Search results for: Privacy Preserving Data Publication (PPDP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26007

Search results for: Privacy Preserving Data Publication (PPDP)

25347 Internal Assessment of Satisfaction with the Quality of the Learning Process

Authors: Bulatbayeva A. A., Maxutova I. O., Ergalieva A. N.

Abstract:

This article presents a study of the practice of self-assessment of the quality of training cadets in a military higher specialized educational institution. The research was carried out by means of a questionnaire survey aimed at identifying the degree of satisfaction of cadets with the organization of the educational process, quality of teaching, the quality of the organization of independent work, and the system of their assessment. In general, the results of the study are of an intermediate nature. Proven tools will be incorporated into the planning and effective management of the learning process. The results of the study can be useful for the administrators and managers of the military education system for teachers of military higher educational institutions for adjusting the content and technologies of training future specialists. The publication was prepared as part of applied grant research for 2020-2022 by order of the Ministry of Education and Science of the Republic of Kazakhstan on the topic "Development of a comprehensive methodology for assessing the quality of education of graduates of military special educational institutions."

Keywords: teaching quality, quality satisfaction, learning management, quality management, process approach, classroom learning, interactive technologies, teaching quality

Procedia PDF Downloads 130
25346 The Challenge of Assessing Social AI Threats

Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi

Abstract:

The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.

Keywords: social threats, artificial Intelligence, mitigation, social experiment

Procedia PDF Downloads 69
25345 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area

Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos

Abstract:

Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: particulate matter, emissions, fugitive, construction, air pollution

Procedia PDF Downloads 358
25344 A Method of Detecting the Difference in Two States of Brain Using Statistical Analysis of EEG Raw Data

Authors: Digvijaysingh S. Bana, Kiran R. Trivedi

Abstract:

This paper introduces various methods for the alpha wave to detect the difference between two states of brain. One healthy subject participated in the experiment. EEG was measured on the forehead above the eye (FP1 Position) with reference and ground electrode are on the ear clip. The data samples are obtained in the form of EEG raw data. The time duration of reading is of one minute. Various test are being performed on the alpha band EEG raw data.The readings are performed in different time duration of the entire day. The statistical analysis is being carried out on the EEG sample data in the form of various tests.

Keywords: electroencephalogram(EEG), biometrics, authentication, EEG raw data

Procedia PDF Downloads 472
25343 Femicide: The Political and Social Blind Spot in the Legal and Welfare State of Germany

Authors: Kristina F. Wolff

Abstract:

Background: In the Federal Republic of Germany, violence against women is deeply embedded in society. Germany is, as of March 2020, the most populous member state of the European Union with 83.2 million inhabitants and, although more than half of its inhabitants are women, gender equality was not certified in the Basic Law until 1957. Women have only been allowed to enter paid employment without their husband's consent since 1977 and have marital rape prosecuted only since 1997. While the lack of equality between men and women is named in the preamble of the Istanbul Convention as the cause of gender-specific, structural, traditional violence against women, Germany continues to sink on the latest Gender Equality Index. According to Police Crime Statistics (PCS), women are significantly more often victims of lethal violence, emanating from men than vice versa. The PCS, which, since 2015, also collects gender-specific data on violent crimes, is kept by the Federal Criminal Police Office, but without taking into account the relevant criteria for targeted prevention, such as the history of violence of the perpetrator/killer, weapon, motivation, etc.. Institutions such as EIGE or the World Health Organization have been asking Germany for years in vain for comparable data on violence against women in order to gain an overview or to develop cross-border synergies. The PCS are the only official data collection on violence against women. All players involved are depend on this data set, which is published only in November of the following year and is thus already completely outdated at the time of publication. In order to combat German femicides causally, purposefully and efficiently, evidence-based data was urgently needed. Methodology: Beginning in January 2019, a database was set up that now tracks more than 600 German femicides, broken down by more than 100 crime-related individual criteria, which in turn go far beyond the official PCS. These data are evaluated on the one hand by daily media research, and on the other hand by case-specific inquiries at the respective public prosecutor's offices and courts nationwide. This quantitative long-term study covers domestic violence as well as a variety of different types of gender-specific, lethal violence, including, for example, femicides committed by German citizens abroad. Additionallyalcohol/ narcotic and/or drug abuse, infanticides and the gender aspect in the judiciary are also considered. Results: Since November 2020, evidence-based data from a scientific survey have been available for the first time in Germany, supplementing the rudimentary picture of reality provided by PCS with a number of relevant parameters. The most important goal of the study is to identify "red flags" that enable general preventive awareness, that serve increasingly precise hazard assessment in acute hazard situations, and from which concrete instructions for action can be identified. Already at a very early stage of the study it could be proven that in more than half of all femicides with a sexual perpetrator/victim constellation there was an age difference of five years or more. Summary: Without reliable data and an understanding of the nature and extent, cause and effect, it is impossible to sustainably curb violence against girls and women, which increasingly often culminates in femicide. In Germany, valid data from a scientific survey has been available for the first time since November 2020, supplementing the rudimentary reality picture of the official and, to date, sole crime statistics with several relevant parameters. The basic research provides insights into geo-concentration, monthly peaks and the modus operandi of male violent excesses. A significant increase of child homicides in the course of femicides and/or child homicides as an instrument of violence against the mother could be proven as well as a danger of affected persons due to an age difference of five years and more. In view of the steadily increasing wave of violence against women, these study results are an eminent contribution to the preventive containment of German femicides.

Keywords: femicide, violence against women, gender specific data, rule Of law, Istanbul convention, gender equality, gender based violence

Procedia PDF Downloads 94
25342 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine

Procedia PDF Downloads 156
25341 Minimizing Mutant Sets by Equivalence and Subsumption

Authors: Samia Alblwi, Amani Ayad

Abstract:

Mutation testing is the art of generating syntactic variations of a base program and checking whether a candidate test suite can identify all the mutants that are not semantically equivalent to the base: this technique is widely used by researchers to select quality test suites. One of the main obstacles to the widespread use of mutation testing is cost: even small pro-grams (a few dozen lines of code) can give rise to a large number of mutants (up to hundreds): this has created an incentive to seek to reduce the number of mutants while preserving their collective effectiveness. Two criteria have been used to reduce the size of mutant sets: equiva-lence, which aims to partition the set of mutants into equivalence classes modulo semantic equivalence, and selecting one representative per class; subsumption, which aims to define a partial ordering among mutants that ranks mutants by effectiveness and seeks to select maximal elements in this ordering. In this paper we analyze these two policies using analytical and em-pirical criteria.

Keywords: mutation testing, mutant sets, mutant equivalence, mutant subsumption, mutant set minimization

Procedia PDF Downloads 66
25340 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 90
25339 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 100
25338 Improved K-Means Clustering Algorithm Using RHadoop with Combiner

Authors: Ji Eun Shin, Dong Hoon Lim

Abstract:

Data clustering is a common technique used in data analysis and is used in many applications, such as artificial intelligence, pattern recognition, economics, ecology, psychiatry and marketing. K-means clustering is a well-known clustering algorithm aiming to cluster a set of data points to a predefined number of clusters. In this paper, we implement K-means algorithm based on MapReduce framework with RHadoop to make the clustering method applicable to large scale data. RHadoop is a collection of R packages that allow users to manage and analyze data with Hadoop. The main idea is to introduce a combiner as a function of our map output to decrease the amount of data needed to be processed by reducers. The experimental results demonstrated that K-means algorithm using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also showed that our K-means algorithm using RHadoop with combiner was faster than regular algorithm without combiner as the size of data set increases.

Keywords: big data, combiner, K-means clustering, RHadoop

Procedia PDF Downloads 446
25337 Post-Harvest Preservation of Mango Fruit Using Freeze and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Periyar Selvam Sellamuthu, Anand Babu Perumal, Reshma B. Nambiar

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit and only very few off-seasonal cultivars are available in the market for consumption. Therefore, to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered. In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, Mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 361
25336 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 167
25335 Environmental Restoration Science in New York Harbor - Community Based Restoration Science Hubs, or “STEM Hubs”

Authors: Lauren B. Birney

Abstract:

The project utilizes the Billion Oyster Project (BOP-CCERS) place-based “restoration through education” model to promote computational thinking in NYC high school teachers and their students. Key learning standards such as Next Generation Science Standards and the NYC CS4All Equity and Excellence initiative are used to develop a computer science curriculum that connects students to their Harbor through hands-on activities based on BOP field science and educational programming. Project curriculum development is grounded in BOP-CCERS restoration science activities and data collection, which are enacted by students and educators at two Restoration Science STEM Hubs or conveyed through virtual materials. New York City Public School teachers with relevant experience are recruited as consultants to provide curriculum assessment and design feedback. The completed curriculum units are then conveyed to NYC high school teachers through professional learning events held at the Pace University campus and led by BOP educators. In addition, Pace University educators execute the Summer STEM Institute, an intensive two-week computational thinking camp centered on applying data analysis tools and methods to BOP-CCERS data. Both qualitative and quantitative analyses were performed throughout the five-year study. STEM+C – Community Based Restoration STEM Hubs. STEM Hubs are active scientific restoration sites capable of hosting school and community groups of all grade levels and professional scientists and researchers conducting long-term restoration ecology research. The STEM Hubs program has grown to include 14 STEM Hubs across all five boroughs of New York City and focuses on bringing in-field monitoring experience as well as coastal classroom experience to students. Restoration Science STEM Hubs activities resulted in: the recruitment of 11 public schools, 6 community groups, 12 teachers, and over 120 students receiving exposure to BOP activities. Field science protocols were designed exclusively around the use of the Oyster Restoration Station (ORS), a small-scale in situ experimental platforms which are suspended from a dock or pier. The ORS is intended to be used and “owned” by an individual school, teacher, class, or group of students, whereas the STEM Hub is explicitly designed as a collaborative space for large-scale community-driven restoration work and in-situ experiments. The ORS is also an essential tool in gathering Harbor data from disparate locations and instilling ownership of the research process amongst students. As such, it will continue to be used in that way. New and previously participating students will continue to deploy and monitor their own ORS, uploading data to the digital platform and conducting analysis of their own harbor-wide datasets. Programming the STEM Hub will necessitate establishing working relationships between schools and local research institutions. NYHF will provide introductions and the facilitation of initial workshops in school classrooms. However, once a particular STEM Hub has been established as a space for collaboration, each partner group, school, university, or CBO will schedule its own events at the site using the digital platform’s scheduling and registration tool. Monitoring of research collaborations will be accomplished through the platform’s research publication tool and has thus far provided valuable information on the projects’ trajectory, strategic plan, and pathway.

Keywords: environmental science, citizen science, STEM, technology

Procedia PDF Downloads 100
25334 Local Ordinances with Sharia Nuances in Pluralism Society of Indonesia: Convergence or Divergence

Authors: Farida Prihatini

Abstract:

As a largest Muslim country in the world with around 215 Muslim inhabitants, Indonesia interestingly is not an Islamic country. Yet, Indonesia is not a secular country as well. The country has committed to be a unity in diversity country where people from various socio-political background may be coexistent live in this archipelago country. However, many provinces and Muslim groups are disposed of special regulation for Muslim people, namely local ordinances with sharia nuances, applied specifically in provinces, cities or regions where Muslim inhabitants are the majority. For the last two decades, particularly since Indonesia reform movement of 1998, a lot of local ordinances (Peraturan Daerah) with Sharia nuance have been enacted and applied in several provinces, cities and regions in Indonesia. The local ordinances are mostly deal with restriction of alcohol, prohibition of prostitution, Al Qur'an literacy, obligation to wear Muslim attire and zakat or alms management. Some of local ordinances have been warmly welcomed by society, while other ordinances have created tension. Those who oppose the ordinances believe that such things regulated by the ordinances are in violation of human rights and democracy, part of privacy rights of the people and must not be regulated by the State or local government. This paper describes the dynamic of local Ordinances with sharia nuances in Indonesia, in this research is limited to three ordinances: on the restriction of alcohol, prohibition of prostitution and obligation to wear Muslim attire. The researcher employs a normative method by studying secondary data and local ordinances in selected areas in Indonesia. The findings of the paper are that local ordinances with sharia nuances are indeed part of the needs of society, yet, in their implementation must take the pluralism of Indonesia and the state basic foundation, which is Pancasila (five pillars) into account.

Keywords: local, ordinances, sharia, rights

Procedia PDF Downloads 282
25333 Pomegranate Attenuated Levodopa-Induced Dyskinesia and Dopaminergic Degeneration in MPTP Mice Models of Parkinson’s Disease

Authors: Mahsa Hadipour Jahromy, Sara Rezaii

Abstract:

Parkinson’s disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Soon after the discovery of levodopa and its beneficial effects in chronic administration, debilitating involuntary movements observed, termed levodopa-induced dyskinesia (LID) with poorly understood pathogenesis. Polyphenol-rich compounds, like pomegranate, provided neuroprotection in several animal models of brain diseases. In the present work, we investigated whether pomegranate has preventive effects following 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degenerations and the potential to diminish LID in mice. Mice model of PD was induced by MPTP (30 mg/kg daily for five consecutive days). To induce a mice model of LID, valid PD mice were treated with levodopa (50 mg/kg, i.p) for 15 days. Then the effects of chronic co-administration of pomegranate juice (20 ml/kg) with levodopa and continuing for 10 days, evaluated. Behavioural tests were performed in all groups, every other day including: Abnormal involuntary movements (AIMS), forelimb adjusting steps, cylinder, and catatonia tests. Finally, brain tissue sections were prepared to study substantia nigra changes and dopamine neuron density after treatments. With this MPTP regimen, significant movement disorders revealed in AIMS tests and there was a reduction in dopamine striatal density. Levodopa attenuates their loss caused by MPTP, however, in chronic administration, dyskinesia observed in forelimb adjusting step and cylinder tests. Besides, catatonia observed in some cases. Chronic pomegranate co-administration significantly improved LID in both tests and reduced dopaminergic loss in substantia nigra. These data indicate that pomegranate might be a good adjunct for preserving dopaminergic neurons in the substantia nigra and reducing LID in mice.

Keywords: levodopa-induced dyskinesia, MPTP, Parkinson’s disease, pomegranate

Procedia PDF Downloads 496
25332 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: text mining, topic extraction, independent, incremental, independent component analysis

Procedia PDF Downloads 316
25331 Post Harvest Preservation of Mango Fruit Using Freeze Drying and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Selvam Sellamuthu Periyar, Babu Perumal Anand, B. Nambiar Reshma

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit, and only very few off-seasonal species are available in the market for consumption. Therefore, in order to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 398
25330 Open Data for e-Governance: Case Study of Bangladesh

Authors: Sami Kabir, Sadek Hossain Khoka

Abstract:

Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.

Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data

Procedia PDF Downloads 359
25329 Re-shaping Ancient Historical Courtyards in a Sustainable Design

Authors: Andreea Anamaria Anghel, Flaviu Mihai Frigura-Lliasa, Attila Simo

Abstract:

In recent years, there has been a renewed interest in revitalizing the historical area of Timisoara, a city located in western Romania, with a focus on preserving its architectural heritage while also promoting sustainable urban development. This has led to several initiatives aimed at improving public spaces, promoting sustainable transport, and encouraging the use of green infrastructure, such as green interior courtyards, to enhance the livability and sustainability of the area. A preliminary study regarding history, characteristics and current condition was carried out by the authors regarding these interior courtyards in the historical areas of Timisoara, the European Capital of Culture, in 2023, highlighting their potential to contribute to the sustainable development of the city. Modern interventions in interior historical courtyards should aim to preserve the historic character of these spaces while also promoting their sustainable and functional use in the 21st century. By doing so, these courtyards can continue to serve as vital urban oases and cultural landmarks for generations to come.

Keywords: architectural heritage, green interior courtyards, public spaces, sustainable development

Procedia PDF Downloads 91
25328 The Application of Nuclear Energy for Sustainable Agriculture and Food Security: A Review

Authors: Gholamreza Farrokhi, Behzad Sani

Abstract:

The goals of sustainable agricultural are development, improved nutrition, and food security. Sustainable agriculture must be developed that will meet today’s needs for food and other products, as well as preserving the vital natural resource base that will allow future generations to meet their needs. Sustainable development requires international cooperation and the effective use of technology. Access to sustainable sources of food will remain a preeminent challenge in the decades to come. Based upon current practice and consumption, agricultural production will have to increase by about 70% by 2050 to meet demand. Nuclear techniques are used in developing countries to increase production sustainably by breeding improved crops, enhancing livestock reproduction and nutrition, as well as controlling animal and plant pests and diseases. Post-harvest losses can be reduced and safety increased with nuclear technology. Soil can be evaluated with nuclear techniques to conserve and improve soil productivity and water management.

Keywords: food safety, food security, nuclear techniques, sustainable agriculture, sustainable future

Procedia PDF Downloads 363
25327 Vital Pulp Therapy: A Paradigm Shift in Treating Irreversible Pulpitis

Authors: Fadwa Chtioui

Abstract:

Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials.

Keywords: irreversible pulpitis, vital pulp therapy, pulpotomy, Tricalcium Silicate

Procedia PDF Downloads 65
25326 A Systamatic Review on Experimental, FEM Analysis and Simulation of Metal Spinning Process

Authors: Amol M. Jadhav, Sharad S. Chudhari, S. S. Khedkar

Abstract:

This review presents a through survey of research paper work on the experimental analysis, FEM Analysis & simulation of the metal spinning process. In this literature survey all the papers being taken from Elsevier publication and most of the from journal of material processing technology. In a last two decade or so, metal spinning process gradually used as chip less formation for the production of engineering component in a small to medium batch quantities. The review aims to provide include into the experimentation, FEM analysis of various components, simulation of metal spinning process and act as guide for research working on metal spinning processes. The review of existing work has several gaps in current knowledge of metal spinning processes. The evaluation of experiment is thickness strain, the spinning force, the twisting angle, the surface roughness of the conventional & shear metal spinning process; the evaluation of FEM of metal spinning to path definition with sufficient fine mesh to capture behavior of work piece; The evaluation of feed rate of roller, direction of roller,& type of roller stimulated. The metal spinning process has the more flexible to produce a wider range of product shape & to form more challenge material.

Keywords: metal spinning, FEM analysis, simulation of metal spinning, mechanical engineering

Procedia PDF Downloads 390
25325 The State Model of Corporate Governance

Authors: Asaiel Alohaly

Abstract:

A theoretical framework for corporate governance is needed to bridge the gap between the corporate governance of private companies and State-owned Enterprises (SOEs). The two dominant models, being shareholder and stakeholder, do not always address the specific requirements and challenges posed by ‘hybrid’ companies; namely, previously national bodies that have been privatised bffu t where the government retains significant control or holds a majority of shareholders. Thus, an exploratory theoretical study is needed to identify how ‘hybrid’ companies should be defined and why the state model should be acknowledged since it is the less conspicuous model in comparison with the shareholder and stakeholder models. This research focuses on ‘the state model of corporate governance to understand the complex ownership, control pattern, goals, and corporate governance of these hybrid companies. The significance of this research lies in the fact that there is a limited available publication on the state model. The outcomes of this research are as follows. It became evident that the state model exists in the ecosystem. However, corporate governance theories have not extensively covered this model. Though, there is a lot being said about it by OECD and the World Bank. In response to this gap between theories and industry practice, this research argues for the state model, which proceeds from an understanding of the institutionally embedded character of hybrid companies where the government is either a majority of the total shares or a controlling shareholder.

Keywords: corporate governance, control, shareholders, state model

Procedia PDF Downloads 148
25324 Resource Framework Descriptors for Interestingness in Data

Authors: C. B. Abhilash, Kavi Mahesh

Abstract:

Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns.

Keywords: RDF, interestingness, knowledge base, semantic data

Procedia PDF Downloads 168
25323 Data Mining Practices: Practical Studies on the Telecommunication Companies in Jordan

Authors: Dina Ahmad Alkhodary

Abstract:

This study aimed to investigate the practices of Data Mining on the telecommunication companies in Jordan, from the viewpoint of the respondents. In order to achieve the goal of the study, and test the validity of hypotheses, the researcher has designed a questionnaire to collect data from managers and staff members from main department in the researched companies. The results shows improvements stages of the telecommunications companies towered Data Mining.

Keywords: data, mining, development, business

Procedia PDF Downloads 501
25322 Urban Ecotourism Development in Borderlands: An Exploratory Study of Xishuangbanna Dai Autonomous Prefecture, China

Authors: Min Liu, Thanapauge Chamaratana

Abstract:

Integrating ecotourism into urban borderlands holds significant potential for promoting sustainable development, enhancing cross-border cooperation, and preserving cultural and natural heritage. This study aims to evaluate the current status and strategic measures for sustainable ecotourism development in the border urban areas of Xishuangbanna, leveraging the unique opportunities and challenges presented by its policy and geographical location. Employing a qualitative research approach, the exploratory study utilizes documentary research, observation, and in-depth interviews with 20 key stakeholders, including local government officials, tourism operators, community members, and tourists. Content analysis is conducted to interpret the collected data. The findings reveal that Xishuangbanna holds significant potential for ecotourism due to its rich biodiversity, cultural heritage, and strategic location along the Belt and Road Initiative route. The integration of ecotourism can drive economic growth, create employment opportunities, and foster a deeper appreciation for conservation efforts. By promoting ecotourism practices, the region can attract environmentally conscious travelers, thereby contributing to global sustainability goals. However, challenges such as inadequate infrastructure, limited community involvement, and environmental concerns are also identified. The study recommends enhancing ecotourism development in urban borderlands through integrated planning, stakeholder collaboration, and sustainable practices. These measures are essential to ensure long-term benefits for both the local community and the environment. Moreover, the study underscores the importance of a holistic approach to ecotourism development, which balances economic, social, and environmental priorities to achieve sustainable outcomes for urban borderlands.

Keywords: ecotourism, sustainable tourism, urban, borderland

Procedia PDF Downloads 34
25321 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance.Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: data quality, performance, system quality, Kingdom of Bahrain

Procedia PDF Downloads 501
25320 Cloud Computing in Data Mining: A Technical Survey

Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham

Abstract:

Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.

Keywords: cloud computing, data mining, computing models, cloud services

Procedia PDF Downloads 484
25319 Cross-border Data Transfers to and from South Africa

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research and transfers of big data are not confined to a particular jurisdiction, but there is a lack of clarity regarding the legal requirements for importing and exporting such data. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 129
25318 Healthcare Workers’ Knowledge and Attitude Toward Telemedicine During the COVID-19 Pandemic: A Global Survey

Authors: Saman Naqvi

Abstract:

Introduction: Telemedicine is the practise of providing remote healthcare to patients via the utilisation of communication technologies. Its application has become increasingly important since the Coronavirus Disease 2019 (COVID-19) pandemic. It is essential to determine the knowledge and attitudes of healthcare professionals concerning its use in order to maximise its application. Purpose: We aim to examine and evaluate the current understanding and perceptions of medical staff toward the use of telemedicine. Methods: In this cross-sectional study, we surveyed 1091 healthcare professionals worldwide. Following an extensive review of the literature, data were gathered using a questionnaire. To depict the participant profile, frequency, percentages, and cumulative percentages were determined. Results: The majority of respondents had either heard of (90.9%), seen (65.3%), or were familiar with (74.6%) how telemedicine is implemented in practice. 72.2% of people were familiar with the tools that could be applied to this technology. Those with a medical degree and experience of under five years were found to be more familiar with telemedicine. Additionally, opinions on providing healthcare remotely were largely favorable, with 80% of respondents stating that it reduced staff burden and 80.6% thinking that it eliminated unnecessary transportation costs. Furthermore, 83% expressed that it saves clinicians' time. However, 20% of participants believed telemedicine adds to staff workload and 40% of healthcare professionals felt it compromises patient privacy and information confidentiality. Conclusion: Despite being a new and developing practice in many countries, telemedicine appears to have a bright future. This is crucial during a pandemic as it provides effective healthcare while maintaining social isolation measures. Moreover, the majority of the participants in this study demonstrated a good understanding and a favorable attitude toward telemedicine.

Keywords: healthcare system, global survey, knowledge, attitude, covid 19, telemedicine

Procedia PDF Downloads 94