAB strains and probiotic products in UPEC-induced SV-HUC-1 cells. Furthermore, oral administration of probiotic products reduced the number of viable UPEC in the urine of UPEC-challenged BALB/c mice. Taken together, this study demonstrates that probiotic supplementation may be useful as an adjuvant therapy for the treatment of bacterial-induced urinary tract infections.Keywords: lactic acid bacterium, SV-HUC-1 uroepithelium, urinary tract infection, uropathogenic Escherichia coli, BALB/c mice
Procedia PDF Downloads 3843262 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults
Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer
Abstract:
Safety and security of autonomous vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, the paper proposes fault-tolerance by diversity model takes into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.Keywords: autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security
Procedia PDF Downloads 1283261 Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode
Authors: N. Al-Orfi, M. S. El-Shahawi, A. S. Bashammakh
Abstract:
The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%.Keywords: dianabol, determination, modified electrode, urine
Procedia PDF Downloads 2733260 Formulation and Characterization of Drug Loaded Niosomal Gel for Anti-Inflammatory Activity
Authors: Sunil Kamboj, Vipin Saini, Suman Bala, Gaurav Sharma
Abstract:
The main aim of the present research was to encapsulate mefenamic acid in niosomes and incorporate the prepared niosomes in the carbopol gel base for sustained therapeutic action. Mefenamic acid loaded niosomes were prepared by thin film hydration technique and evaluated for entrapment efficiency, vesicular size and zeta potential. The entrapment efficiency of the prepared niosomes was found to increase with decreasing the HLB values of surfactants and vesicle size was found to increase with increasing the cholesterol concentration. Niosomal vesicles with good entrapment efficiencies were incorporated in carbopol gel base to form the niosomal gel. The prepared niosomal gel was evaluated for pH, viscosity, spreadability, extrudability and skin permeation study across the rat skin.The results of permeation study revealed that the gel formulated with span 60 niosomes sustained the drug release for 12 h. Further the in vivo study showed the good inhibition of inflammation by the gel prepared with span 60 niosomes.Keywords: mefenamic acid, niosomal gel, nonionic surfactants, sustained release
Procedia PDF Downloads 4093259 Self-Healing Composites of Silicone Rubber
Authors: Anna Strakowska, Marian Zaborski
Abstract:
This abstract focuses an overview of the methods used to create self-healing silicone composites. It has been shown how incorporating of polyhedral oligomeric silsesquioxanes (POSS) molecules with acid and basic groups to silicone rubber affects the barrier properties, mechanical properties in room and reduced temperature or the influence on relaxation rates of the methylvinylsilicone rubber vulcanizates. Moreover, the presence of silsesquioxanes, their content and the way of composites preparing affect the amount of ionic bonds, as indicated by dynamic - mechanical thermal analysis (DMTA) as well as measurements of equilibrium swelling in toluene. The aim of this work was to study the influence of concentration and different functional groups types selected silsesquioxanes compounds on self-healing effect of silicone rubber and obtain elastomers with good barrier and mechanical properties. Composites based on the methylvinylsilicone rubber with fumed silica as the fillers were manufactured and studied. To obtain self-healing effect various silsesquioxanes with amino and acid groups were used. Every tested sample demonstrated the ability to the self-treatment. The most significant effect was observed for system containing amic-acid isobytyl POSS/ aminopropylisobutyl POSS. Composite with this silsesquioxanes was exhibited the best improvement of gas permeability after heal. Moreover, the addition of POSS with acid and basic groups clearly affects the mechanical properties of the vulcanizates. The most significant effect was observed for the composite material consisting of amic-acid isobytyl POSS / aminoethylaminopropylisobutyl POSS, which tensile strength was even greater than the reference vulcanizate with fumed silica. The development of autonomous self-healing materials could have an enormous influence on all industry branches from motorization to power industry. Self-repairing materials would have a massive impact on lengthening product lifetimes, increasing safety, and lowering product costs by reducing maintenance requirements.Keywords: barrier properties, mechanical properties, POSS, self-healing composites
Procedia PDF Downloads 3413258 Inhibition of Mild Steel Corrosion in Hydrochloric Acid Medium Using an Aromatic Hydrazide Derivative
Authors: Preethi Kumari P., Shetty Prakasha, Rao Suma A.
Abstract:
Mild steel has been widely employed as construction materials for pipe work in the oil and gas production such as down hole tubular, flow lines and transmission pipelines, in chemical and allied industries for handling acids, alkalis and salt solutions due to its excellent mechanical property and low cost. Acid solutions are widely used for removal of undesirable scale and rust in many industrial processes. Among the commercially available acids hydrochloric acid is widely used for pickling, cleaning, de-scaling and acidization of oil process. Mild steel exhibits poor corrosion resistance in presence of hydrochloric acid. The high reactivity of mild steel in presence of hydrochloric acid is due to the soluble nature of ferrous chloride formed and the cementite phase (Fe3C) normally present in the steel is also readily soluble in hydrochloric acid. Pitting attack is also reported to be a major form of corrosion in mild steel in the presence of high concentrations of acids and thereby causing the complete destruction of metal. Hydrogen from acid reacts with the metal surface and makes it brittle and causes cracks, which leads to pitting type of corrosion. The use of chemical inhibitor to minimize the rate of corrosion has been considered to be the first line of defense against corrosion. In spite of long history of corrosion inhibition, a highly efficient and durable inhibitor that can completely protect mild steel in aggressive environment is yet to be realized. It is clear from the literature review that there is ample scope for the development of new organic inhibitors, which can be conveniently synthesized from relatively cheap raw materials and provide good inhibition efficiency with least risk of environmental pollution. The aim of the present work is to evaluate the electrochemical parameters for the corrosion inhibition behavior of an aromatic hydrazide derivative, 4-hydroxy- N '-[(E)-1H-indole-2-ylmethylidene)] benzohydrazide (HIBH) on mild steel in 2M hydrochloric acid using Tafel polarization and electrochemical impedance spectroscopy (EIS) techniques at 30-60 °C. The results showed that inhibition efficiency increased with increase in inhibitor concentration and decreased marginally with increase in temperature. HIBH showed a maximum inhibition efficiency of 95 % at 8×10-4 M concentration at 30 °C. Polarization curves showed that HIBH act as a mixed-type inhibitor. The adsorption of HIBH on mild steel surface obeys the Langmuir adsorption isotherm. The adsorption process of HIBH at the mild steel/hydrochloric acid solution interface followed mixed adsorption with predominantly physisorption at lower temperature and chemisorption at higher temperature. Thermodynamic parameters for the adsorption process and kinetic parameters for the metal dissolution reaction were determined.Keywords: electrochemical parameters, EIS, mild steel, tafel polarization
Procedia PDF Downloads 3363257 Selective Separation of Amino Acids by Reactive Extraction with Di-(2-Ethylhexyl) Phosphoric Acid
Authors: Alexandra C. Blaga, Dan Caşcaval, Alexandra Tucaliuc, Madalina Poştaru, Anca I. Galaction
Abstract:
Amino acids are valuable chemical products used in in human foods, in animal feed additives and in the pharmaceutical field. Recently, there has been a noticeable rise of amino acids utilization throughout the world to include their use as raw materials in the production of various industrial chemicals: oil gelating agents (amino acid-based surfactants) to recover effluent oil in seas and rivers and poly(amino acids), which are attracting attention for biodegradable plastics manufacture. The amino acids can be obtained by biosynthesis or from protein hydrolysis, but their separation from the obtained mixtures can be challenging. In the last decades there has been a continuous interest in developing processes that will improve the selectivity and yield of downstream processing steps. The liquid-liquid extraction of amino acids (dissociated at any pH-value of the aqueous solutions) is possible only by using the reactive extraction technique, mainly with extractants of organophosphoric acid derivatives, high molecular weight amines and crown-ethers. The purpose of this study was to analyse the separation of nine amino acids of acidic character (l-aspartic acid, l-glutamic acid), basic character (l-histidine, l-lysine, l-arginine) and neutral character (l-glycine, l-tryptophan, l-cysteine, l-alanine) by reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) dissolved in butyl acetate. The results showed that the separation yield is controlled by the pH value of the aqueous phase: the reactive extraction of amino acids with D2EHPA is possible only if the amino acids exist in aqueous solution in their cationic forms (pH of aqueous phase below the isoeletric point). The studies for individual amino acids indicated the possibility of selectively separate different groups of amino acids with similar acidic properties as a function of aqueous solution pH-value: the maximum yields are reached for a pH domain of 2–3, then strongly decreasing with the pH increase. Thus, for acidic and neutral amino acids, the extraction becomes impossible at the isolelectric point (pHi) and for basic amino acids at a pH value lower than pHi, as a result of the carboxylic group dissociation. From the results obtained for the separation from the mixture of the nine amino acids, at different pH, it can be observed that all amino acids are extracted with different yields, for a pH domain of 1.5–3. Over this interval, the extract contains only the amino acids with neutral and basic character. For pH 5–6, only the neutral amino acids are extracted and for pH > 6 the extraction becomes impossible. Using this technique, the total separation of the following amino acids groups has been performed: neutral amino acids at pH 5–5.5, basic amino acids and l-cysteine at pH 4–4.5, l-histidine at pH 3–3.5 and acidic amino acids at pH 2–2.5.Keywords: amino acids, di-(2-ethylhexyl) phosphoric acid, reactive extraction, selective extraction
Procedia PDF Downloads 4313256 Antioxidant Defense Mechanisms in Murine Epidermis and Dermis and Their Responses to Ultraviolet Light
Authors: Ben Abderrahmane Ayoub El Fateh, Bnina Rachid
Abstract:
A comprehensive comparison of antioxidant defenses in the dermis and epidermis and their response to exposure to ultraviolet (UV) irradiation has not previously been attempted. In this study, enzymic and non-enzymic antioxidants in epidermis and dermis of hairless mice were compared. Enzyme activities are presented both as units/gram of skin and units/milligram of protein; arguments are presented for the superiority of skin wet weight as a reference base. Catalase, glutathione peroxidase, and glutathione reductase (units/gram of skin) were higher in the epidermis than dermis by 49%, 86%, and 74%, respectively. Superoxide dismutase did not follow this pattern. Lipophilic antioxidants ( -tocopherol, ubiquinol 9, and ubiquinone 9) and hydrophilic antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) were 24–95% higher in the epidermis than in dermis. In contrast, oxidized glutathione was 60% lower in the epidermis than in dermis. Mice were irradiated with solar light to examine the response of these cutaneous layers to UV irradiation. After irradiation with 25 J/cm2 (UVA + UVB, from a solar simulator), 10 times the minimum erythemal dose, epidermal and dermal catalase and superoxide dismutase activities were greatly decreased. Tocopherol, ubiquinol 9, ubiquinone 9, ascorbic acid, dehydroascorbic acid, and reduced glutathione decreased in both epidermis and dermis by 26-93%. Oxidizedgiutathione showed a slight, non-significant increase. Because the reduction in total ascorbate and catalase was much more severe in the epidermis than dermis, it can be concluded that UV light is more damaging to the antioxidant defenses in the epidermis than in the dermis.Keywords: antioxidant defenses, enzymic, epidermis, oxidizedgiutathione
Procedia PDF Downloads 4393255 Enhanced Modification Effect of CeO2 on Pt-Pd Binary Catalysts for Formic Acid Oxidation
Authors: Azeem Ur Rehman, Asma Tayyaba
Abstract:
This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electro catalysts. The synthesized catalysts are characterized using different physico chemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.Keywords: CeO2, ordered mesoporous carbon (OMC), electro catalyst, formic acid fuel cell
Procedia PDF Downloads 4923254 Discerning of Antimicrobial Potential of Phenylpropanoic Acid Derived Oxadiazoles
Authors: Neeraj Kumar Fuloria, Shivkanya Fuloria, Amit Singh
Abstract:
2-Phenyl propionic acid and oxadiazoles possess antimicrobial potential. 2-Phenyl propane hydrazide (1), on cyclization with aromatic acids offered 2-aryl-5-(1-phenylethyl)-1,3,4-oxadiazole derivatives (1A-E). The PPA derived oxadiazoles were characterized by elemental analysis and spectral studies. The compounds were screened for antimicrobial potential. The compound 1D bearing strong electron withdrawing group showed maximum antimicrobial potential. Other compounds also displayed antimicrobial potential to a certain extent. The SAR of newer oxadiazoles indicated that substitution of strong electronegative group in the PPA derived oxadiazoles enhanced their antimicrobial potential.Keywords: antimicrobial, imines, oxadiazoles, PPA
Procedia PDF Downloads 3403253 Investigation on Hydration Mechanism of Eco-Friendly Concrete
Authors: Aliakbar Sayadi, Thomas Neitzert, Charles Clifton
Abstract:
The hydration process of a green concrete with differences on fly ash and the poly-lactic acid ratio was investigated using electrical resistivity measurement. The results show that the hydration process of proposed concrete was significantly different with concrete containing petroleum aggregate. Moreover, a microstructure analysis corresponding to each hydration stage is conducted with scanning microscope for ploy-lactic acid and expanded polystyrene concrete. In addition, specific equations using the variables of this study were developed to understand and predict the relationship between setting time and resistivity development of proposed concrete containing eco-friendly aggregate.Keywords: green concrete, SEM, hydration mechanism, eco-friendly aggregate
Procedia PDF Downloads 3233252 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium
Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee
Abstract:
Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.Keywords: GABA, Lactobacillus, HPLC, dairy sludge
Procedia PDF Downloads 1443251 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers
Authors: T. Abohalkuma, J. Telegdi
Abstract:
Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.Keywords: nanolayers, corrosion, phosphonic acids, coatings
Procedia PDF Downloads 1713250 O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography/Computed Tomography in Patients with Suspicious Recurrent Low and High-Grade Glioma
Authors: Mahkameh Asadi, Habibollah Dadgar
Abstract:
The precise definition margin of high and low-grade glioma is crucial for choosing best treatment approach after surgery and radio-chemotherapy. The aim of the current study was to assess the O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET)/computed tomography (CT) in patients with low (LGG) and high grade glioma (HGG). We retrospectively analyzed 18F-FET PET/CT of 10 patients (age: 33 ± 12 years) with suspicious for recurrent LGG and HGG. The final decision of recurrence was made by magnetic resonance imaging (MRI) and registered clinical data. While response to radio-chemotherapy by MRI is often complex and sophisticated due to the edema, necrosis, and inflammation, emerging amino acid PET leading to better interpretations with more specifically differentiate true tumor boundaries from equivocal lesions. Therefore, integrating amino acid PET in the management of glioma to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.Keywords: positron emission tomography, amino acid positron emission tomography, magnetic resonance imaging, low and high grade glioma
Procedia PDF Downloads 1763249 Change of Bone Density with Treatments of Intravenous Zoledronic Acid in Patients with Osteoporotic Distal Radial Fractures
Authors: Hong Je Kang, Young Chae Choi, Jin Sung Park, Isac Kim
Abstract:
Purpose: Osteoporotic fractures are an important among postmenopausal women. When osteoporotic distal radial fractures occur, osteoporosis must be treated to prevent the hip and spine fractures. Intravenous injection of Zoledronic acid is expected to improve preventing osteoporotic fractures. Many articles reported the effect of intravenous Zoledronic acid to BMD of the hip and spine fracture or non-fracture patients with low BMD. However, that with distal radial fractures has rarely been reported. Therefore, the authors decided to study the effect of Zoledronic acid in BMD score, bone union, and bone turnover markers in the patients who underwent volar plating due to osteoporotic distal radial fractures. Materials: From April 2018 to May 2022, postmenopausal women aged 55 years or older who had osteoporotic distal radial fractures and who underwent surgical treatment using volar plate fixation were included. Zoledronic acid (5mg) was injected intravenously between 3 and 5 days after surgery. BMD scores after 1 year of operation were compared with the initial scores. Bone turnover markers were measured before surgery, after 3 months, and after 1 year. Radiological follow-up was performed every 2 weeks until the bone union and at 1 year postoperatively. Clinical outcome indicators were measured one year after surgery, and the occurrence of side effects was observed. Result: Total of 23 patients were included, with a lumbar BMD T score of -2.89±0.2 before surgery to -2.27±0.3 one year after surgery (p=0.012) and a femoral neck BMD T score of -2.45±0.3 before surgery to -2.36±0.3 (p=0.041) after one year, and all were statistically significant. Measured as bone resorption markers, serum CTX-1 was 337.43±10.4 pg/mL before surgery, 160.86±8.7 pg/mL (p=0.022) after three months, and 250.12±12.7 pg/mL (p=0.031) after one year. Urinary NTX-1 was 39.24±2.2 ng/mL before surgery, 24.46±1.2 ng/mL (p=0.014) after three months and 30.35±1.6 ng/mL (p=0.042) after one year. Measured as bone formation markers, serum osteocalcin was 13.04±1.1 ng/mL before surgery, 8.84±0.7 ng/mL (p=0.037) after 3 months and 11.1±0.4 ng/mL (p=0.026) after one year. Serum bone-specific ALP was 11.24±0.9 IU/L before surgery, 8.25±0.9 IU/L (p=0.036) after three months, and 10.2±0.9 IU/L (p=0.027) after one year. All were statistically significant. All cases showed bone union within an average of 6.91±0.3 weeks without any signs of failure. Complications were found in 5 out of 23 cases (21.7%), such as headache, nausea, muscle pain, and fever. Conclusion: When Zoledronic acid was used, BMD was improved in both the spine and femoral neck. This may reduce the likelihood and subsequent morbidity of additional osteoporotic fractures. This study is meaningful in that there was no difference in the duration of bone union and radiological characteristics in patients with distal radial fractures administrated with intravenous BP early after the fractures, and improvement in BMD and bone turnover indicators was measured.Keywords: zeoldreonic acid, BMD, osteoporosis, distal radius
Procedia PDF Downloads 1153248 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings
Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay
Abstract:
The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy
Procedia PDF Downloads 1233247 Anti-Bacterial Activity Studies of Derivatives of 6β-Hydroxy Betunolic Acid against Selected Stains of Gram (+) and Gram (-) Bacteria
Authors: S. Jayasinghe, W. G. D. Wickramasingha, V. Karunaratne, D. N. Karunaratne, A. Ekanayake
Abstract:
Multi-drug resistant microbial pathogens are a serious global health problem, and hence, there is an urgent necessity for discovering new drug therapeutics. However, finding alternatives is a one of the biggest challenges faced by the global drug industry due to the spiraling high cost and serious side effects associated with modern medicine. On the other hand, plants and their secondary metabolites can be considered as good sources of scaffolds to provide structurally diverse bioactive compounds as potential therapeutic agents. 6β-hydroxy betunolic acid is a triterpenoid isolated from bark of Schumacheria castaneifolia which is an endemic plant to Sri Lanka which has shown antibacterial activity against both Staphylococcus aureus (ATCC 29213) and methicillin-resistant S. aureus with Minimum Inhibition Concentration (MIC) of 16 µg/ml. The objective of this study was to determine the anti-bacterial activity for the derivatives of 6β- hydroxy betunolic acid against standard strains of Staphylococcus aureus (ATCC 29213 and ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 35218 and ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), carbepenemas produce Kebsiella pneumonia (ATCC BAA 1705) and carbepenemas non produce Kebsiella pneumonia (ATCC BAA 1706) and four stains of clinically isolated methicillin resistance S. aureus and Acinetobacter. Structural analogues of 6β-hydroxy betunolic acid were synthesized by modifying the carbonyl group at C-3 to obtain olefin and oxime, the hydroxyl group at C-6 position to a ketone, the carboxylic acid at C-17 to obtain amide and halo ester and the olefin group at C-20 position to obtain epoxide. Chemical structures of the synthesized analogues were confirmed with spectroscopic data and antibacterial activity was determined through broth micro dilution assay. Results revealed that 6β- hydroxy betunolic acid shows significant antibacterial activity only against the Gram positive strains and it was inactive against all the tested Gram negative strains for the tested concentration range. However, structural modifications into oxime and olefin at C-3, ketone at C-6 and epoxide at C-20 decreased its antibacterial activity against the gram positive organisms and it was totally lost with the both modifications at C-17 into amide and ester. These results concluded that the antibacterial activity of 6β- hydroxy betunolic acid and derivatives is predominantly depending on the cell wall difference of the bacteria and the presence of carboxylic acid at C-17 is highly important for the antibacterial activity against Gram positive organisms.Keywords: antibacterial activity, 6β- hydroxy betunolic acid, broth micro dilution assay, structure activity relationship
Procedia PDF Downloads 126