Search results for: green infrastructure planning
272 The Potential of On-Demand Shuttle Services to Reduce Private Car Use
Authors: B. Mack, K. Tampe-Mai, E. Diesch
Abstract:
Findings of an ongoing discrete choice study of future transport mode choice will be presented. Many urban centers face the triple challenge of having to cope with ever increasing traffic congestion, environmental pollution, and greenhouse gas emission brought about by private car use. In principle, private car use may be diminished by extending public transport systems like bus lines, trams, tubes, and trains. However, there are limits to increasing the (perceived) spatial and temporal flexibility and reducing peak-time crowding of classical public transport systems. An emerging new type of system, publicly or privately operated on-demand shuttle bus services, seem suitable to ameliorate the situation. A fleet of on-demand shuttle busses operates without fixed stops and schedules. It may be deployed efficiently in that each bus picks up passengers whose itineraries may be combined into an optimized route. Crowding may be minimized by limiting the number of seats and the inter-seat distance for each bus. The study is conducted as a discrete choice experiment. The choice between private car, public transport, and shuttle service is registered as a function of several push and pull factors (financial costs, travel time, walking distances, mobility tax/congestion charge, and waiting time/parking space search time). After the completion of the discrete choice items, the study participant is asked to rate the three modes of transport with regard to the pull factors of comfort, safety, privacy, and opportunity to engage in activities like reading or surfing the internet. These ratings are entered as additional predictors into the discrete choice experiment regression model. The study is conducted in the region of Stuttgart in southern Germany. N=1000 participants are being recruited. Participants are between 18 and 69 years of age, hold a driver’s license, and live in the city or the surrounding region of Stuttgart. In the discrete choice experiment, participants are asked to assume they lived within the Stuttgart region, but outside of the city, and were planning the journey from their apartment to their place of work, training, or education during the peak traffic time in the morning. Then, for each item of the discrete choice experiment, they are asked to choose between the transport modes of private car, public transport, and on-demand shuttle in the light of particular values of the push and pull factors studied. The study will provide valuable information on the potential of switching from private car use to the use of on-demand shuttles, but also on the less desirable potential of switching from public transport to on-demand shuttle services. Furthermore, information will be provided on the modulation of these switching potentials by pull and push factors.Keywords: determinants of travel mode choice, on-demand shuttle services, private car use, public transport
Procedia PDF Downloads 183271 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview
Authors: Yasmeen Cheema, Parvinder Singh
Abstract:
The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack
Procedia PDF Downloads 230270 The Impact of the Virtual Learning Environment on Teacher's Pedagogy and Student's Learning in Primary School Setting
Authors: Noor Ashikin Omar
Abstract:
The rapid growth and advancement in information and communication technology (ICT) at a global scene has greatly influenced and revolutionised interaction amongst society. The use of ICT has become second nature in managing everyday lives, particularly in the education environment. Traditional learning methods of using blackboards and chalks have been largely improved by the use of ICT devices such as interactive whiteboards and computers in school. This paper aims to explore the impacts of virtual learning environments (VLE) on teacher’s pedagogy and student’s learning in primary school settings. The research was conducted in two phases. Phase one of this study comprised a short interview with the school’s senior assistants to examine issues and challenges faced during planning and implementation of FrogVLE in their respective schools. Phase two involved a survey of a number of questionnaires directed to three major stakeholders; the teachers, students and parents. The survey intended to explore teacher’s and student’s perspective and attitude towards the use of VLE as a teaching and learning medium and as a learning experience as a whole. In addition, the survey from parents provided insights on how they feel towards the use of VLE for their child’s learning. Collectively, the two phases enable improved understanding and provided observations on factors that had affected the implementation of the VLE into primary schools. This study offers the voices of the students which were frequently omitted when addressing innovations as well as teachers who may not always be heard. It is also significant in addressing the importance of teacher’s pedagogy on students’ learning and its effects to enable more effective ICT integration with a student-centred approach. Finally, parental perceptions in the implementation of VLE in supporting their children’s learning have been implicated as having a bearing on educational achievement. The results indicate that the all three stakeholders were positive and highly supportive towards the use of VLE in schools. They were able to understand the benefits of moving towards the modern method of teaching using ICT and accept the change in the education system. However, factors such as condition of ICT facilities at schools and homes as well as inadequate professional development for the teachers in both ICT skills and management skills hindered exploitation of the VLE system in order to fully utilise its benefits. Social influences within different communities and cultures and costs of using the technology also has a significant impact. The findings of this study are important to the Malaysian Ministry of Education because it informs policy makers on the impact of the Virtual Learning Environment (VLE) on teacher’s pedagogy and learning of Malaysian primary school children. The information provided to policy makers allows them to make a sound judgement and enables an informed decision making.Keywords: attitudes towards virtual learning environment (VLE), parental perception, student's learning, teacher's pedagogy
Procedia PDF Downloads 206269 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Atefeh Salehipoor
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension
Procedia PDF Downloads 84268 Attachment Theory and Quality of Life: Grief Education and Training
Authors: Jane E. Hill
Abstract:
Quality of life is an important component for many. With that in mind, everyone will experience some type of loss within his or her lifetime. A person can experience loss due to break up, separation, divorce, estrangement, or death. An individual may experience loss of a job, loss of capacity, or loss caused by human or natural-caused disasters. An individual’s response to such a loss is unique to them, and not everyone will seek services to assist them with their grief due to loss. Counseling can promote positive outcomes for clients that are grieving by addressing the client’s personal loss and helping the client process their grief. However, a lack of understanding on the part of counselors of how people grieve may result in negative client outcomes such as poor health, psychological distress, or an increased risk of depression. Education and training in grief counseling can improve counselors’ problem recognition and skills in treatment planning. The purpose of this study was to examine whether the Council for Accreditation of Counseling and Related Educational Programs (CACREP) master’s degree counseling students view themselves as having been adequately trained in grief theories and skills. Many people deal with grief issues that prevent them from having joy or purpose in their lives and that leaves them unable to engage in positive opportunities or relationships. This study examined CACREP-accredited master’s counseling students’ self-reported competency, training, and education in providing grief counseling. The implications for positive social change arising from the research may be to incorporate and promote education and training in grief theories and skills in a majority of counseling programs and to provide motivation to incorporate professional standards for grief training and practice in the mental health counseling field. The theoretical foundation used was modern grief theory based on John Bowlby’s work on Attachment Theory. The overall research question was how competent do master’s-level counselors view themselves regarding the education or training they received in grief theories or counseling skills in their CACREP-accredited studies. The author used a non-experimental, one shot survey comparative quantitative research design. Cicchetti’s Grief Counseling Competency Scale (GCCS) was administered to CACREP master’s-level counseling students enrolled in their practicum or internship experience, which resulted in 153 participants. Using a MANCOVA, there was significance found for relationships between coursework taken and (a) perceived assessment skills (p = .029), (b) perceived treatment skills (p = .025), and (c) perceived conceptual skills and knowledge (p = .003). Results of this study provided insight for CACREP master’s-level counseling programs to explore and discuss curriculum coursework inclusion of education and training in grief theories and skills.Keywords: counselor education and training, grief education and training, grief and loss, quality of life
Procedia PDF Downloads 191267 A Digital Clone of an Irrigation Network Based on Hardware/Software Simulation
Authors: Pierre-Andre Mudry, Jean Decaix, Jeremy Schmid, Cesar Papilloud, Cecile Munch-Alligne
Abstract:
In most of the Swiss Alpine regions, the availability of water resources is usually adequate even in times of drought, as evidenced by the 2003 and 2018 summers. Indeed, important natural stocks are for the moment available in the form of snow and ice, but the situation is likely to change in the future due to global and regional climate change. In addition, alpine mountain regions are areas where climate change will be felt very rapidly and with high intensity. For instance, the ice regime of these regions has already been affected in recent years with a modification of the monthly availability and extreme events of precipitations. The current research, focusing on the municipality of Val de Bagnes, located in the canton of Valais, Switzerland, is part of a project led by the Altis company and achieved in collaboration with WSL, BlueArk Entremont, and HES-SO Valais-Wallis. In this region, water occupies a key position notably for winter and summer tourism. Thus, multiple actors want to apprehend the future needs and availabilities of water, on both the 2050 and 2100 horizons, in order to plan the modifications to the water supply and distribution networks. For those changes to be salient and efficient, a good knowledge of the current water distribution networks is of most importance. In the current case, the water drinking network is well documented, but this is not the case for the irrigation one. Since the water consumption for irrigation is ten times higher than for drinking water, data acquisition on the irrigation network is a major point to determine future scenarios. This paper first presents the instrumentation and simulation of the irrigation network using custom-designed IoT devices, which are coupled with a digital clone simulated to reduce the number of measuring locations. The developed IoT ad-hoc devices are energy-autonomous and can measure flows and pressures using industrial sensors such as calorimetric water flow meters. Measurements are periodically transmitted using the LoRaWAN protocol over a dedicated infrastructure deployed in the municipality. The gathered values can then be visualized in real-time on a dashboard, which also provides historical data for analysis. In a second phase, a digital clone of the irrigation network was modeled using EPANET, a software for water distribution systems that performs extended-period simulations of flows and pressures in pressurized networks composed of reservoirs, pipes, junctions, and sinks. As a preliminary work, only a part of the irrigation network was modelled and validated by comparisons with the measurements. The simulations are carried out by imposing the consumption of water at several locations. The validation is performed by comparing the simulated pressures are different nodes with the measured ones. An accuracy of +/- 15% is observed on most of the nodes, which is acceptable for the operator of the network and demonstrates the validity of the approach. Future steps will focus on the deployment of the measurement devices on the whole network and the complete modelling of the network. Then, scenarios of future consumption will be investigated. Acknowledgment— The authors would like to thank the Swiss Federal Office for Environment (FOEN), the Swiss Federal Office for Agriculture (OFAG) for their financial supports, and ALTIS for the technical support, this project being part of the Swiss Pilot program 'Adaptation aux changements climatiques'.Keywords: hydraulic digital clone, IoT water monitoring, LoRaWAN water measurements, EPANET, irrigation network
Procedia PDF Downloads 145266 Boussinesq Model for Dam-Break Flow Analysis
Authors: Najibullah M, Soumendra Nath Kuiry
Abstract:
Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model
Procedia PDF Downloads 232265 Adapting Cyber Physical Production Systems to Small and Mid-Size Manufacturing Companies
Authors: Yohannes Haile, Dipo Onipede, Jr., Omar Ashour
Abstract:
The main thrust of our research is to determine Industry 4.0 readiness of small and mid-size manufacturing companies in our region and assist them to implement Cyber Physical Production System (CPPS) capabilities. Adopting CPPS capabilities will help organizations realize improved quality, order delivery, throughput, new value creation, and reduced idle time of machines and work centers of their manufacturing operations. The key metrics for the assessment include the level of intelligence, internal and external connections, responsiveness to internal and external environmental changes, capabilities for customization of products with reference to cost, level of additive manufacturing, automation, and robotics integration, and capabilities to manufacture hybrid products in the near term, where near term is defined as 0 to 18 months. In our initial evaluation of several manufacturing firms which are profitable and successful in what they do, we found low level of Physical-Digital-Physical (PDP) loop in their manufacturing operations, whereas 100% of the firms included in this research have specialized manufacturing core competencies that have differentiated them from their competitors. The level of automation and robotics integration is low to medium range, where low is defined as less than 30%, and medium is defined as 30 to 70% of manufacturing operation to include automation and robotics. However, there is a significant drive to include these capabilities at the present time. As it pertains to intelligence and connection of manufacturing systems, it is observed to be low with significant variance in tying manufacturing operations management to Enterprise Resource Planning (ERP). Furthermore, it is observed that the integration of additive manufacturing in general, 3D printing, in particular, to be low, but with significant upside of integrating it in their manufacturing operations in the near future. To hasten the readiness of the local and regional manufacturing companies to Industry 4.0 and transitions towards CPPS capabilities, our working group (ADMAR Working Group) in partnership with our university have been engaged with the local and regional manufacturing companies. The goal is to increase awareness, share know-how and capabilities, initiate joint projects, and investigate the possibility of establishing the Center for Cyber Physical Production Systems Innovation (C2P2SI). The center is intended to support the local and regional university-industry research of implementing intelligent factories, enhance new value creation through disruptive innovations, the development of hybrid and data enhanced products, and the creation of digital manufacturing enterprises. All these efforts will enhance local and regional economic development and educate students that have well developed knowledge and applications of cyber physical manufacturing systems and Industry 4.0.Keywords: automation, cyber-physical production system, digital manufacturing enterprises, disruptive innovation, new value creation, physical-digital-physical loop
Procedia PDF Downloads 140264 Biocellulose as Platform for the Development of Multifunctional Materials
Authors: Junkal Gutierrez, Hernane S. Barud, Sidney J. L. Ribeiro, Agnieszka Tercjak
Abstract:
Nowadays the interest on green nanocomposites and on the development of more environmental friendly products has been increased. Bacterial cellulose has been recently investigated as an attractive environmentally friendly material for the preparation of low-cost nanocomposites. The formation of cellulose by laboratory bacterial cultures is an interesting and attractive biomimetic access to obtain pure cellulose with excellent properties. Additionally, properties as molar mass, molar mass distribution, and the supramolecular structure could be control using different bacterial strain, culture mediums and conditions, including the incorporation of different additives. This kind of cellulose is a natural nanomaterial, and therefore, it has a high surface-to-volume ratio which is highly advantageous in composites production. Such property combined with good biocompatibility, high tensile strength, and high crystallinity makes bacterial cellulose a potential material for applications in different fields. The aim of this investigation work was the fabrication of novel hybrid inorganic-organic composites based on bacterial cellulose, cultivated in our laboratory, as a template. This kind of biohybrid nanocomposites gathers together excellent properties of bacterial cellulose with the ones displayed by typical inorganic nanoparticles like optical, magnetic and electrical properties, luminescence, ionic conductivity and selectivity, as well as chemical or biochemical activity. In addition, the functionalization of cellulose with inorganic materials opens new pathways for the fabrication of novel multifunctional hybrid materials with promising properties for a wide range of applications namely electronic paper, flexible displays, solar cells, sensors, among others. In this work, different pathways for fabrication of multifunctional biohybrid nanopapers with tunable properties based on BC modified with amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (EPE) block copolymer, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and functionalized iron oxide nanoparticles will be presented. In situ (biosynthesized) and ex situ (at post-production level) approaches were successfully used to modify BC membranes. Bacterial cellulose based biocomposites modified with different EPE block copolymer contents were developed by in situ technique. Thus, BC growth conditions were manipulated to fabricate EPE/BC nanocomposite during the biosynthesis. Additionally, hybrid inorganic/organic nanocomposites based on BC membranes and inorganic nanoparticles were designed via ex-situ method, by immersion of never-dried BC membranes into different nanoparticle solutions. On the one hand, sol-gel synthesized nanoparticles (titanium, vanadium and a mixture of both oxides) and on the other hand superparamagnetic iron oxide nanoparticles (SPION), Fe2O3-PEO solution. The morphology of designed novel bionanocomposites hybrid materials was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In order to characterized obtained materials from the point of view of future applications different techniques were employed. On the one hand, optical properties were analyzed by UV-vis spectroscopy and spectrofluorimetry and on the other hand electrical properties were studied at nano and macroscale using electric force microscopy (EFM), tunneling atomic force microscopy (TUNA) and Keithley semiconductor analyzer, respectively. Magnetic properties were measured by means of magnetic force microscopy (MFM). Additionally, mechanical properties were also analyzed.Keywords: bacterial cellulose, block copolymer, advanced characterization techniques, nanoparticles
Procedia PDF Downloads 229263 Sensitivity and Uncertainty Analysis of Hydrocarbon-In-Place in Sandstone Reservoir Modeling: A Case Study
Authors: Nejoud Alostad, Anup Bora, Prashant Dhote
Abstract:
Kuwait Oil Company (KOC) has been producing from its major reservoirs that are well defined and highly productive and of superior reservoir quality. These reservoirs are maturing and priority is shifting towards difficult reservoir to meet future production requirements. This paper discusses the results of the detailed integrated study for one of the satellite complex field discovered in the early 1960s. Following acquisition of new 3D seismic data in 1998 and re-processing work in the year 2006, an integrated G&G study was undertaken to review Lower Cretaceous prospectivity of this reservoir. Nine wells have been drilled in the area, till date with only three wells showing hydrocarbons in two formations. The average oil density is around 300API (American Petroleum Institute), and average porosity and water saturation of the reservoir is about 23% and 26%, respectively. The area is dissected by a number of NW-SE trending faults. Structurally, the area consists of horsts and grabens bounded by these faults and hence compartmentalized. The Wara/Burgan formation consists of discrete, dirty sands with clean channel sand complexes. There is a dramatic change in Upper Wara distributary channel facies, and reservoir quality of Wara and Burgan section varies with change of facies over the area. So predicting reservoir facies and its quality out of sparse well data is a major challenge for delineating the prospective area. To characterize the reservoir of Wara/Burgan formation, an integrated workflow involving seismic, well, petro-physical, reservoir and production engineering data has been used. Porosity and water saturation models are prepared and analyzed to predict reservoir quality of Wara and Burgan 3rd sand upper reservoirs. Subsequently, boundary conditions are defined for reservoir and non-reservoir facies by integrating facies, porosity and water saturation. Based on the detailed analyses of volumetric parameters, potential volumes of stock-tank oil initially in place (STOIIP) and gas initially in place (GIIP) were documented after running several probablistic sensitivity analysis using Montecalro simulation method. Sensitivity analysis on probabilistic models of reservoir horizons, petro-physical properties, and oil-water contacts and their effect on reserve clearly shows some alteration in the reservoir geometry. All these parameters have significant effect on the oil in place. This study has helped to identify uncertainty and risks of this prospect particularly and company is planning to develop this area with drilling of new wells.Keywords: original oil-in-place, sensitivity, uncertainty, sandstone, reservoir modeling, Monte-Carlo simulation
Procedia PDF Downloads 197262 Organic Tuber Production Fosters Food Security and Soil Health: A Decade of Evidence from India
Authors: G. Suja, J. Sreekumar, A. N. Jyothi, V. S. Santhosh Mithra
Abstract:
Worldwide concerns regarding food safety, environmental degradation and threats to human health have generated interest in alternative systems like organic farming. Tropical tuber crops, cassava, sweet potato, yams, and aroids are food-cum-nutritional security-cum climate resilient crops. These form stable or subsidiary food for about 500 million global population. Cassava, yams (white yam, greater yam, and lesser yam) and edible aroids (elephant foot yam, taro, and tannia) are high energy tuberous vegetables with good taste and nutritive value. Seven on-station field experiments at ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, India and seventeen on-farm trials in three districts of Kerala, were conducted over a decade (2004-2015) to compare the varietal response, yield, quality and soil properties under organic vs conventional system in these crops and to develop a learning system based on the data generated. The industrial, as well as domestic varieties of cassava, the elite and local varieties of elephant foot yam and taro and the three species of Dioscorea (yams), were on a par under both systems. Organic management promoted yield by 8%, 20%, 9%, 11% and 7% over conventional practice in cassava, elephant foot yam, white yam, greater yam and lesser yam respectively. Elephant foot yam was the most responsive to organic management followed by yams and cassava. In taro, slight yield reduction (5%) was noticed under organic farming with almost similar tuber quality. The tuber quality was improved with higher dry matter, starch, crude protein, K, Ca and Mg contents. The anti-nutritional factors, oxalate content in elephant foot yam and cyanogenic glucoside content in cassava were lowered by 21 and 12.4% respectively. Organic plots had significantly higher water holding capacity, pH, available K, Fe, Mn and Cu, higher soil organic matter, available N, P, exchangeable Ca and Mg, dehydrogenase enzyme activity and microbial count. Organic farming scored significantly higher soil quality index (1.93) than conventional practice (1.46). The soil quality index was driven by water holding capacity, pH and available Zn followed by soil organic matter. Organic management enhanced net profit by 20-40% over chemical farming. A case in point is the cost-benefit analysis in elephant foot yam which indicated that the net profit was 28% higher and additional income of Rs. 47,716 ha-1 was obtained due to organic farming. Cost-effective technologies were field validated. The on-station technologies developed were validated and popularized through on-farm trials in 10 sites (5 ha) under National Horticulture Mission funded programme in elephant foot yam and seven sites in yams and taro. The technologies are included in the Package of Practices Recommendations for crops of Kerala Agricultural University. A learning system developed using artificial neural networks (ANN) predicted the performance of elephant foot yam organic system. Use of organically produced seed materials, seed treatment in cow-dung, neem cake, bio-inoculant slurry, farmyard manure incubated with bio-inoculants, green manuring, use of neem cake, bio-fertilizers and ash formed the strategies for organic production. Organic farming is an eco-friendly management strategy that enables 10-20% higher yield, quality tubers and maintenance of soil health in tuber crops.Keywords: eco-agriculture, quality, root crops, healthy soil, yield
Procedia PDF Downloads 335261 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 185260 Assessing the Impact of Frailty in Elderly Patients Undergoing Emergency Laparotomies in Singapore
Authors: Zhao Jiashen, Serene Goh, Jerry Goo, Anthony Li, Lim Woan Wui, Paul Drakeford, Chen Qing Yan
Abstract:
Introduction: Emergency laparotomy (EL) is one of the most common surgeries done in Singapore to treat acute abdominal pathologies. A significant proportion of these surgeries are performed in the geriatric population (65 years and older), who tend to have the highest postoperative morbidity, mortality, and highest utilization of intensive care resources. Frailty, the state of vulnerability to adverse outcomes from an accumulation of physiological deficits, has been shown to be associated with poorer outcomes after surgery and remains a strong driver of healthcare utilization and costs. To date, there is little understanding of the impact it has on emergency laparotomy outcomes. The objective of this study is to examine the impact of frailty on postoperative morbidity, mortality, and length of stay after EL. Methods: A retrospective study was conducted in two tertiary centres in Singapore, Tan Tock Seng Hospital and Khoo Teck Puat Hospital the period from January to December 2019. Patients aged 65 years and above who underwent emergency laparotomy for intestinal obstruction, perforated viscus, bowel ischaemia, adhesiolysis, gastrointestinal bleed, or another suspected acute abdomen were included. Laparotomies performed for trauma, cholecystectomy, appendectomy, vascular surgery, and non-GI surgery were excluded. The Clinical Frailty Score (CFS) developed by the Canadian Study of Health and Aging (CSHA) was used. A score of 1 to 4 was defined as non-frail and 5 to 7 as frail. We compared the clinical outcomes of elderly patients in the frail and non-frail groups. Results: There were 233 elderly patients who underwent EL during the study period. Up to 26.2% of patients were frail. Patients who were frail (CFS 5-9) tend to be older, 79 ± 7 vs 79 ± 5 years of age, p <0.01. Gender distribution was equal in both groups. Indication for emergency laparotomies, time from diagnosis to surgery, and presence of consultant surgeons and anaesthetists in the operating theatre were comparable (p>0.05). Patients in the frail group were more likely to receive postoperative geriatric assessment than in the non-frail group, 49.2% vs. 27.9% (p<0.01). The postoperative complications were comparable (p>0.05). The length of stay in the critical care unit was longer for the frail patients, 2 (IQR 1-6.5) versus 1 (IQR 0-4) days, p<0.01. Frailty was found to be an independent predictor of 90-day mortality but not age, OR 2.9 (1.1-7.4), p=0.03. Conclusion: Up to one-fourth of the elderly who underwent EL were frail. Patients who were frail were associated with a longer length of stay in the critical care unit and a 90-day mortality rate of more than three times that of their non-frail counterparts. PPOSSUM was a better predictor of 90-day mortality in the non-frail group than in the frail group. As frailty scoring was a significant predictor of 90-day mortality, its integration into acute surgical units to facilitate shared decision-making and discharge planning should be considered.Keywords: frailty elderly, emergency, laparotomy
Procedia PDF Downloads 144259 Phytochemical Profile and in Vitro Bioactivity Studies on Two Underutilized Vegetables in Nigeria
Authors: Borokini Funmilayo Boede
Abstract:
B. alba L., commonly called ‘Amunututu’ and Solanecio biafrae called ‘Worowo’ among the Yoruba tribe in the southwest part of Nigeria are reported to be of great ethnomedicinal importance but are among many underutilized green leafy vegetables in the country. Many studies have established the nutritional values of these vegetables, utilization are very poor and indepth information on their chemical profiles is scarce. The aqueous, methanolic and ethanolic extracts of these vegetables were subjected to phytochemical screening and phenolic profiles of the alcoholic extracts were characterized by using high-performance liquid chromatography coupled with diode array detector (HPLC-DAD). Total phenol and flavonoid contents were determined, antioxidant activities were evaluated using five in vitro assays to assess DPPH, nitric oxide and hydroxyl radical-scavenging abilities, as well as reducing power with ferric reducing antioxidant assay and phosphomolybdate method. The antibacterial activities of the extracts against Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi were evaluated by using agar well diffusion method and the antifungal activity evaluated against food-associated filamentous fungi by using poisoned food technique with the aim of assessing their nutraceutical potentials to encourage their production and utilization. The results revealed the presence of saponnin, steroids, tannin, terpenoid and flavonoid as well as phenolic compounds: gallic acid, chlorogenic acid, caffeic acid, coumarin, rutin, quercitrin, quercetin and kaemferol. The vegetables showed varying concentration dependent reducing and radical scavenging abilities from weak to strong compared with gallic acid, rutin, trolox and ascorbic acid used as positive controls; the aqueous extracts which gave higher concentrations of total phenol displayed higher ability to reduce Fe (lll) to Fe (ll) and stronger inhibiting power against hydroxyl radical than the alcoholic extracts and in most cases exhibited more potency than the ascorbic acids used as positive controls, at the same concentrations, whereas, methanol and / or ethanol extracts were found to be more effective in scavenging 2, 2-diphenyl-1-picryl hydrazyl radical and showed higher ability to reduce Mo (VI) to Mo (V) in total antioxidant assay than the aqueous extracts. However, the inhibition abilities of all the extracts against nitric oxide were comparable with the ascorbic acid control at the same concentrations. There were strong positive correlations with total phenol (mg GAE/g) and total flavonoid (mg RE/g) contents in the range TFC (r=0.857- 0999 and r= 0.904-1.000) and TPC (r= 0.844- 0.992 and r= 0.900 -0.999) for Basella alba and Senecio biafrae respectively. Inhibition concentration at 50 % (IC50) for each extract to scavenge DPPH, OH and NO radicals ranged from 32.73 to 1.52 compared with control (0.846 - -6.42) mg/ml. At 0.05g/ml, the vegetables were found to exhibit mild antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi compared with streptomycin sulphate used as control but appreciable antifungi activities against (Trichoderma rubrum and Aspergillus fumigates) compared with bonlate antibiotic positive control. The vegetables possess appreciable antioxidant and antimicrobial properties for promoting good health, their cultivation and utilization should be encouraged especially in the face of increasing health and economic challenges and food insecurity in many parts of the world.Keywords: antimicrobial, antioxidants, extracts, phytochemicals
Procedia PDF Downloads 324258 Framework to Organize Community-Led Project-Based Learning at a Massive Scale of 900 Indian Villages
Authors: Ayesha Selwyn, Annapoorni Chandrashekar, Kumar Ashwarya, Nishant Baghel
Abstract:
Project-based learning (PBL) activities are typically implemented in technology-enabled schools by highly trained teachers. In rural India, students have limited access to technology and quality education. Implementing typical PBL activities is challenging. This study details how Pratham Education Foundation’s Hybrid Learning model was used to implement two PBL activities related to music in 900 remote Indian villages with 46,000 students aged 10-14. The activities were completed by 69% of groups that submitted a total of 15,000 videos (completed projects). Pratham’s H-Learning model reaches 100,000 students aged 3-14 in 900 Indian villages. The community-driven model engages students in 20,000 self-organized groups outside of school. The students are guided by 6,000 youth volunteers and 100 facilitators. The students partake in learning activities across subjects with the support of community stakeholders and offline digital content on shared Android tablets. A training and implementation toolkit for PBL activities is designed by subject experts. This toolkit is essential in ensuring efficient implementation of activities as facilitators aren’t highly skilled and have limited access to training resources. The toolkit details the activity at three levels of student engagement - enrollment, participation, and completion. The subject experts train project leaders and facilitators who train youth volunteers. Volunteers need to be trained on how to execute the activity and guide students. The training is focused on building the volunteers’ capacity to enable students to solve problems, rather than developing the volunteers’ subject-related knowledge. This structure ensures that continuous intervention of subject matter experts isn’t required, and the onus of judging creativity skills is put on community members. 46,000 students in the H-Learning program were engaged in two PBL activities related to Music from April-June 2019. For one activity, students had to conduct a “musical survey” in their village by designing a survey and shooting and editing a video. This activity aimed to develop students’ information retrieval, data gathering, teamwork, communication, project management, and creativity skills. It also aimed to identify talent and document local folk music. The second activity, “Pratham Idol”, was a singing competition. Students participated in performing, producing, and editing videos. This activity aimed to develop students’ teamwork and creative skills and give students a creative outlet. Students showcased their completed projects at village fairs wherein a panel of community members evaluated the videos. The shortlisted videos from all villages were further evaluated by experts who identified students and adults to participate in advanced music workshops. The H-Learning framework enables students in low resource settings to engage in PBL and develop relevant skills by leveraging community support and using video creation as a tool. In rural India, students do not have access to high-quality education or infrastructure. Therefore designing activities that can be implemented by community members after limited training is essential. The subject experts have minimal intervention once the activity is initiated, which significantly reduces the cost of implementation and allows the activity to be implemented at a massive scale.Keywords: community supported learning, project-based learning, self-organized learning, education technology
Procedia PDF Downloads 186257 Examining the Critical Factors for Success and Failure of Common Ticketing Systems
Authors: Tam Viet Hoang
Abstract:
With a plethora of new mobility services and payment systems found in our cities and across modern public transportation systems, several cities globally have turned to common ticketing systems to help navigate this complexity. Helping to create time and space-differentiated fare structures and tariff schemes, common ticketing systems can optimize transport utilization rates, achieve cost efficiencies, and provide key incentives to specific target groups. However, not all cities and transportation systems have enjoyed a smooth journey towards the adoption, roll-out, and servicing of common ticketing systems, with both the experiences of success and failure being attributed to a wide variety of critical factors. Using case study research as a methodology and cities as the main unit of analysis, this research will seek to address the fundamental question of “what are the critical factors for the success and failure of common ticketing systems?” Using rail/train systems as the entry point for this study will start by providing a background to the evolution of transport ticketing and justify the improvements in operational efficiency that can be achieved through common ticketing systems. Examining the socio-economic benefits of common ticketing, the research will also help to articulate the value derived for different key identified stakeholder groups. By reviewing case studies of the implementation of common ticketing systems in different cities, the research will explore lessons learned from cities with the aim to elicit factors to ensure seamless connectivity integrated e-ticketing platforms. In an increasingly digital age and where cities are now coming online, this paper seeks to unpack these critical factors, undertaking case study research drawing from literature and lived experiences. Offering us a better understanding of the enabling environment and ideal mixture of ingredients to facilitate the successful roll-out of a common ticketing system, interviews will be conducted with transport operators from several selected cities to better appreciate the challenges and strategies employed to overcome those challenges in relation to common ticketing systems. Meanwhile, as we begin to see the introduction of new mobile applications and user interfaces to facilitate ticketing and payment as part of the transport journey, we take stock of numerous policy challenges ahead and implications on city-wide and system-wide urban planning. It is hoped that this study will help to identify the critical factors for the success and failure of common ticketing systems for cities set to embark on their implementation while serving to fine-tune processes in those cities where common ticketing systems are already in place. Outcomes from the study will help to facilitate an improved understanding of common pitfalls and essential milestones towards the roll-out of a common ticketing system for railway systems, especially for emerging countries where mass rapid transit transport systems are being considered or in the process of construction.Keywords: common ticketing, public transport, urban strategies, Bangkok, Fukuoka, Sydney
Procedia PDF Downloads 88256 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River
Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang
Abstract:
The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander
Procedia PDF Downloads 319255 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Their Antibacterial Effects on Negative Bacillus Bacteria Causing Urinary Tract Infection
Authors: F. Madani, M. Doudi, L. Rahimzadeh Torabi
Abstract:
The irregular consumption of current antibiotics contributes to an escalation in antibiotic resistance among urinary pathogens on a global scale. The objective of this research was to investigate the process of biologically synthesized silver nanoparticles through the utilization of Zataria multiflora extract. Additionally, the study aimed to evaluate the efficacy of these synthesized nanoparticles in inhibiting the growth of multi-drug resistant negative bacillus bacteria, which commonly contribute to urinary tract infections. The botanical specimen utilized in the current research investigation was Z. multiflora, and its extract was produced employing the Soxhlet extraction technique. The study examined the green synthesis conditions of silver nanoparticles by considering three key parameters: the quantity of extract used, the concentration of silver nitrate salt, and the temperature. The particle dimensions were ascertained using the Zetasizer technique. In order to identify synthesized Silver nanoparticles TEM, XRD, and FTIR methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through a biological method, different concentrations of silver nanoparticles were studied on 140 cases of Multiple drug resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections, for identification of bacteria were used of PCR test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were subjected to analysis using the statistical software SPSS, specifically employing nonparametric Kruskal-Wallis and Mann-Whitney tests. This study yielded noteworthy findings regarding the impacts of varying concentrations of silver nitrate, different quantities of Z. multiflora extract, and levels of temperature on nanoparticles. Specifically, it was observed that an increase in the concentration of silver nitrate, extract amount, and temperature resulted in a reduction in the size of the nanoparticles synthesized. However, the impact of the aforementioned factors on the index of particle diffusion was found to be statistically non-significant. According to the transmission electron microscopy (TEM) findings, the particles exhibited predominantly spherical morphology, with a diameter spanning from 25 to 50 nanometers. Nanoparticles in the examined sample. Nanocrystals of silver. FTIR method illustrated that the spectrums of Z. multiflora and synthesized nanoparticles had clear peaks in the ranges of 1500-2000, and 3500 - 4000. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E. coli, A. bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125 mg/ml and for A. bumanii 250 mg/ml. Comparing the growth inhibitory effect of chemically synthesized the results obtained from the experiment indicated that both nanoparticles and biologically synthesized nanoparticles exhibit a notable growth inhibition effect. Specifically, the chemical method of synthesizing nanoparticles demonstrated the highest level of growth inhibition at a concentration of 62.5 mg/mL The present study demonstrated an inhibitory effect on bacterial growth, facilitating the causative factors of urine infection and multidrug resistance (MDR).Keywords: multiple drug resistance, negative bacillus bacteria, urine infection, Zataria multiflora
Procedia PDF Downloads 104254 VIAN-DH: Computational Multimodal Conversation Analysis Software and Infrastructure
Authors: Teodora Vukovic, Christoph Hottiger, Noah Bubenhofer
Abstract:
The development of VIAN-DH aims at bridging two linguistic approaches: conversation analysis/interactional linguistics (IL), so far a dominantly qualitative field, and computational/corpus linguistics and its quantitative and automated methods. Contemporary IL investigates the systematic organization of conversations and interactions composed of speech, gaze, gestures, and body positioning, among others. These highly integrated multimodal behaviour is analysed based on video data aimed at uncovering so called “multimodal gestalts”, patterns of linguistic and embodied conduct that reoccur in specific sequential positions employed for specific purposes. Multimodal analyses (and other disciplines using videos) are so far dependent on time and resource intensive processes of manual transcription of each component from video materials. Automating these tasks requires advanced programming skills, which is often not in the scope of IL. Moreover, the use of different tools makes the integration and analysis of different formats challenging. Consequently, IL research often deals with relatively small samples of annotated data which are suitable for qualitative analysis but not enough for making generalized empirical claims derived quantitatively. VIAN-DH aims to create a workspace where many annotation layers required for the multimodal analysis of videos can be created, processed, and correlated in one platform. VIAN-DH will provide a graphical interface that operates state-of-the-art tools for automating parts of the data processing. The integration of tools that already exist in computational linguistics and computer vision, facilitates data processing for researchers lacking programming skills, speeds up the overall research process, and enables the processing of large amounts of data. The main features to be introduced are automatic speech recognition for the transcription of language, automatic image recognition for extraction of gestures and other visual cues, as well as grammatical annotation for adding morphological and syntactic information to the verbal content. In the ongoing instance of VIAN-DH, we focus on gesture extraction (pointing gestures, in particular), making use of existing models created for sign language and adapting them for this specific purpose. In order to view and search the data, VIAN-DH will provide a unified format and enable the import of the main existing formats of annotated video data and the export to other formats used in the field, while integrating different data source formats in a way that they can be combined in research. VIAN-DH will adapt querying methods from corpus linguistics to enable parallel search of many annotation levels, combining token-level and chronological search for various types of data. VIAN-DH strives to bring crucial and potentially revolutionary innovation to the field of IL, (that can also extend to other fields using video materials). It will allow the processing of large amounts of data automatically and, the implementation of quantitative analyses, combining it with the qualitative approach. It will facilitate the investigation of correlations between linguistic patterns (lexical or grammatical) with conversational aspects (turn-taking or gestures). Users will be able to automatically transcribe and annotate visual, spoken and grammatical information from videos, and to correlate those different levels and perform queries and analyses.Keywords: multimodal analysis, corpus linguistics, computational linguistics, image recognition, speech recognition
Procedia PDF Downloads 108253 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites
Authors: A. Kavita Murugkar, B. Anurag Kashyap
Abstract:
With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience
Procedia PDF Downloads 106252 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW
Authors: Meena Agrawal, Chaitanya P. Agrawal
Abstract:
The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid
Procedia PDF Downloads 333251 The Use of Geographic Information System Technologies for Geotechnical Monitoring of Pipeline Systems
Authors: A. G. Akhundov
Abstract:
Issues of obtaining unbiased data on the status of pipeline systems of oil- and oil product transportation become especially important when laying and operating pipelines under severe nature and climatic conditions. The essential attention is paid here to researching exogenous processes and their impact on linear facilities of the pipeline system. Reliable operation of pipelines under severe nature and climatic conditions, timely planning and implementation of compensating measures are only possible if operation conditions of pipeline systems are regularly monitored, and changes of permafrost soil and hydrological operation conditions are accounted for. One of the main reasons for emergency situations to appear is the geodynamic factor. Emergency situations are proved by the experience to occur within areas characterized by certain conditions of the environment and to develop according to similar scenarios depending on active processes. The analysis of natural and technical systems of main pipelines at different stages of monitoring gives a possibility of making a forecast of the change dynamics. The integration of GIS technologies, traditional means of geotechnical monitoring (in-line inspection, geodetic methods, field observations), and remote methods (aero-visual inspection, aero photo shooting, air and ground laser scanning) provides the most efficient solution of the problem. The united environment of geo information system (GIS) is a comfortable way to implement the monitoring system on the main pipelines since it provides means to describe a complex natural and technical system and every element thereof with any set of parameters. Such GIS enables a comfortable simulation of main pipelines (both in 2D and 3D), the analysis of situations and selection of recommendations to prevent negative natural or man-made processes and to mitigate their consequences. The specifics of such systems include: a multi-dimensions simulation of facilities in the pipeline system, math modelling of the processes to be observed, and the use of efficient numeric algorithms and software packets for forecasting and analyzing. We see one of the most interesting possibilities of using the monitoring results as generating of up-to-date 3D models of a facility and the surrounding area on the basis of aero laser scanning, data of aerophotoshooting, and data of in-line inspection and instrument measurements. The resulting 3D model shall be the basis of the information system providing means to store and process data of geotechnical observations with references to the facilities of the main pipeline; to plan compensating measures, and to control their implementation. The use of GISs for geotechnical monitoring of pipeline systems is aimed at improving the reliability of their operation, reducing the probability of negative events (accidents and disasters), and at mitigation of consequences thereof if they still are to occur.Keywords: databases, 3D GIS, geotechnical monitoring, pipelines, laser scaning
Procedia PDF Downloads 189250 Effect of Additives on Post-hydrogen Decompression Microstructure and Mechanical Behaviour of PA11 Involved in Type-IV Hydrogen Tank Liners
Authors: Mitia Ramarosaona, Sylvie Castagnet, Damien Halm, Henri-Alexandre Cayzac, Nicolas Dufaure, Philippe Papin
Abstract:
In light of the ongoing energy transition, 'Infrastructure developments' for hydrogen transportation and storage raise studies on the materials employed for hyperbaric vessels. Type IV tanks represent the most mature choice for gaseous hydrogen storage at high pressure – 70MPa. These tanks are made of a composite shell and an internal hydrogen-exposed polymer liner. High pressure conditions lead to severe mechanical loading requiring high resistance. Liner is in contact with hydrogen and undergoes compression – decompression cycles during system filling and emptying. Stresses induced by this loading, coupled with hydrogen diffusion, were found to cause microstructural changes and degradation of mechanical behaviour after decompression phase in some studies on HDPE. These phenomena are similar to those observed in elastomeric components like sealing rings, which can affect permeability and lead to their failure. They may lead to a hydrogen leak, compromising security and tightness of the tank. While these phenomena have been identified in elastomers, they remain less addressed in thermoplastics and consequences post-decompression damages on mechanical behaviour and to the best of author's knowledge was not studied either. Different additives are also included in liner formulation to improve its behaviour. This study aimed to better understand damage micro-mechanisms in PA11s exposed to hydrogen compression-decompression cycles and understand if additives influence their resistance. Samples of pure, plasticized and impact-modified PA11s are exposed to 1, 3 and 8 pressure cycles including hydrogen saturation at 70MPa followed by severe 15-second decompression. After hydrogen exposure and significantly later than full desorption, the residual mechanical behaviour is characterized through impact and monotonic tensile tests, on plain and notched samples. Several techniques of microstructure and micro-nano damage characterization are carried out to assess whether changes in macroscopic properties are driven by microstructural changes in the crystalline structure (SAXS-WAXS acquisitions and SEM micrographs). Thanks to WAXS acquisition and microscopic observation, the effects due to additives and pressure consequences can be decorrelated. Pure PA11 and PA11 with a low percentage of additives show an increase in stress level at the first yielding point after hydrogen cycles. The amplitude of the stress increase is more important in formulation with additives because of changes in PA11 matrix behavior and environment created by additives actions. Plasticizer modifies chain mobility leading to microstructure changes while other additives, more ductile than PA11, is able to cavitate inside PA11 matrix when undergoing decompression. On plasticized formulation, plasticizer migration are suspected to enhance impact of hydrogen cycling on mechanical behaviour. Compared to the literature on HDPE and elastomers, no damages like cavitation or cracking could be evidenced from SAXS experiments on every PA11 formulation tested. In perspectives, on all formulation, experimental work is underway to confirm influence of residual pressure level after decompression on post-decompression damages level, the aim is to better understand the factors affecting the mechanical behavior of thermoplastics subject to mechanical solicitation from decompression in hydrogen tank liners, not mechanical behaviour of liner in hydrogen tanks directly.Keywords: additives, hydrogen tank liner, microstructural analysis, PA11
Procedia PDF Downloads 45249 Teachers’ Instructional Decisions When Teaching Geometric Transformations
Authors: Lisa Kasmer
Abstract:
Teachers’ instructional decisions shape the structure and content of mathematics lessons and influence the mathematics that students are given the opportunity to learn. Therefore, it is important to better understand how teachers make instructional decisions and thus find new ways to help practicing and future teachers give their students a more effective and robust learning experience. Understanding the relationship between teachers’ instructional decisions and their goals, resources, and orientations (beliefs) is important given the heightened focus on geometric transformations in the middle school mathematics curriculum. This work is significant as the development and support of current and future teachers need more effective ways to teach geometry to their students. The following research questions frame this study: (1) As middle school mathematics teachers plan and enact instruction related to teaching transformations, what thinking processes do they engage in to make decisions about teaching transformations with or without a coordinate system and (2) How do the goals, resources and orientations of these teachers impact their instructional decisions and reveal about their understanding of teaching transformations? Teachers and students alike struggle with understanding transformations; many teachers skip or hurriedly teach transformations at the end of the school year. However, transformations are an important mathematical topic as this topic supports students’ understanding of geometric and spatial reasoning. Geometric transformations are a foundational concept in mathematics, not only for understanding congruence and similarity but for proofs, algebraic functions, and calculus etc. Geometric transformations also underpin the secondary mathematics curriculum, as features of transformations transfer to other areas of mathematics. Teachers’ instructional decisions in terms of goals, orientations, and resources that support these instructional decisions were analyzed using open-coding. Open-coding is recognized as an initial first step in qualitative analysis, where comparisons are made, and preliminary categories are considered. Initial codes and categories from current research on teachers’ thinking processes that are related to the decisions they make while planning and reflecting on the lessons were also noted. Surfacing ideas and additional themes common across teachers while seeking patterns, were compared and analyzed. Finally, attributes of teachers’ goals, orientations and resources were identified in order to begin to build a picture of the reasoning behind their instructional decisions. These categories became the basis for the organization and conceptualization of the data. Preliminary results suggest that teachers often rely on their own orientations about teaching geometric transformations. These beliefs are underpinned by the teachers’ own mathematical knowledge related to teaching transformations. When a teacher does not have a robust understanding of transformations, they are limited by this lack of knowledge. These shortcomings impact students’ opportunities to learn, and thus disadvantage their own understanding of transformations. Teachers’ goals are also limited by their paucity of knowledge regarding transformations, as these goals do not fully represent the range of comprehension a teacher needs to teach this topic well.Keywords: coordinate plane, geometric transformations, instructional decisions, middle school mathematics
Procedia PDF Downloads 88248 Tourism Policy Challenges in Post-Soviet Georgia
Authors: Merab Khokhobaia
Abstract:
The research of Georgian tourism policy challenges is important, as the tourism can play an increasing role for the economic growth and improvement of standard of living of the country even with scanty resources, at the expense of improved creative approaches. It is also important to make correct decisions at macroeconomic level, which will be accordingly reflected in the successful functioning of the travel companies and finally, in the improvement of economic indicators of the country. In order to correctly orient sectoral policy, it is important to precisely determine its role in the economy. Development of travel industry has been considered as one of the priorities in Georgia; the country has unique cultural heritage and traditions, as well as plenty of natural resources, which are a significant precondition for the development of tourism. Despite the factors mentioned above, the existing resources are not completely utilized and exploited. This work represents a study of subjective, as well as objective reasons of ineffective functioning of the sector. During the years of transformation experienced by Georgia, the role of travel industry in economic development of the country represented the subject of continual discussions. Such assessments were often biased and they did not rest on specific calculations. This topic became especially popular on the ground of market economy, because reliable statistical data have a particular significance in the designing of tourism policy. In order to deeply study the aforementioned issue, this paper analyzes monetary, as well as non-monetary indicators. The research widely included the tourism indicators system; we analyzed the flaws in reporting of the results of tourism sector in Georgia. Existing defects are identified and recommendations for their improvement are offered. For stable development tourism, similarly to other economic sectors, needs a well-designed policy from the perspective of national, as well as local, regional development. The tourism policy must be drawn up in order to efficiently achieve our goals, which were established in short-term and long-term dynamics on the national or regional scale of specific country. The article focuses on the role and responsibility of the state institutes in planning and implementation of the tourism policy. The government has various tools and levers, which may positively influence the processes. These levers are especially important in terms of international, as well as internal tourism development. Within the framework of this research, the regulatory documents, which are in force in relation to this industry, were also analyzed. The main attention is turned to their modernization and necessity of their compliance with European standards. It is a current issue to direct the efforts of state policy on support of business by implementing infrastructural projects, as well as by development of human resources, which may be possible by supporting the relevant higher and vocational studying-educational programs.Keywords: regional development, tourism industry, tourism policy, transition
Procedia PDF Downloads 263247 Embracing the Uniqueness and Potential of Each Child: Moving Theory to Practice
Authors: Joy Chadwick
Abstract:
This Study of Teaching and Learning (SoTL) research focused on the experiences of teacher candidates involved in an inclusive education methods course within a four-year direct entry Bachelor of Education program. The placement of this course within the final fourteen-week practicum semester is designed to facilitate deeper theory-practice connections between effective inclusive pedagogical knowledge and the real life of classroom teaching. The course focuses on supporting teacher candidates to understand that effective instruction within an inclusive classroom context must be intentional, responsive, and relational. Diversity is situated not as exceptional but rather as expected. This interpretive qualitative study involved the analysis of twenty-nine teacher candidate reflective journals and six individual teacher candidate semi-structured interviews. The journal entries were completed at the start of the semester and at the end of the semester with the intent of having teacher candidates reflect on their beliefs of what it means to be an effective inclusive educator and how the course and practicum experiences impacted their understanding and approaches to teaching in inclusive classrooms. The semi-structured interviews provided further depth and context to the journal data. The journals and interview transcripts were coded and themed using NVivo software. The findings suggest that instructional frameworks such as universal design for learning (UDL), differentiated instruction (DI), response to intervention (RTI), social emotional learning (SEL), and self-regulation supported teacher candidate’s abilities to meet the needs of their students more effectively. Course content that focused on specific exceptionalities also supported teacher candidates to be proactive rather than reactive when responding to student learning challenges. Teacher candidates also articulated the importance of reframing their perspective about students in challenging moments and that seeing the individual worth of each child was integral to their approach to teaching. A persisting question for teacher educators exists as to what pedagogical knowledge and understanding is most relevant in supporting future teachers to be effective at planning for and embracing the diversity of student needs within classrooms today. This research directs us to consider the critical importance of addressing personal attributes and mindsets of teacher candidates regarding children as well as considering instructional frameworks when designing coursework. Further, the alignment of an inclusive education course during a teaching practicum allows for an iterative approach to learning. The practical application of course concepts while teaching in a practicum allows for a deeper understanding of instructional frameworks, thus enhancing the confidence of teacher candidates. Research findings have implications for teacher education programs as connected to inclusive education methods courses, practicum experiences, and overall teacher education program design.Keywords: inclusion, inclusive education, pre-service teacher education, practicum experiences, teacher education
Procedia PDF Downloads 68246 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer
Authors: Harpreet Singh Kainth
Abstract:
Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer
Procedia PDF Downloads 507245 Evaluation of Batch Splitting in the Context of Load Scattering
Authors: S. Wesebaum, S. Willeke
Abstract:
Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering
Procedia PDF Downloads 399244 Tourism Management of the Heritage and Archaeological Sites in Egypt
Authors: Sabry A. El Azazy
Abstract:
The archaeological heritage sites are one of the most important touristic attractions worldwide. Egypt has various archaeological sites and historical locations that are classified within the list of the archaeological heritage destinations in the world, such as Cairo, Luxor, Aswan, Alexandria, and Sinai. This study focuses on how to manage the archaeological sites and provide them with all services according to the traveler's needs. Tourism management depends on strategic planning for supporting the national economy and sustainable development. Additionally, tourism management has to utilize highly effective standards of security, promotion, advertisement, sales, and marketing while taking into consideration the preservation of monuments. In Egypt, the archaeological heritage sites must be well-managed and protected, which would assist tourism management, especially in times of crisis. Recently, the monumental places and archeological heritage sites were affected by unstable conditions and were threatened. It is essential to focus on preserving our heritage. Moreover, more efforts and cooperation between the tourism organizations and ministry of archaeology have to be done in order to protect the archaeology and promote the tourism industry. Methodology: Qualitative methods have been used as the overall approach to this study. Interviews and observations have provided the researcher with the required in-depth insight to the research subject. The researcher was a lecturer of tourist guidance that allows visiting all historical sites in Egypt. Additionally, the researcher had the privilege to communicate with tourism specialists and attend meetings, conferences, and events that were focused on the research subject. Objectives: The main purpose of the research was gaining information in order to develop theoretical research on how to effectively benefit out of those historical sights both economically and culturally, and pursue further researches and scientific studies to be well-suited for tourism and hospitality sector. The researcher works hard to present further studies in a field related to tourism and archaeological heritage using previous experience. Pursing this course of study enables the researcher to acquire the necessary abilities and competencies to achieve the set goal successfully. Results: The professional tourism management focus on making Egypt one of the most important destinations in the world, and provide the heritage and archaeological sites with all services that will place those locations into the international map of tourism. Tourists interested in visiting Egypt and making tourism flourish supports and strengths Egypt's national economy and the local community, taking into consideration preserving our heritage and archaeology. Conclusions: Egypt has many tourism attractions represented in the heritage, archaeological sites, and touristic places. These places need more attention and efforts to be included in tourism programs and be opened for visitors from all over the world. These efforts will encourage both local and international tourism to see our great civilization and provide different touristic activities.Keywords: archaeology, archaeological sites, heritage, ministry of archaeology, national economy, touristic attractions, tourism management, tourism organizations
Procedia PDF Downloads 144243 Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings
Authors: Afifa Mohammed, Gloria Pignatta, Mattheos Santamouris, Evangelia Topriska
Abstract:
Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings.Keywords: meteorological data, subtropical desert climate, urban climate, urban heat island (UHI)
Procedia PDF Downloads 135