Search results for: wireless patient monitoring
109 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 26108 On the Utility of Bidirectional Transformers in Gene Expression-Based Classification
Authors: Babak Forouraghi
Abstract:
A genetic circuit is a collection of interacting genes and proteins that enable individual cells to implement and perform vital biological functions such as cell division, growth, death, and signaling. In cell engineering, synthetic gene circuits are engineered networks of genes specifically designed to implement functionalities that are not evolved by nature. These engineered networks enable scientists to tackle complex problems such as engineering cells to produce therapeutics within the patient's body, altering T cells to target cancer-related antigens for treatment, improving antibody production using engineered cells, tissue engineering, and production of genetically modified plants and livestock. Construction of computational models to realize genetic circuits is an especially challenging task since it requires the discovery of the flow of genetic information in complex biological systems. Building synthetic biological models is also a time-consuming process with relatively low prediction accuracy for highly complex genetic circuits. The primary goal of this study was to investigate the utility of a pre-trained bidirectional encoder transformer that can accurately predict gene expressions in genetic circuit designs. The main reason behind using transformers is their innate ability (attention mechanism) to take account of the semantic context present in long DNA chains that are heavily dependent on the spatial representation of their constituent genes. Previous approaches to gene circuit design, such as CNN and RNN architectures, are unable to capture semantic dependencies in long contexts, as required in most real-world applications of synthetic biology. For instance, RNN models (LSTM, GRU), although able to learn long-term dependencies, greatly suffer from vanishing gradient and low-efficiency problem when they sequentially process past states and compresses contextual information into a bottleneck with long input sequences. In other words, these architectures are not equipped with the necessary attention mechanisms to follow a long chain of genes with thousands of tokens. To address the above-mentioned limitations, a transformer model was built in this work as a variation to the existing DNA Bidirectional Encoder Representations from Transformers (DNABERT) model. It is shown that the proposed transformer is capable of capturing contextual information from long input sequences with an attention mechanism. In previous works on genetic circuit design, the traditional approaches to classification and regression, such as Random Forrest, Support Vector Machine, and Artificial Neural Networks, were able to achieve reasonably high R2 accuracy levels of 0.95 to 0.97. However, the transformer model utilized in this work, with its attention-based mechanism, was able to achieve a perfect accuracy level of 100%. Further, it is demonstrated that the efficiency of the transformer-based gene expression classifier is not dependent on the presence of large amounts of training examples, which may be difficult to compile in many real-world gene circuit designs.Keywords: machine learning, classification and regression, gene circuit design, bidirectional transformers
Procedia PDF Downloads 63107 An Interdisciplinary Maturity Model for Accompanying Sustainable Digital Transformation Processes in a Smart Residential Quarter
Authors: Wesley Preßler, Lucie Schmidt
Abstract:
Digital transformation is playing an increasingly important role in the development of smart residential quarters. In order to accompany and steer this process and ultimately make the success of the transformation efforts measurable, it is helpful to use an appropriate maturity model. However, conventional maturity models for digital transformation focus primarily on the evaluation of processes and neglect the information and power imbalances between the stakeholders, which affects the validity of the results. The Multi-Generation Smart Community (mGeSCo) research project is developing an interdisciplinary maturity model that integrates the dimensions of digital literacy, interpretive patterns, and technology acceptance to address this gap. As part of the mGeSCo project, the technological development of selected dimensions in the Smart Quarter Jena-Lobeda (Germany) is being investigated. A specific maturity model, based on Cohen's Smart Cities Wheel, evaluates the central dimensions Working, Living, Housing and Caring. To improve the reliability and relevance of the maturity assessment, the factors Digital Literacy, Interpretive Patterns and Technology Acceptance are integrated into the developed model. The digital literacy dimension examines stakeholders' skills in using digital technologies, which influence their perception and assessment of technological maturity. Digital literacy is measured by means of surveys, interviews, and participant observation, using the European Commission's Digital Literacy Framework (DigComp) as a basis. Interpretations of digital technologies provide information about how individuals perceive technologies and ascribe meaning to them. However, these are not mere assessments, prejudices, or stereotyped perceptions but collective patterns, rules, attributions of meaning and the cultural repertoire that leads to these opinions and attitudes. Understanding these interpretations helps in assessing the overarching readiness of stakeholders to digitally transform a/their neighborhood. This involves examining people's attitudes, beliefs, and values about technology adoption, as well as their perceptions of the benefits and risks associated with digital tools. These insights provide important data for a holistic view and inform the steps needed to prepare individuals in the neighborhood for a digital transformation. Technology acceptance is another crucial factor for successful digital transformation to examine the willingness of individuals to adopt and use new technologies. Surveys or questionnaires based on Davis' Technology Acceptance Model can be used to complement interpretive patterns to measure neighborhood acceptance of digital technologies. Integrating the dimensions of digital literacy, interpretive patterns and technology acceptance enables the development of a roadmap with clear prerequisites for initiating a digital transformation process in the neighborhood. During the process, maturity is measured at different points in time and compared with changes in the aforementioned dimensions to ensure sustainable transformation. Participation, co-creation, and co-production are essential concepts for a successful and inclusive digital transformation in the neighborhood context. This interdisciplinary maturity model helps to improve the assessment and monitoring of sustainable digital transformation processes in smart residential quarters. It enables a more comprehensive recording of the factors that influence the success of such processes and supports the development of targeted measures to promote digital transformation in the neighborhood context.Keywords: digital transformation, interdisciplinary, maturity model, neighborhood
Procedia PDF Downloads 78106 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors
Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu
Abstract:
The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.Keywords: construction contractors, health and well-being, environmental quality, risk management
Procedia PDF Downloads 133105 Assessing Image Quality in Mobile Radiography: A Phantom-Based Evaluation of a New Lightweight Mobile X-Ray Equipment
Authors: May Bazzi, Shafik Tokmaj, Younes Saberi, Mats Geijer, Tony Jurkiewicz, Patrik Sund, Anna Bjällmark
Abstract:
Mobile radiography, employing portable X-ray equipment, has become a routine procedure within hospital settings, with chest X-rays in intensive care units standing out as the most prevalent mobile X-ray examinations. This approach is not limited to hospitals alone, as it extends its benefits to imaging patients in various settings, particularly those too frail to be transported, such as elderly care residents in nursing homes. Moreover, the utility of mobile X-ray isn't confined solely to traditional healthcare recipients; it has proven to be a valuable resource for vulnerable populations, including the homeless, drug users, asylum seekers, and patients with multiple co-morbidities. Mobile X-rays reduce patient stress, minimize costly hospitalizations, and offer cost-effective imaging. While studies confirm its reliability, further research is needed, especially regarding image quality. Recent advancements in lightweight equipment with enhanced battery and detector technology provide the potential for nearly handheld radiography. The main aim of this study was to evaluate a new lightweight mobile X-ray system with two different detectors and compare the image quality with a modern stationary system. Methods: A total of 74 images of the chest (chest anterior-posterior (AP) views and chest lateral views) and pelvic/hip region (AP pelvis views, hip AP views, and hip cross-table lateral views) were acquired on a whole-body phantom (Kyotokagaku, Japan), utilizing varying image parameters. These images were obtained using a stationary system - 18 images (Mediel, Sweden), a mobile X-ray system with a second-generation detector - 28 images (FDR D-EVO II; Fujifilm, Japan) and a mobile X-ray system with a third-generation detector - 28 images (FDR D-EVO III; Fujifilm, Japan). Image quality was assessed by visual grading analysis (VGA), which is a method to measure image quality by assessing the visibility and accurate reproduction of anatomical structures within the images. A total of 33 image criteria were used in the analysis. A panel of two experienced radiologists, two experienced radiographers, and two final-term radiographer students evaluated the image quality on a 5-grade ordinal scale using the software Viewdex 3.0 (Viewer for Digital Evaluation of X-ray images, Sweden). Data were analyzed using visual grading characteristics analysis. The dose was measured by the dose-area product (DAP) reported by the respective systems. Results: The mobile X-ray equipment (both detectors) showed significantly better image quality than the stationary equipment for the pelvis, hip AP and hip cross-table lateral images with AUCVGA-values ranging from 0.64-0.92, while chest images showed mixed results. The number of images rated as having sufficient quality for diagnostic use was significantly higher for mobile X-ray generation 2 and 3 compared with the stationary X-ray system. The DAP values were higher for the stationary compared to the mobile system. Conclusions: The new lightweight radiographic equipment had an image quality at least as good as a fixed system at a lower radiation dose. Future studies should focus on clinical images and consider radiographers' viewpoints for a comprehensive assessment.Keywords: mobile x-ray, visual grading analysis, radiographer, radiation dose
Procedia PDF Downloads 68104 Big Data Applications for the Transport Sector
Authors: Antonella Falanga, Armando Cartenì
Abstract:
Today, an unprecedented amount of data coming from several sources, including mobile devices, sensors, tracking systems, and online platforms, characterizes our lives. The term “big data” not only refers to the quantity of data but also to the variety and speed of data generation. These data hold valuable insights that, when extracted and analyzed, facilitate informed decision-making. The 4Vs of big data - velocity, volume, variety, and value - highlight essential aspects, showcasing the rapid generation, vast quantities, diverse sources, and potential value addition of these kinds of data. This surge of information has revolutionized many sectors, such as business for improving decision-making processes, healthcare for clinical record analysis and medical research, education for enhancing teaching methodologies, agriculture for optimizing crop management, finance for risk assessment and fraud detection, media and entertainment for personalized content recommendations, emergency for a real-time response during crisis/events, and also mobility for the urban planning and for the design/management of public and private transport services. Big data's pervasive impact enhances societal aspects, elevating the quality of life, service efficiency, and problem-solving capacities. However, during this transformative era, new challenges arise, including data quality, privacy, data security, cybersecurity, interoperability, the need for advanced infrastructures, and staff training. Within the transportation sector (the one investigated in this research), applications span planning, designing, and managing systems and mobility services. Among the most common big data applications within the transport sector are, for example, real-time traffic monitoring, bus/freight vehicle route optimization, vehicle maintenance, road safety and all the autonomous and connected vehicles applications. Benefits include a reduction in travel times, road accidents and pollutant emissions. Within these issues, the proper transport demand estimation is crucial for sustainable transportation planning. Evaluating the impact of sustainable mobility policies starts with a quantitative analysis of travel demand. Achieving transportation decarbonization goals hinges on precise estimations of demand for individual transport modes. Emerging technologies, offering substantial big data at lower costs than traditional methods, play a pivotal role in this context. Starting from these considerations, this study explores the usefulness impact of big data within transport demand estimation. This research focuses on leveraging (big) data collected during the COVID-19 pandemic to estimate the evolution of the mobility demand in Italy. Estimation results reveal in the post-COVID-19 era, more than 96 million national daily trips, about 2.6 trips per capita, with a mobile population of more than 37.6 million Italian travelers per day. Overall, this research allows us to conclude that big data better enhances rational decision-making for mobility demand estimation, which is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, cloud computing, decision-making, mobility demand, transportation
Procedia PDF Downloads 65103 Challenges, Responses and Governance in the Conservation of Forest and Wildlife: The Case of the Aravali Ranges, Delhi NCR
Authors: Shashi Mehta, Krishan Kumar Yadav
Abstract:
This paper presents an overview of issues pertaining to the conservation of the natural environment and factors affecting the coexistence of the forest, wildlife and people. As forests and wildlife together create the basis for economic, cultural and recreational spaces for overall well-being and life-support systems, the adverse impacts of increasing consumerism are only too evident. The IUCN predicts extinction of 41% of all amphibians and 26% of mammals. The major causes behind this threatened extinction are Deforestation, Dysfunctional governance, Climate Change, Pollution and Cataclysmic phenomena. Thus the intrinsic relationship between natural resources and wildlife needs to be understood in totality, not only for the eco-system but for humanity at large. To demonstrate this, forest areas in the Aravalis- the oldest mountain ranges of Asia—falling in the States of Haryana and Rajasthan, have been taken up for study. The Aravalis are characterized by extreme climatic conditions and dry deciduous forest cover on intermittent scattered hills. Extending across the districts of Gurgaon, Faridabad, Mewat, Mahendergarh, Rewari and Bhiwani, these ranges - with village common land on which the entire economy of the rural settlements depends - fall in the state of Haryana. Aravali ranges with diverse fauna and flora near Alwar town of state of Rajasthan also form part of NCR. Once, rich in biodiversity, the Aravalis played an important role in the sustainable co-existence of forest and people. However, with the advent of industrialization and unregulated urbanization, these ranges are facing deforestation, degradation and denudation. The causes are twofold, i.e. the need of the poor and the greed of the rich. People living in and around the Aravalis are mainly poor and eke out a living by rearing live-stock. With shrinking commons, they depend entirely upon these hills for grazing, fuel, NTFP, medicinal plants and even drinking water. But at the same time, the pressure of indiscriminate urbanization and industrialization in these hills fulfils the demands of the rich and powerful in collusion with Government agencies. The functionaries of federal and State Governments play largely a negative role supporting commercial interests. Additionally, planting of a non- indigenous species like prosopis juliflora across the ranges has resulted in the extinction of almost all the indigenous species. The wildlife in the area is also threatened because of the lack of safe corridors and suitable habitat. In this scenario, the participatory role of different stakeholders such as NGOs, civil society and local community in the management of forests becomes crucial not only for conservation but also for the economic wellbeing of the local people. Exclusion of villagers from protection and conservation efforts - be it designing, implementing or monitoring and evaluating could prove counterproductive. A strategy needs to be evolved, wherein Government agencies be made responsible by putting relevant legislation in place along with nurturing and promoting the traditional wisdom and ethics of local communities in the protection and conservation of forests and wild life in the Aravali ranges of States of Haryana and Rajasthan of the National Capital Region, Delhi.Keywords: deforestation, ecosystem, governance, urbanization
Procedia PDF Downloads 327102 Prevalence of Chronic Diseases and Predictors of Mortality in Home Health Care Service: Data From Saudi Arabia
Authors: Walid A. Alkeridy, Arwa Aljasser, Khalid Mohammed Alayed, Saad Alsaad, Amani S. Alqahtani, Claire Ann Lim, Sultan H. Alamri, Doaa Zainhom Mekkawy, Mohammed Al-Sofiani
Abstract:
Introduction: The history of publicly funded Home Health Care (HHC) service in Saudi Arabia dates back to 1991. The first HC program was launched to provide palliative home care services for patients with terminal cancer. Thereafter, more programs launched across Saudi Arabia most remarkably was launching the national program for HHC by the Ministry Of Health (MOH) in 2008. The national HHC MOH program is mainly providing long-term care home care services for over 40,000 Saudi citizens. The scope of the HHC service program provided by the Saudi MOH is quite diverse, ranging from basic nursing care to specialized care programs, e.g., home peritoneal dialysis, home ventilation, home infusion therapy, etc. Objectives: The primary aim of our study is to report the prevalence of chronic conditions among Saudi people receiving long-term HHC services. Secondary aims include identifying the predictors of mortality among individuals receiving long-term HHC services and studying the association between frailty and poor health outcomes among HHC users. Methods: We conducted a retrospective and cross-sectional data collection from participants receiving HHC services at King Saud University Medical City, Riyadh, Saudi Arabia. Data were collected from electronic health records (EHR), patient charts, and interviewing caregivers from the year 2019 to 2022. We assessed functional performance by Katz's activity of daily living and the Bristol Activity of Daily Living Scale (BADLS). A trained health care provider assessed frailty using the Clinical Frailty Scale (CFS). Mortality was assessed by reviewing the death certificates if patients were hospitalized through discharge status ascertainment from EHR. Results: The mean age for deceased individuals in HHC was 78.3 years. Over twenty percent of individuals receiving HHC services were readmitted to the hospital. The following variables were statistically significant between deceased and alive individuals receiving HHC services; clinical frailty scale, the total number of comorbid conditions, and functional performance based on the KATZ activity of daily living scale and the BADLS. We found that the strongest predictors for mortality were pressure ulcers which had an odds ratio of 3.75 and p-value of < 0.0001, and the clinical frailty scale, which had an odds ratio of 1.69 and p-value of 0.002, using multivariate regression analysis. In conclusion, our study found that pressure ulcers and frailty are the strongest predictors of mortality for individuals receiving home health care services. Moreover, we found a high rate of annual readmission for individuals enrolled in HHC, which requires further analysis to understand the possible contributing factors for the increased rate of hospital readmission and develop strategies to address them. Future studies should focus on designing quality improvement projects aimed at improving the quality of life for individuals receiving HHC services, especially those who have pressure ulcers at the end of life.Keywords: homecare, Saudi, prevalence, chronic
Procedia PDF Downloads 119101 A Regulator's Assessment of Consumer Risk When Evaluating a User Test for an Umbrella Brand Name in an over the Counter Medicine
Authors: A. Bhatt, C. Bassi, H. Farragher, J. Musk
Abstract:
Background: All medicines placed on the EU market are legally required to be accompanied by labeling and package leaflet, which provide comprehensive information, enabling its safe and appropriate use. Mock-ups with results of assessments using a target patient group must be submitted for a marketing authorisation application. Consumers need confidence in non-prescription, OTC medicines in order to manage their minor ailments and umbrella brands assist purchasing decisions by assisting easy identification within a particular therapeutic area. A number of regulatory agencies have risk management tools and guidelines to assist in developing umbrella brands for OTC medicines, however assessment and decision making is subjective and inconsistent. This study presents an evaluation in the UK following the US FDA warning concerning methaemoglobinaemia following 21 reported cases (11 children under 2 years) caused by OTC oral analgesics containing benzocaine. METHODS: A standard face to face, 25 structured task based user interview testing methodology using a standard questionnaire and rating scale in consumers aged 15-91 years, was conducted independently between June and October 2015 in their homes. Whether individuals could discriminate between the labelling, safety information and warnings on cartons and PILs between 3 different OTC medicines packs with the same umbrella name was evaluated. Each pack was presented with differing information hierarchy using, different coloured cartons, containing the 3 different active ingredients, benzocaine (oromucosal spray) and two lozenges containing 2, 4, dichlorobenzyl alcohol, amylmetacresol and hexylresorcinol respectively (for the symptomatic relief of sore throat pain). The test was designed to determine whether warnings on the carton and leaflet were prominent, accessible to alert users that one product contained benzocaine, risk of methaemoglobinaemia, and refer to the leaflet for the signs of the condition and what to do should this occur. Results: Two consumers did not locate the warnings on the side of the pack, eventually found them on the back and two suggestions to further improve accessibility of the methaemoglobinaemia warning. Using a gold pack design for the oromucosal spray, all consumers could differentiate between the 3 drugs, minimum age particulars, pharmaceutical form and the risk factor methaemoglobinaemia. The warnings for benzocaine were deemed to be clear or very clear; appearance of the 3 packs were either very well differentiated or quite well differentiated. The PIL test passed on all criteria. All consumers could use the product correctly, identify risk factors ensuring the critical information necessary for the safe use was legible and easily accessible so that confusion and errors were minimised. Conclusion: Patients with known methaemoglobinaemia are likely to be vigilant in checking for benzocaine containing products, despite similar umbrella brand names across a range of active ingredients. Despite these findings, the package design and spray format were not deemed to be sufficient to mitigate potential safety risks associated with differences in target populations and contraindications when submitted to the Regulatory Agency. Although risk management tools are increasingly being used by agencies to assist in providing objective assurance of package safety, further transparency, reduction in subjectivity and proportionate risk should be demonstrated.Keywords: labelling, OTC, risk, user testing
Procedia PDF Downloads 309100 Adapting Hazard Analysis and Critical Control Points (HACCP) Principles to Continuing Professional Education
Authors: Yaroslav Pavlov
Abstract:
In the modern world, ensuring quality has become increasingly important in various fields of human activity. One universal approach to quality management, proven effective in the food industry, is the HACCP (Hazard Analysis and Critical Control Points) concept. Based on principles of preventing potential hazards to consumers at all stages of production, from raw materials to the final product, HACCP offers a systematic approach to identifying, assessing risks, and managing critical control points (CCPs). Initially used primarily for food production, it was later effectively adapted to the food service sector. Implementing HACCP provides organizations with a reliable foundation for improving food safety, covering all links in the food chain from producer to consumer, making it an integral part of modern quality management systems. The main principles of HACCP—hazard identification, CCP determination, effective monitoring procedures, corrective actions, regular checks, and documentation—are universal and can be adapted to other areas. The adaptation of the HACCP concept is relevant for continuing professional education (CPE) with certain reservations. Specifically, it is reasonable to abandon the term ‘hazards’ as deviations in CCPs do not pose dangers, unlike in food production. However, the approach through CCP analysis and the use of HACCP's main principles for educational services are promising. This is primarily because it allows for identifying key CCPs based on the value creation model of a specific educational organization and consequently focusing efforts on specific CCPs to manage the quality of educational services. This methodology can be called the Analysis of Critical Points in Educational Services (ACPES). ACPES offers a similar approach to managing the quality of educational services, focusing on preventing and eliminating potential risks that could negatively impact the educational process, learners' achievement of set educational goals, and ultimately lead to students rejecting the organization's educational services. ACPES adapts proven HACCP principles to educational services, enhancing quality management effectiveness and student satisfaction. ACPES includes identifying potential problems at all stages of the educational process, from initial interest to graduation and career development. In ACPES, the term "hazards" is replaced with "problematic areas," reflecting the specific nature of the educational environment. Special attention is paid to determining CCPs—stages where corrective measures can most effectively prevent or minimize the risk of failing educational goals. The ACPES principles align with HACCP's principles, adjusted for the specificities of CPE. The method of the learner's journey map (variation of Customer Journey Map, CJM) can be used to overcome the complexity of formalizing the production chain in educational services. CJM provides a comprehensive understanding of the learner's experience at each stage, facilitating targeted and effective quality management. Thus, integrating the learner's journey map into ACPES represents a significant extension of the methodology's capabilities, ensuring a comprehensive understanding of the educational process and forming an effective quality management system focused on meeting learners' needs and expectations.Keywords: quality management, continuing professional education, customer journey map, HACCP
Procedia PDF Downloads 3899 Integrating Animal Nutrition into Veterinary Science: Enhancing Health, Productivity, and Sustainability through Advanced Nutritional Strategies and Collaborative Approaches
Authors: Namiiro Shirat Umar
Abstract:
The science of animals and veterinary medicine is a multidisciplinary field dedicated to understanding, managing, and enhancing the health and welfare of animals. This field encompasses a broad spectrum of disciplines, including animal physiology, genetics, nutrition, behavior, and pathology, as well as preventive and therapeutic veterinary care. Veterinary science focuses on diagnosing, treating, and preventing diseases in animals, ensuring their health and well-being. It involves the study of various animal species, from companion animals and livestock to wildlife and exotic species. Through advanced diagnostic techniques, medical treatments, and surgical procedures, veterinarians address a wide range of health issues, from infectious diseases and injuries to chronic conditions and reproductive health. Animal science complements veterinary medicine by providing a deeper understanding of animal biology and behavior, which is essential for effective health management. It includes research on animal breeding, nutrition, and husbandry practices aimed at improving animal productivity and welfare. Incorporating modern technologies and methodologies, such as genomics, bioinformatics, and precision farming, the science of animals and veterinary medicine continually evolves to address emerging challenges. This integrated approach ensures the development of sustainable practices, enhances animal welfare and contributes to public health by monitoring zoonotic diseases and ensuring the safety of animal products. Animal nutrition is a cornerstone of animal and veterinary science, focusing on the dietary needs of animals to promote health, growth, reproduction, and overall well-being. Proper nutrition ensures that animals receive essential nutrients, including macronutrients (carbohydrates, proteins, fats) and micronutrients (vitamins, minerals), tailored to their specific species, life stages, and physiological conditions. By emphasizing a balanced diet, animal nutrition serves as a preventive measure against diseases and enhances recovery from illnesses, reducing the need for pharmaceutical interventions. It addresses key health issues such as metabolic disorders, reproductive inefficiencies, and immune system deficiencies. Moreover, optimized nutrition improves the quality of animal products like meat, milk, and eggs and enhances the sustainability of animal farming by improving feed efficiency and reducing environmental waste. The integration of animal nutrition into veterinary practice necessitates a collaborative approach involving veterinarians, animal nutritionists, and farmers. Advances in nutritional science, such as precision feeding and the use of nutraceuticals, provide innovative solutions to traditional veterinary challenges. Overall, the focus on animal nutrition as a primary aspect of veterinary care leads to more holistic, sustainable, and effective animal health management practices, promoting the welfare and productivity of animals in various settings. This abstract is a trifold in nature as it traverses how education can put more emphasis on animal nutrition as an alternative for improving animal health as an important issue espoused under the discipline of animal and veterinary science; therefore, brief aspects of this paper and they are as follows; animal nutrition, veterinary science and animals.Keywords: animal nutrition as a way to enhance growth, animal science as a study, veterinary science dealing with health of the animals, animals healthcare dealing with proper sanitation
Procedia PDF Downloads 3398 Mean Nutrient Intake and Nutrient Adequacy Ratio in India: Occurrence of Hidden Hunger in Indians
Authors: Abha Gupta, Deepak K. Mishra
Abstract:
The focus of food security studies in India has been on the adequacy of calories and its linkage with poverty level. India currently being undergoing a massive demographic and epidemiological transition has demonstrated a decline in average physical activity with improved mechanization and urbanization. Food consumption pattern is also changing with decreasing intake of coarse cereals and a marginal increase in the consumption of fruits, vegetables and meat products resulting into a nutrition transition in the country. However, deficiency of essential micronutrients such as vitamins and minerals is rampant despite their growing importance in fighting back with lifestyle and other modern diseases. The calorie driven studies can hardly tackle the complex problem of malnutrition. This paper fills these research lacuna and analyses mean intake of different major and micro-nutrients among different socio-economic groups and adequacy of these nutrients from recommended dietary allowance. For the purpose, a cross-sectional survey covering 304 households selected through proportional stratified random sampling was conducted in six villages of Aligarh district of the state of Uttar Pradesh, India. Data on quantity consumed of 74 food items grouped into 10 food categories with a recall period of seven days was collected from the households and converted into energy, protein, fat, carbohydrate, calcium, iron, thiamine, riboflavin, niacin and vitamin C using standard guidelines of National Institute of Nutrition. These converted nutrients were compared with recommended norms given by National Nutrition Monitoring Bureau. Per capita nutrient adequacy was calculated by dividing mean nutrient intake by the household size and then by comparing it with recommended norm. Findings demonstrate that source of both macro and micro-nutrients are mainly cereals followed by milk, edible oil and sugar items. Share of meat in providing essential nutrients is very low due to vegetarian diet. Vegetables, pulses, nuts, fruits and dry fruits are a poor source for most of the nutrients. Further analysis evinces that intake of most of the nutrients is higher than the recommended norm. Riboflavin is the only vitamin whose intake is less than the standard norm. Poor group, labour, small farmers, Muslims, scheduled caste demonstrate comparatively lower intake of all nutrients than their counterpart groups, though, they get enough macro and micro-nutrients significantly higher than the norm. One of the major reasons for higher intake of most of the nutrients across all socio-economic groups is higher consumption of monotonous diet based on cereals and milk. Most of the nutrients get their major share from cereals particularly wheat and milk intake. It can be concluded from the analysis that although there is adequate intake of most of the nutrients in the diet of rural population yet their source is mainly cereals and milk products depicting a monotonous diet. Hence, more efforts are needed to diversify the diet by giving more focus to the production of other food items particularly fruits, vegetables and pulse products. Awareness among the population, more accessibility and incorporating food items other than cereals in government social safety programmes are other measures to improve food security in India.Keywords: hidden hunger, India, nutrients, recommended norm
Procedia PDF Downloads 31797 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces
Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava
Abstract:
Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection
Procedia PDF Downloads 22996 Education Management and Planning with Manual Based
Authors: Purna Bahadur Lamichhane
Abstract:
Education planning and management are foundational pillars for developing effective educational systems. However, in many educational contexts, especially in developing nations, technology-enabled management is still emerging. In such settings, manual-based systems, where instructions and guidelines are physically documented, remain central to educational planning and management. This paper examines the effectiveness, challenges, and potential of manual-based education planning systems in fostering structured, reliable, and adaptable management frameworks. The objective of this study is to explore how a manual-based approach can successfully guide administrators, educators, and policymakers in delivering high-quality education. By using structured, accessible instructions, this approach serves as a blueprint for educational governance, offering clear, actionable steps to achieve institutional goals. Through an analysis of case studies from various regions, the paper identifies key strategies for planning school schedules, managing resources, and monitoring academic and administrative performance without relying on automated systems. The findings underscore the significance of organized documentation, standard operating procedures, and comprehensive manuals that establish uniformity and maintain educational standards across institutions. With a manual-based approach, management can remain flexible, responsive, and user-friendly, especially in environments where internet access and digital literacy are limited. Moreover, it allows for localization, where instructions can be tailored to the unique cultural and socio-economic contexts of the community, thereby increasing relevancy and ownership among local stakeholders. This paper also highlights several challenges associated with manual-based education management. Manual systems often require significant time and human resources for maintenance and updating, potentially leading to inefficiencies and inconsistencies over time. Furthermore, manual records can be susceptible to loss, damage, and limited accessibility, which may affect decision-making and institutional memory. There is also the risk of siloed information, where crucial data resides with specific individuals rather than being accessible across the organization. However, with proper training and regular oversight, many of these limitations can be mitigated. The study further explores the potential for hybrid approaches, combining manual planning with selected digital tools for record-keeping, reporting, and analytics. This transitional strategy can enable schools and educational institutions to gradually embrace digital solutions without discarding the familiarity and reliability of manual instructions. In conclusion, this paper advocates for a balanced, context-sensitive approach to education planning and management. While digital systems hold the potential to streamline processes, manual-based systems offer resilience, inclusivity, and adaptability for institutions where technology adoption may be constrained. Ultimately, by reinforcing the importance of structured, detailed manuals and instructional guides, educational institutions can build robust management frameworks that facilitate both short-term successes and long-term growth in their educational mission. This research aims to provide a reference for policymakers, educators, and administrators seeking practical, low-cost, and adaptable solutions for sustainable educational planning and management.Keywords: educatoin, planning, management, manual
Procedia PDF Downloads 1995 Effectiveness of Gamified Simulators in the Health Sector
Authors: Nuno Biga
Abstract:
The integration of serious games with gamification in management education and training has gained significant importance in recent years as innovative strategies are sought to improve target audience engagement and learning outcomes. This research builds on the author's previous work in this field and presents a case study that evaluates the ex-post impact of a sample of applications of the BIGAMES management simulator in the training of top managers from various hospital institutions. The methodology includes evaluating the reaction of participants after each edition of BIGAMES Accident & Emergency (A&E) carried out over the last 3 years, as well as monitoring the career path of a significant sample of participants and their feedback more than a year after their experience with this simulator. Control groups will be set up, according to the type of role their members held when they took part in the BIGAMES A&E simulator: Administrators, Clinical Directors and Nursing Directors. Former participants are invited to answer a questionnaire structured for this purpose, where they are asked, among other questions, about the importance and impact that the BIGAMES A&E simulator has had on their professional activity. The research methodology also includes an exhaustive literature review, focusing on empirical studies in the field of education and training in management and business that investigate the effectiveness of gamification and serious games in improving learning, team collaboration, critical thinking, problem-solving skills and overall performance, with a focus on training contexts in the health sector. The results of the research carried out show that gamification and serious games that simulate real scenarios, such as Business Interactive Games - BIGAMES©, can significantly increase the motivation and commitment of participants, stimulating the development of transversal skills, the mobilization of group synergies and the acquisition and retention of knowledge through interactive user-centred scenarios. Individuals who participate in game-based learning series show a higher level of commitment to learning because they find these teaching methods more enjoyable and interactive. This research study aims to demonstrate that, as executive education and training programs develop to meet the current needs of managers, gamification and serious games stand out as effective means of bridging the gap between traditional teaching methods and modern educational and training requirements. To this end, this research evaluates the medium/long-term effects of gamified learning on the professional performance of participants in the BIGAMES simulator applied to healthcare. Based on the conclusions of the evaluation of the effectiveness of training using gamification and taking into account the results of the opinion poll of former A&E participants, this research study proposes an integrated approach for the transversal application of the A&E Serious Game in various educational contexts, covering top management (traditionally the target audience of BIGAMES A&E), middle and operational management in healthcare institutions (functional area heads and professionals with career development potential), as well as higher education in medicine and nursing courses. The integrated solution called “BIGAMES A&E plus”, developed as part of this research, includes the digitalization of key processes and the incorporation of AI.Keywords: artificial intelligence (AI), executive training, gamification, higher education, management simulators, serious games (SG), training effectiveness
Procedia PDF Downloads 1594 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study
Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki
Abstract:
Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxietyKeywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation
Procedia PDF Downloads 15393 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors
Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis
Abstract:
A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation
Procedia PDF Downloads 25092 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 2991 Assessing Flexural Damage Mechanisms Induced by Mesoscopic Buckle Defects in Textile-Reinforced Polymer Matrix Composites Using Acoustic Emission Analysis
Authors: Christopher Okechukwu Ndukwe
Abstract:
This paper investigates and categorizes the flexural damage mechanisms in composite materials caused by mesoscopic out-of-plane buckle defects that occur during the initial stage of the resin transfer molding (RTM) process. The findings of this study have significant practical implications for the manufacturing and use of composite materials, as they provide a deeper understanding of these damage mechanisms and their analysis. During the initial stage of shaping a preform, alterations, and distortions in the reinforcement sample can significantly lead to defects, such as buckling, especially when forming double-curvature geometries. These recurring mesoscopic defects have been investigated using a specialized laboratory bench designed to reproduce buckle defects like those found in complex geometric shapes, such as tetrahedrons. The study examined two sample configurations with buckle defects in the longitudinal and transverse directions alongside a reference sample for comparison. An acoustic emission (AE) system, a well-regarded non-contact method for monitoring structural health, was used to analyze the mechanical behavior of material samples in detail. An unsupervised K-means algorithm was employed to classify the damage mechanisms—such as matrix cracking, interface damage, and fiber breakage linked to the samples' failure. A standard was established based on three AE parameters: absolute energy, amplitude, and the number of AE events. This standard helped identify the origin and sequence of damage propagation. Initially, the results of the AE parameters were superimposed with the flexural loading curves to pinpoint the loading phases during which damage began and the specific points at which the samples ultimately failed. The normalized density of AE events related to different damage mechanisms was evaluated by analyzing the number of AE events within the amplitude domain of the AE signals. The ranges of the identified damage mechanisms in the amplitude plane illustrate the progression and order of load transfer among the elements of the composite material. In the reference sample, the AE event signals corresponding to the three classes of damage mechanisms partially overlap with adjacent signals. In contrast, the two defective sample configurations showed that the overlapping AE event signals for the respective damage mechanisms converged within the intermediate damage mode area at specific points, depending on the sample configuration. The convergence points in the samples with transverse defects were identified relatively earlier than in the other samples. Low and high amplitude ranges characterize the matrix cracking and fiber breakage damage mechanisms. The low amplitude damage occurred over a more extended length, while the high amplitude damage began much earlier. This results in the signals from both damage mechanisms converging at the center of the interface damage zone. This convergence suggests that all individual composite components fail concurrently at specific points in the defective samples, resulting in rapid fragmentation and ultimately contributing to failure. Overall, the results show that mesoscopic out-of-plane buckling in all directions affects the composite's flexural response, with more severe effects observed when the load is applied transversely.Keywords: acoustic emission, composite reinforcement, damage mechanisms, mesoscopic buckle defects
Procedia PDF Downloads 1190 Factors Affecting Treatment Resilience in Patients with Oesophago-Gastric Cancers Undergoing Palliative Chemotherapy: A Literature Review
Authors: Kiran Datta, Daniella Holland-Hart, Anthony Byrne
Abstract:
Introduction: Oesophago-gastric (OG) cancers are the fifth commonest in the UK, accounting for over 12,000 deaths each year. Most patients will present at later stages of the disease, with only 21% of patients with stage 4 disease surviving longer than a year. As a result, many patients are unsuitable for curative surgery and instead receive palliative treatment to improve prognosis and symptom burden. However, palliative chemotherapy can result in significant toxicity: almost half of the patients are unable to complete their chemotherapy regimen, with this proportion rising significantly in older and frailer patients. In addition, clinical trials often exclude older and frailer patients due to strict inclusion criteria, meaning there is limited evidence to guide which patients are most likely to benefit from palliative chemotherapy. Inappropriate chemotherapy administration is at odds with the goals of palliative treatment and care, which are to improve quality of life, and this also represents a significant resource expenditure. This literature review aimed to examine and appraise evidence regarding treatment resilience in order to guide clinicians in identifying the most suitable candidates for palliative chemotherapy. Factors influencing treatment resilience were assessed, as measured by completion rates, dose reductions, and toxicities. Methods: This literature review was conducted using rapid review methodology, utilising modified systematic methods. A literature search was performed across the MEDLINE, EMBASE, and Cochrane Library databases, with results limited to papers within the last 15 years and available in English. Key inclusion criteria included: 1) participants with either oesophageal, gastro-oesophageal junction, or gastric cancers; 2) patients treated with palliative chemotherapy; 3) available data evaluating the association between baseline participant characteristics and treatment resilience. Results: Of the 2326 papers returned, 11 reports of 10 studies were included in this review after excluding duplicates and irrelevant papers. Treatment resilience factors that were assessed included: age, performance status, frailty, inflammatory markers, and sarcopenia. Age was generally a poor predictor for how well patients would tolerate chemotherapy, while poor performance status was a better indicator of the need for dose reduction and treatment non-completion. Frailty was assessed across one cohort using multiple screening tools and was an effective marker of the risk of toxicity and the requirement for dose reduction. Inflammatory markers included lymphopenia and the Glasgow Prognostic Score, which assessed inflammation and hypoalbuminaemia. Although quick to obtain and interpret, these findings appeared less reliable due to the inclusion of patients treated with palliative radiotherapy. Sarcopenia and body composition were often associated with chemotherapy toxicity but not the rate of regimen completion. Conclusion: This review demonstrates that there are numerous measures that can estimate the ability of patients with oesophago-gastric cancer to tolerate palliative chemotherapy, and these should be incorporated into clinical assessments to promote personalised decision-making around treatment. Age should not be a barrier to receiving chemotherapy and older and frailer patients should be included in future clinical trials to better represent typical patients with oesophago-gastric cancers. Decisions regarding palliative treatment should be guided by these factors identified as well as patient preference.Keywords: frailty, oesophago-gastric cancer, palliative chemotherapy, treatment resilience
Procedia PDF Downloads 7889 Big Data Applications for Transportation Planning
Authors: Antonella Falanga, Armando Cartenì
Abstract:
"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning
Procedia PDF Downloads 6188 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates
Authors: Pedro Llanos, Diego García
Abstract:
Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts
Procedia PDF Downloads 13287 An Analysis of Economical Drivers and Technical Challenges for Large-Scale Biohydrogen Deployment
Authors: Rouzbeh Jafari, Joe Nava
Abstract:
This study includes learnings from an engineering practice normally performed on large scale biohydrogen processes. If properly scale-up is done, biohydrogen can be a reliable pathway for biowaste valorization. Most of the studies on biohydrogen process development have used model feedstock to investigate process key performance indicators (KPIs). This study does not intend to compare different technologies with model feedstock. However, it reports economic drivers and technical challenges which help in developing a road map for expanding biohydrogen economy deployment in Canada. BBA is a consulting firm responsible for the design of hydrogen production projects. Through executing these projects, activity has been performed to identify, register and mitigate technical drawbacks of large-scale hydrogen production. Those learnings, in this study, have been applied to the biohydrogen process. Through data collected by a comprehensive literature review, a base case has been considered as a reference, and several case studies have been performed. Critical parameters of the process were identified and through common engineering practice (process design, simulation, cost estimate, and life cycle assessment) impact of these parameters on the commercialization risk matrix and class 5 cost estimations were reported. The process considered in this study is food waste and woody biomass dark fermentation. To propose a reliable road map to develop a sustainable biohydrogen production process impact of critical parameters was studied on the end-to-end process. These parameters were 1) feedstock composition, 2) feedstock pre-treatment, 3) unit operation selection, and 4) multi-product concept. A couple of emerging technologies also were assessed such as photo-fermentation, integrated dark fermentation, and using ultrasound and microwave to break-down feedstock`s complex matrix and increase overall hydrogen yield. To properly report the impact of each parameter KPIs were identified as 1) Hydrogen yield, 2) energy consumption, 3) secondary waste generated, 4) CO2 footprint, 5) Product profile, 6) $/kg-H2 and 5) environmental impact. The feedstock is the main parameter defining the economic viability of biohydrogen production. Through parametric studies, it was found that biohydrogen production favors feedstock with higher carbohydrates. The feedstock composition was varied, by increasing one critical element (such as carbohydrate) and monitoring KPIs evolution. Different cases were studied with diverse feedstock, such as energy crops, wastewater slug, and lignocellulosic waste. The base case process was applied to have reference KPIs values and modifications such as pretreatment and feedstock mix-and-match were implemented to investigate KPIs changes. The complexity of the feedstock is the main bottleneck in the successful commercial deployment of the biohydrogen process as a reliable pathway for waste valorization. Hydrogen yield, reaction kinetics, and performance of key unit operations highly impacted as feedstock composition fluctuates during the lifetime of the process or from one case to another. In this case, concept of multi-product becomes more reliable. In this concept, the process is not designed to produce only one target product such as biohydrogen but will have two or multiple products (biohydrogen and biomethane or biochemicals). This new approach is being investigated by the BBA team and the results will be shared in another scientific contribution.Keywords: biohydrogen, process scale-up, economic evaluation, commercialization uncertainties, hydrogen economy
Procedia PDF Downloads 11086 Medical Workforce Knowledge of Adrenaline (Epinephrine) Administration in Anaphylaxis in Adults Considerably Improved with Training in an UK Hospital from 2010 to 2017
Authors: Jan C. Droste, Justine Burns, Nithin Narayan
Abstract:
Introduction: Life-threatening detrimental effects of inappropriate adrenaline (epinephrine) administration, e.g., by giving the wrong dose, in the context of anaphylaxis management is well documented in the medical literature. Half of the fatal anaphylactic reactions in the UK are iatrogenic, and the median time to a cardio-respiratory arrest can be as short as 5 minutes. It is therefore imperative that hospital doctors of all grades have active and accurate knowledge of the correct route, site, and dosage of administration of adrenaline. Given this time constraint and the potential fatal outcome with inappropriate management of anaphylaxis, it is alarming that surveys over the last 15 years have repeatedly shown only a minority of doctors to have accurate knowledge of adrenaline administration as recommended by the UK Resuscitation Council guidelines (2008 updated 2012). This comparison of survey results of the medical workforce over several years in a small NHS District General Hospital was conducted in order to establish the effect of the employment of multiple educational methods regarding adrenaline administration in anaphylaxis in adults. Methods: Between 2010 and 2017, several education methods and tools were used to repeatedly inform the medical workforce (doctors and advanced clinical practitioners) in a single district general hospital regarding the treatment of anaphylaxis in adults. Whilst the senior staff remained largely the same cohort, junior staff had changed fully in every survey. Examples included: (i) Formal teaching -in Grand Rounds; during the junior doctors’ induction process; advanced life support courses (ii) In-situ simulation training performed by the clinical skills simulation team –several ad hoc sessions and one 3-day event in 2017 visiting 16 separate clinical areas performing an acute anaphylaxis scenario using actors- around 100 individuals from multi-disciplinary teams were involved (iii) Hospital-wide distribution of the simulation event via the Trust’s Simulation Newsletter (iv) Laminated algorithms were attached to the 'crash trolleys' (v) A short email 'alert' was sent to all medical staff 3 weeks prior to the survey detailing the emergency treatment of anaphylaxis (vi) In addition, the performance of the surveys themselves represented a teaching opportunity when gaps in knowledge could be addressed. Face to face surveys were carried out in 2010 ('pre-intervention), 2015, and 2017, in the latter two occasions including advanced clinical practitioners (ACP). All surveys consisted of convenience samples. If verbal consent to conduct the survey was obtained, the medical practitioners' answers were recorded immediately on a data collection sheet. Results: There was a sustained improvement in the knowledge of the medical workforce from 2010 to 2017: Answers improved regarding correct drug by 11% (84%, 95%, and 95%); the correct route by 20% (76%, 90%, and 96%); correct site by 40% (43%, 83%, and 83%) and the correct dose by 45% (27%, 54%, and 72%). Overall, knowledge of all components -correct drug, route, site, and dose-improved from 13% in 2010 to 62% in 2017. Conclusion: This survey comparison shows knowledge of the medical workforce regarding adrenaline administration for treatment of anaphylaxis in adults can be considerably improved by employing a variety of educational methods.Keywords: adrenaline, anaphylaxis, epinephrine, medical education, patient safety
Procedia PDF Downloads 12985 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories
Authors: Berna Çalışkan
Abstract:
The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.Keywords: water resources management, hydro tool, water protection, transportation
Procedia PDF Downloads 5884 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 1483 A Proposed Treatment Protocol for the Management of Pars Interarticularis Pathology in Children and Adolescents
Authors: Paul Licina, Emma M. Johnston, David Lisle, Mark Young, Chris Brady
Abstract:
Background: Lumbar pars pathology is a common cause of pain in the growing spine. It can be seen in young athletes participating in at-risk sports and can affect sporting performance and long-term health due to its resistance to traditional management. There is a current lack of consensus of classification and treatment for pars injuries. Previous systems used CT to stage pars defects but could not assess early stress reactions. A modified classification is proposed that considers findings on MRI, significantly improving early treatment guidance. The treatment protocol is designed for patients aged 5 to 19 years. Method: Clinical screening identifies patients with a low, medium, or high index of suspicion for lumbar pars injury using patient age, sport participation and pain characteristics. MRI of the at-risk cohort enables augmentation of existing CT-based classification while avoiding ionising radiation. Patients are classified into five categories based on MRI findings. A type 0 lesion (stress reaction) is present when CT is normal and MRI shows high signal change (HSC) in the pars/pedicle on T2 images. A type 1 lesion represents the ‘early defect’ CT classification. The group previously referred to as a 'progressive stage' defect on CT can be split into 2A and 2B categories. 2As have HSC on MRI, whereas 2Bs do not. This distinction is important with regard to healing potential. Type 3 lesions are terminal stage defects on CT, characterised by pseudarthrosis. MRI shows no HSC. Results: Stress reactions (type 0) and acute fractures (1 and 2a) can heal and are treated in a custom-made hard brace for 12 weeks. It is initially worn 23 hours per day. At three weeks, patients commence basic core rehabilitation. At six weeks, in the absence of pain, the brace is removed for sleeping. Exercises are progressed to positions of daily living. Patients with continued pain remain braced 23 hours per day without exercise progression until becoming symptom-free. At nine weeks, patients commence supervised exercises out of the brace for 30 minutes each day. This allows them to re-learn muscular control without rigid support of the brace. At 12 weeks, bracing ceases and MRI is repeated. For patients with near or complete resolution of bony oedema and healing of any cortical defect, rehabilitation is focused on strength and conditioning and sport-specific exercise for the full return to activity. The length of this final stage is approximately nine weeks but depends on factors such as development and level of sports participation. If significant HSC remains on MRI, CT scan is considered to definitively assess cortical defect healing. For these patients, return to high-risk sports is delayed for up to three months. Chronic defects (2b and 3) cannot heal and are not braced, and rehabilitation follows traditional protocols. Conclusion: Appropriate clinical screening and imaging with MRI can identify pars pathology early. In those with potential for healing, we propose hard bracing and appropriate rehabilitation as part of a multidisciplinary management protocol. The validity of this protocol will be tested in future studies.Keywords: adolescents, MRI classification, pars interticularis, treatment protocol
Procedia PDF Downloads 15482 Redox-labeled Electrochemical Aptasensor Array for Single-cell Detection
Authors: Shuo Li, Yannick Coffinier, Chann Lagadec, Fabrizio Cleri, Katsuhiko Nishiguchi, Akira Fujiwara, Soo Hyeon Kim, Nicolas Clément
Abstract:
The need for single cell detection and analysis techniques has increased in the past decades because of the heterogeneity of individual living cells, which increases the complexity of the pathogenesis of malignant tumors. In the search for early cancer detection, high-precision medicine and therapy, the technologies most used today for sensitive detection of target analytes and monitoring the variation of these species are mainly including two types. One is based on the identification of molecular differences at the single-cell level, such as flow cytometry, fluorescence-activated cell sorting, next generation proteomics, lipidomic studies, another is based on capturing or detecting single tumor cells from fresh or fixed primary tumors and metastatic tissues, and rare circulating tumors cells (CTCs) from blood or bone marrow, for example, dielectrophoresis technique, microfluidic based microposts chip, electrochemical (EC) approach. Compared to other methods, EC sensors have the merits of easy operation, high sensitivity, and portability. However, despite various demonstrations of low limits of detection (LOD), including aptamer sensors, arrayed EC sensors for detecting single-cell have not been demonstrated. In this work, a new technique based on 20-nm-thick nanopillars array to support cells and keep them at ideal recognition distance for redox-labeled aptamers grafted on the surface. The key advantages of this technology are not only to suppress the false positive signal arising from the pressure exerted by all (including non-target) cells pushing on the aptamers by downward force but also to stabilize the aptamer at the ideal hairpin configuration thanks to a confinement effect. With the first implementation of this technique, a LOD of 13 cells (with5.4 μL of cell suspension) was estimated. In further, the nanosupported cell technology using redox-labeled aptasensors has been pushed forward and fully integrated into a single-cell electrochemical aptasensor array. To reach this goal, the LOD has been reduced by more than one order of magnitude by suppressing parasitic capacitive electrochemical signals by minimizing the sensor area and localizing the cells. Statistical analysis at the single-cell level is demonstrated for the recognition of cancer cells. The future of this technology is discussed, and the potential for scaling over millions of electrodes, thus pushing further integration at sub-cellular level, is highlighted. Despite several demonstrations of electrochemical devices with LOD of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to their challenging implementation at a large scale. Here, the introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array based on Brownian-fluctuating redox species opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.Keywords: bioelectrochemistry, aptasensors, single-cell, nanopillars
Procedia PDF Downloads 11981 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 14980 A Multidisciplinary Team Approach for Limb Salvage in a Rare Case of Pyoderma Gangrenosum in a Significant Circumferential Lower Extremity Wound Complicated by Diabetes and End-stage Renal Disease
Authors: Jenee Gooden, Kevin Vasquez-monterroso, Lady Paula Dejesus, Sandra Wainwright, Daniel Kim, Mackenzie Walker
Abstract:
Introduction: Pyoderma gangrenosum (PG) is a rare, rapidly progressive, neutrophilic ulcerative colitis condition with an incidence of 3 to 10 cases per year ¹ ². Due to the similar appearance, PG is often misdiagnosed as a diabetic ulcer in diabetic patients. Though they may clinically appear similar in appearance, the treatment protocol and diagnostic criteria differ. Also, end-stage renal disease (ESRD) is often a condition seen in diabetic patients, which can have a significant impact on wound healing due to the wide range of uremic toxins³. This case study demonstrates a multidisciplinary team and multimodal treatment approach by podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine for an uncontrolled diabetic with pyoderma gangrenosum of a significant circumferential wound, covering almost the entire right lower extremity. Methods:56 y.o male presents with multiple PG ulcerations, including the chest, right posterior lower extremity and sacrum. All ulcerations were previously managed by the same wound care specialist. His chief complaint was worsening PG ulcerations accompanied by a fever of 103 °F . This case study focuses on the wound to his RLE. Past medical history significant for diabetes mellitus type 2 with hemoglobin A1c of 10% and end stage renal disease (ESRD) on hemodialysis. A multidisciplinary team approach by podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine was successfully used to perform right lower extremity limb salvage. The patient was managed by rheumatology for the continuation of prior medication, as well as the mutual agreement with wound care for the addition of dapsone. A coronary CT angiogram was performed by interventional cardiology, but no significant disease was noted, and no further vascular workup was necessary. Multiple surgical sharp wide excisional debridements with application of allografts and split thickness skin grafts for the circumferential ulceration that encompassed almost the entire right lower extremity were performed by both podiatric surgery and general surgery. Wound cultures and soft tissue biopsies were performed, and infectious disease managed antibiotic therapy. Hyperbaric oxygen therapy and wound vac therapy by wound care were also completed as adjunct management. Results: Prevention of leg amputation by limb salvage of the RLE was accomplished by a multidisciplinary team approach, with the wound size decreasing over a total of 29 weeks from 600 cm² to 12.0 x 3.5 x 0.2 cm. Our multidisciplinary team included podiatric surgery, general surgery, rheumatology, infectious disease, interventional cardiology, wound care and hyperbaric medicine. Discussion: Wound healing, in general, can have its challenges, and those challenges are only magnified when accompanied by multiple systemic illnesses. Though the negative impact of diabetes on wound healing is well known, the compound impact of being a diabetic with ESRD and having pyoderma gangrenosum is not. This case demonstrates the necessity for a multidisciplinary team approach with a wide array of treatment modalities to optimize wound healing and perform limb salvage with prevention of lower extremity amputation.Keywords: diabetes, podiatry, pyoderma gangrenosum, end stage renal disease
Procedia PDF Downloads 75