Search results for: spoken interaction skills
212 Ways for University to Conduct Research Evaluation: Based on National Research University Higher School of Economics Example
Authors: Svetlana Petrikova, Alexander Yu Kostinskiy
Abstract:
Management of research evaluation in the Higher School of Economics (HSE) originates from the HSE Academic Fund created in 2004 to facilitate and support academic research and presents its results to international academic community. As the means to inspire the applicants, science projects went through competitive selection process evaluated by the group of experts. Drastic development of HSE, quantity of applied projects for each Academic Fund competition and the need to coordinate the conduct of expert evaluation resulted in founding of the Office for Research Evaluation in 2013. The Office’s primary objective is management of research evaluation of science projects. The standards to conduct the evaluation are defined as follows: - The exercise of the process approach, the unification of the functioning of department. - The uniformity of regulatory, organizational and methodological framework. - The development of proper on-line evaluation system. - The broad involvement of external Russian and international experts, the renouncement of the usage of own employees. - The development of an algorithm to make a correspondence between experts and science projects. - The methodical usage of opened/closed international and Russian databases to extend the expert database. - The transparency of evaluation results – free access to assessment while keeping experts confidentiality. The management of research evaluation of projects is based on the sole standard, organization and financing. The standard way of conducting research evaluation at HSE is based upon Regulations on basic principles for research evaluation at HSE. These Regulations have been developed from the moment of establishment of the Office for Research Evaluation and are based on conventional corporate standards for regulatory document management. The management system of research evaluation is implemented on the process approach basis. Process approach means deployment of work as a process, which is the aggregation of interrelated and interacting activities processing inputs into outputs. Inputs are firstly client asking for the assessment to be conducted, defining the conditions for organizing and carrying of the assessment and secondly the applicant with proper for the competition application; output is assessment given to the client. While exercising process approach to clarify interrelation and interacting main parties or subjects of the assessment are determined and the way for interaction between them forms up. Parties to expert assessment are: - Ordering Party – The department of the university taking the decision to subject a project to expert assessment; - Providing Party – The department of the university authorized to provide such assessment by the Ordering Party; - Performing Party – The legal and natural entities that have expertise in the area of research evaluation. Experts assess projects in accordance with criteria and states of expert opinions approved by the Ordering Party. Objects of assessment generally are applications or HSE competition project reports. Mainly assessments are deployed for internal needs, i.e. the most ordering parties are HSE branches and departments, but assessment can also be conducted for external clients. The financing of research evaluation at HSE is based on the established corporate culture and traditions of HSE.Keywords: expert assessment, management of research evaluation, process approach, research evaluation
Procedia PDF Downloads 257211 Controlled Nano Texturing in Silicon Wafer for Excellent Optical and Photovoltaic Properties
Authors: Deb Kumar Shah, M. Shaheer Akhtar, Ha Ryeon Lee, O-Bong Yang, Chong Yeal Kim
Abstract:
The crystalline silicon (Si) solar cells are highly renowned photovoltaic technology and well-established as the commercial solar technology. Most of the solar panels are globally installed with the crystalline Si solar modules. At the present scenario, the major photovoltaic (PV) market is shared by c-Si solar cells, but the cost of c-Si panels are still very high as compared with the other PV technology. In order to reduce the cost of Si solar panels, few necessary steps such as low-cost Si manufacturing, cheap antireflection coating materials, inexpensive solar panel manufacturing are to be considered. It is known that the antireflection (AR) layer in c-Si solar cell is an important component to reduce Fresnel reflection for improving the overall conversion efficiency. Generally, Si wafer exhibits the 30% reflection because it normally poses the two major intrinsic drawbacks such as; the spectral mismatch loss and the high Fresnel reflection loss due to the high contrast of refractive indices between air and silicon wafer. In recent years, researchers and scientists are highly devoted to a lot of researches in the field of searching effective and low-cost AR materials. Silicon nitride (SiNx) is well-known AR materials in commercial c-Si solar cells due to its good deposition and interaction with passivated Si surfaces. However, the deposition of SiNx AR is usually performed by expensive plasma enhanced chemical vapor deposition (PECVD) process which could have several demerits like difficult handling and damaging the Si substrate by plasma when secondary electrons collide with the wafer surface for AR coating. It is very important to explore new, low cost and effective AR deposition process to cut the manufacturing cost of c-Si solar cells. One can also be realized that a nano-texturing process like the growth of nanowires, nanorods, nanopyramids, nanopillars, etc. on Si wafer can provide a low reflection on the surface of Si wafer based solar cells. The above nanostructures might be enhanced the antireflection property which provides the larger surface area and effective light trapping. In this work, we report on the development of crystalline Si solar cells without using the AR layer. The Silicon wafer was modified by growing nanowires like Si nanostructures using the wet controlled etching method and directly used for the fabrication of Si solar cell without AR. The nanostructures over Si wafer were optimized in terms of sizes, lengths, and densities by changing the etching conditions. Well-defined and aligned wires like structures were achieved when the etching time is 20 to 30 min. The prepared Si nanostructured displayed the minimum reflectance ~1.64% at 850 nm with the average reflectance of ~2.25% in the wavelength range from 400-1000 nm. The nanostructured Si wafer based solar cells achieved the comparable power conversion efficiency in comparison with c-Si solar cells with SiNx AR layer. From this study, it is confirmed that the reported method (controlled wet etching) is an easy, facile method for preparation of nanostructured like wires on Si wafer with low reflectance in the whole visible region, which has greater prospects in developing c-Si solar cells without AR layer at low cost.Keywords: chemical etching, conversion efficiency, silicon nanostructures, silicon solar cells, surface modification
Procedia PDF Downloads 129210 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method
Authors: Jiahui You, Kyung Jae Lee
Abstract:
Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.Keywords: reactive-transport , Shale, Kerogen, precipitation
Procedia PDF Downloads 168209 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique
Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich
Abstract:
In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.Keywords: annular flow, disturbance waves, entrainment, flow development
Procedia PDF Downloads 256208 Investigation of Processing Conditions on Rheological Features of Emulsion Gels and Oleogels Stabilized by Biopolymers
Authors: M. Sarraf, J. E. Moros, M. C. Sánchez
Abstract:
Oleogels are self-standing systems that are able to trap edible liquid oil into a tridimensional network and also help to use less fat by forming crystallization oleogelators. There are different ways to generate oleogelation and oil structuring, including direct dispersion, structured biphasic systems, oil sorption, and indirect method (emulsion-template). The selection of processing conditions as well as the composition of the oleogels is essential to obtain a stable oleogel with characteristics suitable for its purpose. In this sense, one of the ingredients widely used in food products to produce oleogels and emulsions is polysaccharides. Basil seed gum (BSG), with the scientific name Ocimum basilicum, is a new native polysaccharide with high viscosity and pseudoplastic behavior because of its high molecular weight in the food industry. Also, proteins can stabilize oil in water due to the presence of amino and carboxyl moieties that result in surface activity. Whey proteins are widely used in the food industry due to available, cheap ingredients, nutritional and functional characteristics such as emulsifier and a gelling agent, thickening, and water-binding capacity. In general, the interaction of protein and polysaccharides has a significant effect on the food structures and their stability, like the texture of dairy products, by controlling the interactions in macromolecular systems. Using edible oleogels as oil structuring helps for targeted delivery of a component trapped in a structural network. Therefore, the development of efficient oleogel is essential in the food industry. A complete understanding of the important points, such as the ratio oil phase, processing conditions, and concentrations of biopolymers that affect the formation and stability of the emulsion, can result in crucial information in the production of a suitable oleogel. In this research, the effects of oil concentration and pressure used in the manufacture of the emulsion prior to obtaining the oleogel have been evaluated through the analysis of droplet size and rheological properties of obtained emulsions and oleogels. The results show that the emulsion prepared in the high-pressure homogenizer (HPH) at higher pressure values has smaller droplet sizes and a higher uniformity in the size distribution curve. On the other hand, in relation to the rheological characteristics of the emulsions and oleogels obtained, the predominantly elastic character of the systems must be noted, as they present values of the storage modulus higher than those of losses, also showing an important plateau zone, typical of structured systems. In the same way, if steady-state viscous flow tests have been analyzed on both emulsions and oleogels, the result is that, once again, the pressure used in the homogenizer is an important factor for obtaining emulsions with adequate droplet size and the subsequent oleogel. Thus, various routes for trapping oil inside a biopolymer matrix with adjustable mechanical properties could be applied for the creation of the three-dimensional network in order to the oil absorption and creating oleogel.Keywords: basil seed gum, particle size, viscoelastic properties, whey protein
Procedia PDF Downloads 70207 Implementation of a Distant Learning Physician Assistant Program in Northern Michigan to Address Health Care Provider Shortage: Importance of Evaluation
Authors: Theresa Bacon-Baguley, Martina Reinhold
Abstract:
Introduction: The purpose of this paper is to discuss the importance of both formative and summative evaluation of a Physician Assistant (PA) program with a distant campus delivered through Interactive Television (ITV) to assure equity of educational experiences. Methodology: A needs assessment utilizing a case-control design determined the need and interest in expanding the existing PA program to northern Michigan. A federal grant was written and funded, which supported the hiring of two full-time faculty members and support staff at the distant site. The strengths and weaknesses of delivering a program through ITV were evaluated using weekly formative evaluation, and bi-semester summative evaluation. Formative evaluation involved discussion of lecture content to be delivered, special ITV needs, orientation of new lecturers to the system, student concerns, support staff updates, and scheduling of student/faculty traveling between the two campuses. The summative evaluation, designed from a literature review of barriers to ITV, included 19 statements designed to evaluate the following items: quality of technology (audio, video, etc.), confidence in the ITV system, quality of instruction and instructor interaction between the two locations, and availability of resources at each location. In addition, students were given the opportunity to write qualitative remarks for each course delivered between the two locations. This summative evaluation was given to all students at mid-semester and at the end of the semester. The goal of the summative evaluation was to have 80% or greater of the students respond favorably (‘Very Good’ or ‘Good’) to each of the 19 statements. Results: Prior to the start of the first cohort at the distant campus, the technology was tested. During this time period, the formative evaluations identified key components needing modification, which were rapidly addressed: ability to record lectures, lighting, sound, and content delivery. When the mid-semester summative survey was given to the first cohort of students, 18 of the 19 statements in the summative evaluation met the goal of 80% or greater in the favorable category. When the summative evaluation statements were stratified by the two cohorts, the summative evaluation identified that students at the home location responded that they did not have adequate access to printers, and students at the expansion location responded that they did not have adequate access to library resources. These results allowed the program to address the deficiencies through contacting informational technology for additional printers, and to provide students with knowledge on how to access library resources. Conclusion: Successful expansion of programs to a distant site utilizing ITV technology requires extensive monitoring using both formative and summative evaluation. The formative evaluation allowed for quick identification of issues that could immediately be addressed, both at the planning and developing stage, as well as during implementation. Through use of the summative evaluation the program is able to monitor the success/ effectiveness of the expansion and identify specific needs of students at each location.Keywords: assessment, distance learning, formative feedback, interactive television (ITV), student experience, summative feedback, support
Procedia PDF Downloads 248206 Chiral Molecule Detection via Optical Rectification in Spin-Momentum Locking
Authors: Jessie Rapoza, Petr Moroshkin, Jimmy Xu
Abstract:
Chirality is omnipresent, in nature, in life, and in the field of physics. One intriguing example is the homochirality that has remained a great secret of life. Another is the pairs of mirror-image molecules – enantiomers. They are identical in atomic composition and therefore indistinguishable in the scalar physical properties. Yet, they can be either therapeutic or toxic, depending on their chirality. Recent studies suggest a potential link between abnormal levels of certain D-amino acids and some serious health impairments, including schizophrenia, amyotrophic lateral sclerosis, and potentially cancer. Although indistinguishable in their scalar properties, the chirality of a molecule reveals itself in interaction with the surrounding of a certain chirality, or more generally, a broken mirror-symmetry. In this work, we report on a system for chiral molecule detection, in which the mirror-symmetry is doubly broken, first by asymmetric structuring a nanopatterned plasmonic surface than by the incidence of circularly polarized light (CPL). In this system, the incident circularly-polarized light induces a surface plasmon polariton (SPP) wave, propagating along the asymmetric plasmonic surface. This SPP field itself is chiral, evanescently bound to a near-field zone on the surface (~10nm thick), but with an amplitude greatly intensified (by up to 104) over that of the incident light. It hence probes just the molecules on the surface instead of those in the volume. In coupling to molecules along its path on the surface, the chiral SPP wave favors one chirality over the other, allowing for chirality detection via the change in an optical rectification current measured at the edges of the sample. The asymmetrically structured surface converts the high-frequency electron plasmonic-oscillations in the SPP wave into a net DC drift current that can be measured at the edge of the sample via the mechanism of optical rectification. The measured results validate these design concepts and principles. The observed optical rectification current exhibits a clear differentiation between a pair of enantiomers. Experiments were performed by focusing a 1064nm CW laser light at the sample - a gold grating microchip submerged in an approximately 1.82M solution of either L-arabinose or D-arabinose and water. A measurement of the current output was then recorded under both rights and left circularly polarized lights. Measurements were recorded at various angles of incidence to optimize the coupling between the spin-momentums of the incident light and that of the SPP, that is, spin-momentum locking. In order to suppress the background, the values of the photocurrent for the right CPL are subtracted from those for the left CPL. Comparison between the two arabinose enantiomers reveals a preferential signal response of one enantiomer to left CPL and the other enantiomer to right CPL. In sum, this work reports on the first experimental evidence of the feasibility of chiral molecule detection via optical rectification in a metal meta-grating. This nanoscale interfaced electrical detection technology is advantageous over other detection methods due to its size, cost, ease of use, and integration ability with read-out electronic circuits for data processing and interpretation.Keywords: Chirality, detection, molecule, spin
Procedia PDF Downloads 96205 Evaluation of Sustained Improvement in Trauma Education Approaches for the College of Emergency Nursing Australasia Trauma Nursing Program
Authors: Pauline Calleja, Brooke Alexander
Abstract:
In 2010 the College of Emergency Nursing Australasia (CENA) undertook sole administration of the Trauma Nursing Program (TNP) across Australia. The original TNP was developed from recommendations by the Review of Trauma and Emergency Services-Victoria. While participant and faculty feedback about the program was positive, issues were identified that were common for industry training programs in Australia. These issues included didactic approaches, with many lectures and little interaction/activity for participants. Participants were not necessarily encouraged to undertake deep learning due to the teaching and learning principles underpinning the course, and thus participants described having to learn by rote, and only gain a surface understanding of principles that were not always applied to their working context. In Australia, a trauma or emergency nurse may work in variable contexts that impact on practice, especially where resources influence scope and capacity of hospitals to provide trauma care. In 2011, a program review was undertaken resulting in major changes to the curriculum, teaching, learning and assessment approaches. The aim was to improve learning including a greater emphasis on pre-program preparation for participants, the learning environment and clinically applicable contextualized outcomes participants experienced. Previously if participants wished to undertake assessment, they were given a take home examination. The assessment had poor uptake and return, and provided no rigor since assessment was not invigilated. A new assessment structure was enacted with an invigilated examination during course hours. These changes were implemented in early 2012 with great improvement in both faculty and participant satisfaction. This presentation reports on a comparison of participant evaluations collected from courses post implementation in 2012 and in 2015 to evaluate if positive changes were sustained. Methods: Descriptive statistics were applied in analyzing evaluations. Since all questions had more than 20% of cells with a count of <5, Fisher’s Exact Test was used to identify significance (p = <0.05) between groups. Results: A total of fourteen group evaluations were included in this analysis, seven CENA TNP groups from 2012 and seven from 2015 (randomly chosen). A total of 173 participant evaluations were collated (n = 81 from 2012 and 92 from 2015). All course evaluations were anonymous, and nine of the original 14 questions were applicable for this evaluation. All questions were rated by participants on a five-point Likert scale. While all items showed improvement from 2012 to 2015, significant improvement was noted in two items. These were in regard to the content being delivered in a way that met participant learning needs and satisfaction with the length and pace of the program. Evaluation of written comments supports these results. Discussion: The aim of redeveloping the CENA TNP was to improve learning and satisfaction for participants. These results demonstrate that initial improvements in 2012 were able to be maintained and in two essential areas significantly improved. Changes that increased participant engagement, support and contextualization of course materials were essential for CENA TNP evolution.Keywords: emergency nursing education, industry training programs, teaching and learning, trauma education
Procedia PDF Downloads 276204 Introducing Transport Engineering through Blended Learning Initiatives
Authors: Kasun P. Wijayaratna, Lauren Gardner, Taha Hossein Rashidi
Abstract:
Undergraduate students entering university across the last 2 to 3 years tend to be born during the middle years of the 1990s. This generation of students has been exposed to the internet and the desire and dependency on technology since childhood. Brains develop based on environmental influences and technology has wired this generation of student to be attuned to sophisticated complex visual imagery, indicating visual forms of learning may be more effective than the traditional lecture or discussion formats. Furthermore, post-millennials perspectives on career are not focused solely on stability and income but are strongly driven by interest, entrepreneurship and innovation. Accordingly, it is important for educators to acknowledge the generational shift and tailor the delivery of learning material to meet the expectations of the students and the needs of industry. In the context of transport engineering, effectively teaching undergraduate students the basic principles of transport planning, traffic engineering and highway design is fundamental to the progression of the profession from a practice and research perspective. Recent developments in technology have transformed the discipline as practitioners and researchers move away from the traditional “pen and paper” approach to methods involving the use of computer programs and simulation. Further, enhanced accessibility of technology for students has changed the way they understand and learn material being delivered at tertiary education institutions. As a consequence, blended learning approaches, which aim to integrate face to face teaching with flexible self-paced learning resources, have become prevalent to provide scalable education that satisfies the expectations of students. This research study involved the development of a series of ‘Blended Learning’ initiatives implemented within an introductory transport planning and geometric design course, CVEN2401: Sustainable Transport and Highway Engineering, taught at the University of New South Wales, Australia. CVEN2401 was modified by conducting interactive polling exercises during lectures, including weekly online quizzes, offering a series of supplementary learning videos, and implementing a realistic design project that students needed to complete using modelling software that is widely used in practice. These activities and resources were aimed to improve the learning environment for a large class size in excess of 450 students and to ensure that practical industry valued skills were introduced. The case study compared the 2016 and 2017 student cohorts based on their performance across assessment tasks as well as their reception to the material revealed through student feedback surveys. The initiatives were well received with a number of students commenting on the ability to complete self-paced learning and an appreciation of the exposure to a realistic design project. From an educator’s perspective, blending the course made it feasible to interact and engage with students. Personalised learning opportunities were made available whilst delivering a considerable volume of complex content essential for all undergraduate Civil and Environmental Engineering students. Overall, this case study highlights the value of blended learning initiatives, especially in the context of large class size university courses.Keywords: blended learning, highway design, teaching, transport planning
Procedia PDF Downloads 153203 Opportunities and Challenges: Tracing the Evolution of India's First State-led Curriculum-based Media Literacy Intervention
Authors: Ayush Aditya
Abstract:
In today's digitised world, the extent of an individual’s social involvement is largely determined by their interaction over the internet. The Internet has emerged as a primary source of information consumption and a reliable medium for receiving updates on everyday activities. Owing to this change in the information consumption pattern, the internet has also emerged as a hotbed of misinformation. Experts are of the view that media literacy has emerged as one of the most effective strategies for addressing the issue of misinformation. This paper aims to study the evolution of the Kerala government's media literacy policy, its implementation strategy, challenges and opportunities. The objective of this paper is to create a conceptual framework containing details of the implementation strategy based on the Kerala model. Extensive secondary research of literature, newspaper articles, and other online sources was carried out to locate the timeline of this policy. This was followed by semi-structured interview discussions with government officials from Kerala to trace the origin and evolution of this policy. Preliminary findings based on the collected data suggest that this policy is a case of policy by chance, as the officer who headed this policy during the state level implementation was the one who has already piloted a media literacy program in a district called Kannur as the district collector. Through this paper, an attempt is made to trace the history of the media literacy policy starting from the Kannur intervention in 2018, which was started to address the issue of vaccine hesitancy around measles rubella(MR) vaccination. If not for the vaccine hesitancy, this program would not have been rolled out in Kannur. Interviews with government officials suggest that when authorities decided to take up this initiative in 2020, a huge amount of misinformation emerging during the COVID-19 pandemic was the trigger. There was misinformation regarding government orders, healthcare facilities, vaccination, and lockdown regulations, which affected everyone, unlike the case of Kannur, where it was only a certain age group of kids. As a solution to this problem, the state government decided to create a media literacy curriculum to be taught in all government schools of the state starting from standard 8 till graduation. This was a tricky task, as a new course had to be immediately introduced in the school curriculum amid all the disruptions in the education system caused by the pandemic. It was revealed during the interview that in the case of the state-wide implementation, every step involved multiple checks and balances, unlike the earlier program where stakeholders were roped-in as and when the need emerged. On the pedagogy, while the training during the pilot could be managed through PowerPoint presentation, designing a state-wide curriculum involved multiple iterations and expert approvals. The reason for this is COVID-19 related misinformation has lost its significance. In the next phase of the research, an attempt will be made to compare other aspects of the pilot implementation with the state-wide implementation.Keywords: media literacy, digital media literacy, curriculum based media literacy intervention, misinformation
Procedia PDF Downloads 99202 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab
Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco
Abstract:
Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus
Procedia PDF Downloads 69201 Inflammatory and Cardio Hypertrophic Remodeling Biomarkers in Patients with Fabry Disease
Authors: Margarita Ivanova, Julia Dao, Andrew Friedman, Neil Kasaci, Rekha Gopal, Ozlem Goker-Alpan
Abstract:
In Fabry disease (FD), α-galactosidase A (α-Gal A) deficiency leads to the accumulation of globotriaosylceramide (Lyso-Gb3 and Gb3), triggering a pathologic cascade that causes the severity of organs damage. The heart is one of the several organs with high sensitivity to the α-Gal A deficiency. A subgroup of patients with significant residual of α-Gal A activity with primary cardiac involvement is occasionally referred to as “cardiac variant.” The cardiovascular complications are most frequently encountered, contributing substantially to morbidity, and are the leading cause of premature death in male and female patients with FD. The deposition of Lyso-Gb-3 and Gb-3 within the myocardium affects cardiac function with resultant progressive cardiovascular pathology. Gb-3 and Lyso-Gb-3 accumulation at the cellular level trigger a cascade of events leading to end-stage fibrosis. In the cardiac tissue, Lyso-Gb-3 deposition is associated with the increased release of inflammatory factors and transforming growth factors. Infiltration of lymphocytes and macrophages into endomyocardial tissue indicates that inflammation plays a significant role in cardiac damage. Moreover, accumulated data suggest that chronic inflammation leads to multisystemic FD pathology even under enzyme replacement therapy (ERT). NF-κB activation plays a subsequent role in the inflammatory response to cardiac dysfunction and advanced heart failure in the general population. TNFalpha/NF-κB signaling protects the myocardial evoking by ischemic preconditioning; however, this protective effect depends on the concentration of TNF-α. Thus, we hypothesize that TNF-α is a critical factor in determining the grade of cardio-pathology. Cardiac hypertrophy corresponds to the expansion of the coronary vasculature to maintain a sufficient supply of nutrients and oxygen. Coronary activation of angiogenesis and fibrosis plays a vital role in cardiac vascularization, hypertrophy, and tissue remodeling. We suggest that the interaction between the inflammatory pathways and cardiac vascularization is a bi-directional process controlled by secreted cytokines and growth factors. The co-coordination of these two processes has never been explored in FD. In a cohort of 40 patients with FD, biomarkers associated with inflammation and cardio hypertrophic remodeling were studied. FD patients were categorized into three groups based on LVmass/DSA, LVEF, and ECG abnormalities: FD with no cardio complication, FD with moderate cardio complication, and severe cardio complication. Serum levels of NF-kB, TNFalpha, Il-6, Il-2, MCP1, ING-gamma, VEGF, IGF-1, TGFβ, and FGF2 were quantified by enzyme-linked immunosorbent assays (ELISA). Among the biomarkers, MCP-1, INF-gamma, VEGF, TNF-alpha, and TGF-beta were elevated in FD patients. Some of these biomarkers also have the potential to correlate with cardio pathology in FD. Conclusion: The study provides information about the role of inflammatory pathways and biomarkers of cardio hypertrophic remodeling in FD patients. This study will also reveal the mechanisms that link intracellular accumulation of Lyso-GB-3 and Gb3 to the development of cardiomyopathy with myocardial thickening and resultant fibrosis.Keywords: biomarkers, Fabry disease, inflammation, growth factors
Procedia PDF Downloads 85200 Improvement of Greenhouse Gases Bio-Fixation by Microalgae Using a “Plasmon-Enhanced Photobioreactor”
Authors: Francisco Pereira, António Augusto Vicente, Filipe Vaz, Joel Borges, Pedro Geada
Abstract:
Light is a growth-limiting factor in microalgae cultivation, where factors like spectral components, intensity, and duration, often characterized by its wavelength, are well-reported to have a substantial impact on cell growth rates and, consequently, photosynthetic performance and mitigation of CO2, one of the most significant greenhouse gases (GHGs). Photobioreactors (PBRs) are commonly used to grow microalgae under controlled conditions, but they often fail to provide an even light distribution to the cultures. For this reason, there is a pressing need for innovations aiming at enhancing the efficient utilization of light. So, one potential approach to address this issue is by implementing plasmonic films, such as the localized surface plasmon resonance (LSPR). LSPR is an optical phenomenon connected to the interaction of light with metallic nanostructures. LSPR excitation is characterized by the oscillation of unbound conduction electrons of the nanoparticles coupled with the electromagnetic field from incident light. As a result of this excitation, highly energetic electrons and a strong electromagnetic field are generated. These effects lead to an amplification of light scattering, absorption, and extinction of specific wavelengths, contingent on the nature of the employed nanoparticle. Thus, microalgae might benefit from this biotechnology as it enables the selective filtration of inhibitory wavelengths and harnesses the electromagnetic fields produced, which could lead to enhancements in both biomass and metabolite productivity. This study aimed at implementing and evaluating a “plasmon-enhanced PBR”. The goal was to utilize LSPR thin films to enhance the growth and CO2 bio-fixation rate of Chlorella vulgaris. The internal/external walls of the PBRs were coated with a TiO2 matrix containing different nanoparticles (Au, Ag, and Au-Ag) in order to evaluate the impact of this approach on microalgae’s performance. Plasmonic films with distinct compositions resulted in different Chlorella vulgaris growth, ranging from 4.85 to 6.13 g.L-1. The highest cell concentrations were obtained with the metallic Ag films, demonstrating a 14% increase compared to the control condition. Moreover, it appeared to be no differences in growth between PBRs with inner and outer wall coatings. In terms of CO2 bio-fixation, distinct rates were obtained depending on the coating applied, ranging from 0.42 to 0.53 gCO2L-1d-1. Ag coating was demonstrated to be the most effective condition for carbon fixation by C. vulgaris. The impact of LSPR films on the biochemical characteristics of biomass (e.g., proteins, lipids, pigments) was analysed as well. Interestingly, Au coating yielded the most significant enhancements in protein content and total pigments, with increments of 15 % and 173 %, respectively, when compared to the PBR without any coating (control condition). Overall, the incorporation of plasmonic films in PBRs seems to have the potential to improve the performance and efficiency of microalgae cultivation, thereby representing an interesting approach to increase both biomass production and GHGs bio-mitigation.Keywords: CO₂ bio-fixation, plasmonic effect, photobioreactor, photosynthetic microalgae
Procedia PDF Downloads 92199 The New Contemporary Cross-Cultural Buddhist Woman and Her Attitude and Perception toward Motherhood
Authors: Szerena Vajkovszki
Abstract:
Among the relatively large volume of literature, the role and perception of women in Buddhism have been examined from various perspectives such as theology, history, anthropology, and feminism. When Buddhism spread to the West, women had a major role in its adaption and development. The meeting of different cultures and social structures had the fruit of a necessity to change. As Buddhism gained attention in the West, it produced a Buddhist feminist identity across national and ethnic boundaries. So globalization produced a contemporary cross-cultural Buddhist Women. The aim of the research is to find out the new role of such a Buddhist woman in aging societies. More precisely to understand what effect this contemporary Buddhist religion may have, direct or indirect, on fertility. Our worldwide aging society, especially in developed countries, including members of EU, raise sophisticated sociological and economic issues and challenges to be met. As declining fertility has outstanding influence underlying this trend, numerous studies have attempted to identify, describe, measure and interpret contributing factors of the fertility rate, out of which relatively few revealed the impact of religion. Among many religious guidelines, we can separate two major categories: direct and indirect. The aim of this research was to understand what are the most crucial identified (family values, gender related behaviors, religious sentiments) and not yet identified most influential contributing contemporary Buddhist religious factors. Above identifying these direct or indirect factors, it is also important to understand to what extent and how do they influence fertility, which requires a wider (inter-discipline) perspective. As proved by previous studies religion has also an influential role in health, mental state, well-being, working activity and many other components that are also related to fertility rates. All these components are inter-related, hence direct and indirect religious effects can only be well understood, if we figure out all necessary fields and their interaction. With the help of semi-structured opened interviews taking place in different countries, it was showed that indeed Buddhism has significant direct and indirect effect on fertility, hence the initial hypothesis was proved. However, the interviews showed an overall positive effect, the results could only serve for a general understanding about how Buddhism affects fertility. Evolution of Buddhism’s direct and indirect influence may vary in different nations and circumstances according to their specific environmental attributes. According to the local patterns, with special regard to women’s position and role in the society, outstandingly indirect influences could show diversifications. So it is advisory to investigate more for a deeper and clearer understanding of how Buddhism function in different socioeconomic circumstances. For example, in Hungary after the period of secularization more and more people tended to be attracted toward some transcendent values which could be an explanation for the rising number of Buddhists in the country. The present research could serve as a general starting point or a common basis for further specific national investigations how contemporary Buddhism affects fertility.Keywords: contemporary Buddhism, cross-cultural woman, fertility, gender roles, religion
Procedia PDF Downloads 157198 Solution Thermodynamics, Photophysical and Computational Studies of TACH2OX, a C-3 Symmetric 8-Hydroxyquinoline: Abiotic Siderophore Analogue of Enterobactin
Authors: B. K. Kanungo, Monika Thakur, Minati Baral
Abstract:
8-hydroxyquinoline, (8HQ), experiences a renaissance due to its utility as a building block in metallosupramolecular chemistry and its versatile use of its derivatives in various fields of analytical chemistry, materials science, and pharmaceutics. It forms stable complexes with a variety of metal ions. Assembly of more than one such unit to form a polydentate chelator enhances its coordinating ability and the related properties due to the chelate effect resulting in high stability constant. Keeping in view the above, a nonadentate chelator N-[3,5-bis(8-hydroxyquinoline-2-amido)cyclohexyl]-8-hydroxyquinoline-2-carboxamide, (TACH2OX), containing a central cis,cis-1,3,5-triaminocyclohexane appended to three 8-hydroxyquinoline at 2-position through amide linkage is developed, and its solution thermodynamics, photophysical and Density Functional Theory (DFT) studies were undertaken. The synthesis of TACH2OX was carried out by condensation of cis,cis-1,3,5-triaminocyclohexane, (TACH) with 8‐hydroxyquinoline‐2‐carboxylic acid. The brown colored solid has been fully characterized through melting point, infrared, nuclear magnetic resonance, electrospray ionization mass and electronic spectroscopy. In solution, TACH2OX forms protonated complexes below pH 3.4, which consecutively deprotonates to generate trinegative ion with the rise of pH. Nine protonation constants for the ligand were obtained that ranges between 2.26 to 7.28. The interaction of the chelator with two trivalent metal ion Fe3+ and Al3+ were studied in aqueous solution at 298 K. The metal-ligand formation constants (ML) obtained by potentiometric and spectrophotometric method agree with each other. The protonated and hydrolyzed species were also detected in the system. The in-silico studies of the ligand, as well as the complexes including their protonated and deprotonated species assessed by density functional theory technique, gave an accurate correlation with each observed properties such as the protonation constants, stability constants, infra-red, nmr, electronic absorption and emission spectral bands. The nature of electronic and emission spectral bands in terms of number and type were ascertained from time-dependent density functional theory study and the natural transition orbitals (NTO). The global reactivity indices parameters were used for comparison of the reactivity of the ligand and the complex molecules. The natural bonding orbital (NBO) analysis could successfully describe the structure and bonding of the metal-ligand complexes specifying the percentage of contribution in atomic orbitals in the creation of molecular orbitals. The obtained high value of metal-ligand formation constants indicates that the newly synthesized chelator is a very powerful synthetic chelator. The minimum energy molecular modeling structure of the ligand suggests that the ligand, TACH2OX, in a tripodal fashion firmly coordinates to the metal ion as hexa-coordinated chelate displaying distorted octahedral geometry by binding through three sets of N, O- donor atoms, present in each pendant arm of the central tris-cyclohexaneamine tripod.Keywords: complexes, DFT, formation constant, TACH2OX
Procedia PDF Downloads 154197 The Strategic Importance of Technology in the International Production: Beyond the Global Value Chains Approach
Authors: Marcelo Pereira Introini
Abstract:
The global value chains (GVC) approach contributes to a better understanding of the international production organization amid globalization’s second unbundling from the 1970s on. Mainly due to the tools that help to understand the importance of critical competences, technological capabilities, and functions performed by each player, GVC research flourished in recent years, rooted in discussing the possibilities of integration and repositioning along regional and global value chains. Regarding this context, part of the literature endorsed a more optimistic view that engaging in fragmented production networks could represent learning opportunities for developing countries’ firms, since the relationship with transnational corporations could allow them build skills and competences. Increasing recognition that GVCs are based on asymmetric power relations provided another sight about benefits, costs, and development possibilities though. Once leading companies tend to restrict the replication of their technologies and capabilities by their suppliers, alternative strategies beyond the functional specialization, seen as a way to integrate value chains, began to be broadly highlighted. This paper organizes a coherent narrative about the shortcomings of the GVC analytical framework, while recognizing its multidimensional contributions and recent developments. We adopt two different and complementary perspectives to explore the idea of integration in the international production. On one hand, we emphasize obstacles beyond production components, analyzing the role played by intangible assets and intellectual property regimes. On the other hand, we consider the importance of domestic production and innovation systems for technological development. In order to provide a deeper understanding of the restrictions on technological learning of developing countries’ firms, we firstly build from the notion of intellectual monopoly to analyze how flagship companies can prevent subordinated firms from improving their positions in fragmented production networks. Based on intellectual property protection regimes we discuss the increasing asymmetries between these players and the decreasing access of part of them to strategic intangible assets. Second, we debate the role of productive-technological ecosystems and of interactive and systemic technological development processes, as concepts of the Innovation Systems approach. Supporting the idea that not only endogenous advantages are important for international competition of developing countries’ firms, but also that the building of these advantages itself can be a source of technological learning, we focus on local efforts as a crucial element, which is not replaceable for technology imported from abroad. Finally, the paper contributes to the discussion about technological development as a two-dimensional dynamic. If GVC analysis tends to underline a company-based perspective, stressing the learning opportunities associated to GVC integration, historical involvement of national States brings up the debate about technology as a central aspect of interstate disputes. In this sense, technology is seen as part of military modernization before being also used in civil contexts, what presupposes its role for national security and productive autonomy strategies. From this outlook, it is important to consider it as an asset that, incorporated in sophisticated machinery, can be the target of state policies besides the protection provided by intellectual property regimes, such as in export controls and inward-investment restrictions.Keywords: global value chains, innovation systems, intellectual monopoly, technological development
Procedia PDF Downloads 85196 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis
Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns
Abstract:
Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics
Procedia PDF Downloads 78195 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity
Authors: Artur Cichowicz
Abstract:
The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source
Procedia PDF Downloads 288194 High-Resolution Facial Electromyography in Freely Behaving Humans
Authors: Lilah Inzelberg, David Rand, Stanislav Steinberg, Moshe David Pur, Yael Hanein
Abstract:
Human facial expressions carry important psychological and neurological information. Facial expressions involve the co-activation of diverse muscles. They depend strongly on personal affective interpretation and on social context and vary between spontaneous and voluntary activations. Smiling, as a special case, is among the most complex facial emotional expressions, involving no fewer than 7 different unilateral muscles. Despite their ubiquitous nature, smiles remain an elusive and debated topic. Smiles are associated with happiness and greeting on one hand and anger or disgust-masking on the other. Accordingly, while high-resolution recording of muscle activation patterns, in a non-interfering setting, offers exciting opportunities, it remains an unmet challenge, as contemporary surface facial electromyography (EMG) methodologies are cumbersome, restricted to the laboratory settings, and are limited in time and resolution. Here we present a wearable and non-invasive method for objective mapping of facial muscle activation and demonstrate its application in a natural setting. The technology is based on a recently developed dry and soft electrode array, specially designed for surface facial EMG technique. Eighteen healthy volunteers (31.58 ± 3.41 years, 13 females), participated in the study. Surface EMG arrays were adhered to participant left and right cheeks. Participants were instructed to imitate three facial expressions: closing the eyes, wrinkling the nose and smiling voluntary and to watch a funny video while their EMG signal is recorded. We focused on muscles associated with 'enjoyment', 'social' and 'masked' smiles; three categories with distinct social meanings. We developed a customized independent component analysis algorithm to construct the desired facial musculature mapping. First, identification of the Orbicularis oculi and the Levator labii superioris muscles was demonstrated from voluntary expressions. Second, recordings of voluntary and spontaneous smiles were used to locate the Zygomaticus major muscle activated in Duchenne and non-Duchenne smiles. Finally, recording with a wireless device in an unmodified natural work setting revealed expressions of neutral, positive and negative emotions in face-to-face interaction. The algorithm outlined here identifies the activation sources in a subject-specific manner, insensitive to electrode placement and anatomical diversity. Our high-resolution and cross-talk free mapping performances, along with excellent user convenience, open new opportunities for affective processing and objective evaluation of facial expressivity, objective psychological and neurological assessment as well as gaming, virtual reality, bio-feedback and brain-machine interface applications.Keywords: affective expressions, affective processing, facial EMG, high-resolution electromyography, independent component analysis, wireless electrodes
Procedia PDF Downloads 250193 Localized Recharge Modeling of a Coastal Aquifer from a Dam Reservoir (Korba, Tunisia)
Authors: Nejmeddine Ouhichi, Fethi Lachaal, Radhouane Hamdi, Olivier Grunberger
Abstract:
Located in Cap Bon peninsula (Tunisia), the Lebna dam was built in 1987 to balance local water salt intrusion taking place in the coastal aquifer of Korba. The first intention was to reduce coastal groundwater over-pumping by supplying surface water to a large irrigation system. The unpredicted beneficial effect was recorded with the occurrence of a direct localized recharge to the coastal aquifer by leakage through the geological material of the southern bank of the lake. The hydrological balance of the reservoir dam gave an estimation of the annual leakage volume, but dynamic processes and sound quantification of recharge inputs are still required to understand the localized effect of the recharge in terms of piezometry and quality. Present work focused on simulating the recharge process to confirm the hypothesis, and established a sound quantification of the water supply to the coastal aquifer and extend it to multi-annual effects. A spatial frame of 30km² was used for modeling. Intensive outcrops and geophysical surveys based on 68 electrical resistivity soundings were used to characterize the aquifer 3D geometry and the limit of the Plio-quaternary geological material concerned by the underground flow paths. Permeabilities were determined using 17 pumping tests on wells and piezometers. Six seasonal piezometric surveys on 71 wells around southern reservoir dam banks were performed during the 2019-2021 period. Eight monitoring boreholes of high frequency (15min) piezometric data were used to examine dynamical aspects. Model boundary conditions were specified using the geophysics interpretations coupled with the piezometric maps. The dam-groundwater flow model was performed using Visual MODFLOW software. Firstly, permanent state calibration based on the first piezometric map of February 2019 was established to estimate the permanent flow related to the different reservoir levels. Secondly, piezometric data for the 2019-2021 period were used for transient state calibration and to confirm the robustness of the model. Preliminary results confirmed the temporal link between the reservoir level and the localized recharge flow with a strong threshold effect for levels below 16 m.a.s.l. The good agreement of computed flow through recharge cells on the southern banks and hydrological budget of the reservoir open the path to future simulation scenarios of the dilution plume imposed by the localized recharge. The dam reservoir-groundwater flow-model simulation results approve a potential for storage of up to 17mm/year in existing wells, under gravity-feed conditions during level increases on the reservoir into the three years of operation. The Lebna dam groundwater flow model characterized a spatiotemporal relation between groundwater and surface water.Keywords: leakage, MODFLOW, saltwater intrusion, surface water-groundwater interaction
Procedia PDF Downloads 140192 Legal Pluralism and Ideology: The Recognition of the Indigenous Justice Administration in Bolivia through the "Indigenismo" and "Decolonisation" Discourses
Authors: Adriana Pereira Arteaga
Abstract:
In many Latin American countries the transition towards legal pluralism - has developed as part of what is called Latin-American-Constitutionalism over the last thirty years. The aim of this paper is to discuss how legal pluralism in its current form in Bolivia may produce exclusion and violence. Legal sources and discourse analysis - as an approach to examine written language on discourse documentation- will be used to develop this paper. With the constitution of 2009, Bolivia was symbolically "re-founded" into a multi-nation state. This shift goes hand in hand with the "indigenista" and "decolonisation" ideologies developing since the early 20th century. Discourses based on these ideologies reflect the rejection of liberal and western premises on which the Bolivian republic was originally built after independence. According to the "indigenista" movements, the liberal nation-state generates institutions corresponding to a homogenous society. These liberal institutions not only ignore the Bolivian multi-nation reality, but also maintain the social structures originating form the colony times, based on prejudices against the indigenous. The described statements were elaborated through the image: the indigenous people humiliated by a cruel western system as highlighted by the constitution's preamble. This narrative had a considerable impact on the sensitivity of people and received great social support. Therefore the proposal for changing structures of the nation-state, is charged with an emancipatory message of restoring even the pre-Columbian order. An order at times romantically described as the perfect order. Legally this connotes a rejection of the positivistic national legal system based on individual rights and the promotion of constitutional recognition of indigenous justice administration. The pluralistic Constitution is supposed to promote tolerance and a peaceful coexistence among nations, so that the unity and integrity of the country could be maintained. In its current form, legal pluralism in Bolivia is justified on pre-existing rights contained for example in the International - Labour - Organization - Convention 169, but it is more developed on the described discursive constructions. Over time these discursive constructions created inconsistencies in terms of putting indigenous justice administration into practice: First, because legal pluralism has been more developed on level of political discourse, so a real interaction between the national and the indigenous jurisdiction cannot be observed. There are no clear coordination and cooperation mechanisms. Second, since the recently reformed constitution is based on deep sensitive experiences, little is said about the general legal principles on which a pluralistic administration of justice in Bolivia should be based. Third, basic rights, liberties, and constitutional guarantees are also affected by the antagonized image of the national justice administration. As a result, fundamental rights could be violated on a large scale because many indigenous justice administration practices run counter to these constitutional rules. These problems are not merely Bolivian but may also be encountered in other regional countries with similar backgrounds, like Ecuador.Keywords: discourse, indigenous justice, legal pluralism, multi-nation
Procedia PDF Downloads 451191 Development of Biosensor Chip for Detection of Specific Antibodies to HSV-1
Authors: Zatovska T. V., Nesterova N. V., Baranova G. V., Zagorodnya S. D.
Abstract:
In recent years, biosensor technologies based on the phenomenon of surface plasmon resonance (SPR) are becoming increasingly used in biology and medicine. Their application facilitates exploration in real time progress of binding of biomolecules and identification of agents that specifically interact with biologically active substances immobilized on the biosensor surface (biochips). Special attention is paid to the use of Biosensor analysis in determining the antibody-antigen interaction in the diagnostics of diseases caused by viruses and bacteria. According to WHO, the diseases that are caused by the herpes simplex virus (HSV), take second place (15.8%) after influenza as a cause of death from viral infections. Current diagnostics of HSV infection include PCR and ELISA assays. The latter allows determination the degree of immune response to viral infection and respective stages of its progress. In this regard, the searches for new and available diagnostic methods are very important. This work was aimed to develop Biosensor chip for detection of specific antibodies to HSV-1 in the human blood serum. The proteins of HSV1 (strain US) were used as antigens. The viral particles were accumulated in cell culture MDBK and purified by differential centrifugation in cesium chloride density gradient. Analysis of the HSV1 proteins was performed by polyacrylamide gel electrophoresis and ELISA. The protein concentration was measured using De Novix DS-11 spectrophotometer. The device for detection of antigen-antibody interactions was an optoelectronic two-channel spectrometer ‘Plasmon-6’, using the SPR phenomenon in the Krechman optical configuration. It was developed at the Lashkarev Institute of Semiconductor Physics of NASU. The used carrier was a glass plate covered with 45 nm gold film. Screening of human blood serums was performed using the test system ‘HSV-1 IgG ELISA’ (GenWay, USA). Development of Biosensor chip included optimization of conditions of viral antigen sorption and analysis steps. For immobilization of viral proteins 0.2% solution of Dextran 17, 200 (Sigma, USA) was used. Sorption of antigen took place at 4-8°C within 18-24 hours. After washing of chip, three times with citrate buffer (pH 5,0) 1% solution of BSA was applied to block the sites not occupied by viral antigen. It was found direct dependence between the amount of immobilized HSV1 antigen and SPR response. Using obtained biochips, panels of 25 positive and 10 negative for the content of antibodies to HSV-1 human sera were analyzed. The average value of SPR response was 185 a.s. for negative sera and from 312 to. 1264 a.s. for positive sera. It was shown that SPR data were agreed with ELISA results in 96% of samples proving the great potential of SPR in such researches. It was investigated the possibility of biochip regeneration and it was shown that application of 10 mM NaOH solution leads to rupture of intermolecular bonds. This allows reuse the chip several times. Thus, in this study biosensor chip for detection of specific antibodies to HSV1 was successfully developed expanding a range of diagnostic methods for this pathogen.Keywords: biochip, herpes virus, SPR
Procedia PDF Downloads 421190 Hydrogeological Appraisal of Karacahisar Coal Field (Western Turkey): Impacts of Mining on Groundwater Resources Utilized for Water Supply
Authors: Sukran Acikel, Mehmet Ekmekci, Otgonbayar Namkhai
Abstract:
Lignite coal fields in western Turkey generally occurs in tensional Neogene basins bordered by major faults. Karacahisar coal field in Mugla province of western Turkey is a large Neogene basin filled with alternation of silisic and calcerous layers. The basement of the basin is composed of mainly karstified carbonate rocks of Mesozoic and schists of Paleozoic age. The basement rocks are exposed at highlands surrounding the basin. The basin fill deposits forms shallow, low yield and local aquifers whereas karstic carbonate rock masses forms the major aquifer in the region. The karstic aquifer discharges through a spring zone issuing at intersection of two major faults. Municipal water demand in Bodrum city, a touristic attraction area is almost totally supplied by boreholes tapping the karstic aquifer. A well field has been constructed on the eastern edge of the coal basin, which forms a ridge separating two Neogene basins. A major concern was raised about the plausible impact of mining activities on groundwater system in general and on water supply well field in particular. The hydrogeological studies carried out in the area revealed that the coal seam is located below the groundwater level. Mining operations will be affected by groundwater inflow to the pits, which will require dewatering measures. Dewatering activities in mine sites have two-sided effects: a) lowers the groundwater level at and around the pit for a safe and effective mining operation, b) continuous dewatering causes expansion of cone of depression to reach a spring, stream and/or well being utilized by local people, capturing their water. Plausible effect of mining operations on the flow of the spring zone was another issue of concern. Therefore, a detailed representative hydrogeological conceptual model of the site was developed on the basis of available data and field work. According to the hydrogeological conceptual model, dewatering of Neogene layers will not hydraulically affect the water supply wells, however, the ultimate perimeter of the open pit will expand to intersect the well field. According to the conceptual model, the coal seam is separated from the bottom by a thick impervious clay layer sitting on the carbonate basement. Therefore, the hydrostratigraphy does not allow a hydraulic interaction between the mine pit and the karstic carbonate rock aquifer. However, the structural setting in the basin suggests that deep faults intersecting the basement and the Neogene sequence will most probably carry the deep groundwater up to a level above the bottom of the pit. This will require taking necessary measure to lower the piezometric level of the carbonate rock aquifer along the faults. Dewatering the carbonate rock aquifer will reduce the flow to the spring zone. All findings were put together to recommend a strategy for safe and effective mining operation.Keywords: conceptual model, dewatering, groundwater, mining operation
Procedia PDF Downloads 403189 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin
Authors: Parisa Shirzadeh
Abstract:
Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin
Procedia PDF Downloads 124188 Empirical Study of Innovative Development of Shenzhen Creative Industries Based on Triple Helix Theory
Authors: Yi Wang, Greg Hearn, Terry Flew
Abstract:
In order to understand how cultural innovation occurs, this paper explores the interaction in Shenzhen of China between universities, creative industries, and government in creative economic using the Triple Helix framework. During the past two decades, Triple Helix has been recognized as a new theory of innovation to inform and guide policy-making in national and regional development. Universities and governments around the world, especially in developing countries, have taken actions to strengthen connections with creative industries to develop regional economies. To date research based on the Triple Helix model has focused primarily on Science and Technology collaborations, largely ignoring other fields. Hence, there is an opportunity for work to be done in seeking to better understand how the Triple Helix framework might apply in the field of creative industries and what knowledge might be gleaned from such an undertaking. Since the late 1990s, the concept of ‘creative industries’ has been introduced as policy and academic discourse. The development of creative industries policy by city agencies has improved city wealth creation and economic capital. It claims to generate a ‘new economy’ of enterprise dynamics and activities for urban renewal through the arts and digital media, via knowledge transfer in knowledge-based economies. Creative industries also involve commercial inputs to the creative economy, to dynamically reshape the city into an innovative culture. In particular, this paper will concentrate on creative spaces (incubators, digital tech parks, maker spaces, art hubs) where academic, industry and government interact. China has sought to enhance the brand of their manufacturing industry in cultural policy. It aims to transfer the image of ‘Made in China’ to ‘Created in China’ as well as to give Chinese brands more international competitiveness in a global economy. Shenzhen is a notable example in China as an international knowledge-based city following this path. In 2009, the Shenzhen Municipal Government proposed the city slogan ‘Build a Leading Cultural City”’ to show the ambition of government’s strong will to develop Shenzhen’s cultural capacity and creativity. The vision of Shenzhen is to become a cultural innovation center, a regional cultural center and an international cultural city. However, there has been a lack of attention to the triple helix interactions in the creative industries in China. In particular, there is limited knowledge about how interactions in creative spaces co-location within triple helix networks significantly influence city based innovation. That is, the roles of participating institutions need to be better understood. Thus, this paper discusses the interplay between university, creative industries and government in Shenzhen. Secondary analysis and documentary analysis will be used as methods in an effort to practically ground and illustrate this theoretical framework. Furthermore, this paper explores how are creative spaces being used to implement Triple Helix in creative industries. In particular, the new combination of resources generated from the synthesized consolidation and interactions through the institutions. This study will thus provide an innovative lens to understand the components, relationships and functions that exist within creative spaces by applying Triple Helix framework to the creative industries.Keywords: cultural policy, creative industries, creative city, triple Helix
Procedia PDF Downloads 212187 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students
Authors: Lily Ranjbar, Haori Yang
Abstract:
Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education
Procedia PDF Downloads 94186 Facilitating Primary Care Practitioners to Improve Outcomes for People With Oropharyngeal Dysphagia Living in the Community: An Ongoing Realist Review
Authors: Caroline Smith, Professor Debi Bhattacharya, Sion Scott
Abstract:
Introduction: Oropharyngeal Dysphagia (OD) effects around 15% of older people, however it is often unrecognised and under diagnosed until they are hospitalised. There is a need for primary care healthcare practitioners (HCPs) to assume a proactive role in identifying and managing OD to prevent adverse outcomes such as aspiration pneumonia. Understanding the determinants of primary care HCPs undertaking this new behaviour provides the intervention targets for addressing. This realist review, underpinned by the Theoretical Domains Framework (TDF), aims to synthesise relevant literature and develop programme theories to understand what interventions work, how they work and under what circumstances to facilitate HCPs to prevent harm from OD. Combining realist methodology with behavioural science will permit conceptualisation of intervention components as theoretical behavioural constructs, thus informing the design of a future behaviour change intervention. Furthermore, through the TDF’s linkage to a taxonomy of behaviour change techniques, we will identify corresponding behaviour change techniques to include in this intervention. Methods & analysis: We are following the five steps for undertaking a realist review: 1) clarify the scope 2) Literature search 3) appraise and extract data 4) evidence synthesis 5) evaluation. We have searched Medline, Google scholar, PubMed, EMBASE, CINAHL, AMED, Scopus and PsycINFO databases. We are obtaining additional evidence through grey literature, snowball sampling, lateral searching and consulting the stakeholder group. Literature is being screened, evaluated and synthesised in Excel and Nvivo. We will appraise evidence in relation to its relevance and rigour. Data will be extracted and synthesised according to its relation to Initial programme theories (IPTs). IPTs were constructed after the preliminary literature search, informed by the TDF and with input from a stakeholder group of patient and public involvement advisors, general practitioners, speech and language therapists, geriatricians and pharmacists. We will follow the Realist and Meta-narrative Evidence Syntheses: Evolving Standards (RAMESES) quality and publication standards to report study results. Results: In this ongoing review our search has identified 1417 manuscripts with approximately 20% progressing to full text screening. We inductively generated 10 IPTs that hypothesise practitioners require: the knowledge to spot the signs and symptoms of OD; the skills to provide initial advice and support; and access to resources in their working environment to support them conducting these new behaviours. We mapped the 10 IPTs to 8 TDF domains and then generated a further 12 IPTs deductively using domain definitions to fulfil the remaining 6 TDF domains. Deductively generated IPTs broadened our thinking to consider domains such as ‘Emotion,’ ‘Optimism’ and ‘Social Influence’, e.g. If practitioners perceive that patients, carers and relatives expect initial advice and support, then they will be more likely to provide this, because they will feel obligated to do so. After prioritisation with stakeholders using a modified nominal group technique approach, a maximum of 10 IPTs will progress to test against the literature.Keywords: behaviour change, deglutition disorders, primary healthcare, realist review
Procedia PDF Downloads 88185 Non-Invasive Characterization of the Mechanical Properties of Arterial Walls
Authors: Bruno RamaëL, GwenaëL Page, Catherine Knopf-Lenoir, Olivier Baledent, Anne-Virginie Salsac
Abstract:
No routine technique currently exists for clinicians to measure the mechanical properties of vascular walls non-invasively. Most of the data available in the literature come from traction or dilatation tests conducted ex vivo on native blood vessels. The objective of the study is to develop a non-invasive characterization technique based on Magnetic Resonance Imaging (MRI) measurements of the deformation of vascular walls under pulsating blood flow conditions. The goal is to determine the mechanical properties of the vessels by inverse analysis, coupling imaging measurements and numerical simulations of the fluid-structure interactions. The hyperelastic properties are identified using Solidworks and Ansys workbench (ANSYS Inc.) solving an optimization technique. The vessel of interest targeted in the study is the common carotid artery. In vivo MRI measurements of the vessel anatomy and inlet velocity profiles was acquired along the facial vascular network on a cohort of 30 healthy volunteers: - The time-evolution of the blood vessel contours and, thus, of the cross-section surface area was measured by 3D imaging angiography sequences of phase-contrast MRI. - The blood flow velocity was measured using a 2D CINE MRI phase contrast (PC-MRI) method. Reference arterial pressure waveforms were simultaneously measured in the brachial artery using a sphygmomanometer. The three-dimensional (3D) geometry of the arterial network was reconstructed by first creating an STL file from the raw MRI data using the open source imaging software ITK-SNAP. The resulting geometry was then transformed with Solidworks into volumes that are compatible with Ansys softwares. Tetrahedral meshes of the wall and fluid domains were built using the ANSYS Meshing software, with a near-wall mesh refinement method in the case of the fluid domain to improve the accuracy of the fluid flow calculations. Ansys Structural was used for the numerical simulation of the vessel deformation and Ansys CFX for the simulation of the blood flow. The fluid structure interaction simulations showed that the systolic and diastolic blood pressures of the common carotid artery could be taken as reference pressures to identify the mechanical properties of the different arteries of the network. The coefficients of the hyperelastic law were identified using Ansys Design model for the common carotid. Under large deformations, a stiffness of 800 kPa is measured, which is of the same order of magnitude as the Young modulus of collagen fibers. Areas of maximum deformations were highlighted near bifurcations. This study is a first step towards patient-specific characterization of the mechanical properties of the facial vessels. The method is currently applied on patients suffering from facial vascular malformations and on patients scheduled for facial reconstruction. Information on the blood flow velocity as well as on the vessel anatomy and deformability will be key to improve surgical planning in the case of such vascular pathologies.Keywords: identification, mechanical properties, arterial walls, MRI measurements, numerical simulations
Procedia PDF Downloads 322184 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling
Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky
Abstract:
Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.Keywords: nano-particles, formation damage, permeability, fines migration
Procedia PDF Downloads 628183 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 281