Search results for: motion data acquisition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26840

Search results for: motion data acquisition

20180 Modelling Fluidization by Data-Based Recurrence Computational Fluid Dynamics

Authors: Varun Dongre, Stefan Pirker, Stefan Heinrich

Abstract:

Over the last decades, the numerical modelling of fluidized bed processes has become feasible even for industrial processes. Commonly, continuous two-fluid models are applied to describe large-scale fluidization. In order to allow for coarse grids novel two-fluid models account for unresolved sub-grid heterogeneities. However, computational efforts remain high – in the order of several hours of compute-time for a few seconds of real-time – thus preventing the representation of long-term phenomena such as heating or particle conversion processes. In order to overcome this limitation, data-based recurrence computational fluid dynamics (rCFD) has been put forward in recent years. rCFD can be regarded as a data-based method that relies on the numerical predictions of a conventional short-term simulation. This data is stored in a database and then used by rCFD to efficiently time-extrapolate the flow behavior in high spatial resolution. This study will compare the numerical predictions of rCFD simulations with those of corresponding full CFD reference simulations for lab-scale and pilot-scale fluidized beds. In assessing the predictive capabilities of rCFD simulations, we focus on solid mixing and secondary gas holdup. We observed that predictions made by rCFD simulations are highly sensitive to numerical parameters such as diffusivity associated with face swaps. We achieved a computational speed-up of four orders of magnitude (10,000 time faster than classical TFM simulation) eventually allowing for real-time simulations of fluidized beds. In the next step, we apply the checkerboarding technique by introducing gas tracers subjected to convection and diffusion. We then analyze the concentration profiles by observing mixing, transport of gas tracers, insights about the convective and diffusive pattern of the gas tracers, and further towards heat and mass transfer methods. Finally, we run rCFD simulations and calibrate them with numerical and physical parameters compared with convectional Two-fluid model (full CFD) simulation. As a result, this study gives a clear indication of the applicability, predictive capabilities, and existing limitations of rCFD in the realm of fluidization modelling.

Keywords: multiphase flow, recurrence CFD, two-fluid model, industrial processes

Procedia PDF Downloads 80
20179 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 80
20178 A Study on the Different Components of a Typical Back-Scattered Chipless RFID Tag Reflection

Authors: Fatemeh Babaeian, Nemai Chandra Karmakar

Abstract:

Chipless RFID system is a wireless system for tracking and identification which use passive tags for encoding data. The advantage of using chipless RFID tag is having a planar tag which is printable on different low-cost materials like paper and plastic. The printed tag can be attached to different items in the labelling level. Since the price of chipless RFID tag can be as low as a fraction of a cent, this technology has the potential to compete with the conventional optical barcode labels. However, due to the passive structure of the tag, data processing of the reflection signal is a crucial challenge. The captured reflected signal from a tag attached to an item consists of different components which are the reflection from the reader antenna, the reflection from the item, the tag structural mode RCS component and the antenna mode RCS of the tag. All these components are summed up in both time and frequency domains. The effect of reflection from the item and the structural mode RCS component can distort/saturate the frequency domain signal and cause difficulties in extracting the desired component which is the antenna mode RCS. Therefore, it is required to study the reflection of the tag in both time and frequency domains to have a better understanding of the nature of the captured chipless RFID signal. The other benefits of this study can be to find an optimised encoding technique in tag design level and to find the best processing algorithm the chipless RFID signal in decoding level. In this paper, the reflection from a typical backscattered chipless RFID tag with six resonances is analysed, and different components of the signal are separated in both time and frequency domains. Moreover, the time domain signal corresponding to each resonator of the tag is studied. The data for this processing was captured from simulation in CST Microwave Studio 2017. The outcome of this study is understanding different components of a measured signal in a chipless RFID system and a discovering a research gap which is a need to find an optimum detection algorithm for tag ID extraction.

Keywords: antenna mode RCS, chipless RFID tag, resonance, structural mode RCS

Procedia PDF Downloads 207
20177 Students’ Assessment of Teachers’ Attitude in Universities in Ondo State, Nigeria

Authors: Omoniyi A. Olubunmi, Omoniyi Olayide M.

Abstract:

This study was designed to assess the attitudes of Nigerian university teachers by their students in terms of teachers’ attitude to work, teaching and students. The study was a survey, and made use of the researcher’s designed questionnaire tagged Students’ Assessment Teachers Inventory (SATI), comprising 20 items, was used to collect data. The respondents were 300 students which were randomly selected from three universities in Ondo State. The SATI elicited information on different aspects of teachers’ attitude to work, teaching and students. The study was guided by two hypotheses. Data collected were analyzed using Pearson-r. The result showed that there was a significant relationship between teachers’ attitude to work (r = 0.343, p<0.01), teaching (r = 0.594, p<0.01) and students (r = 0.487, p<0.01). The study concluded that teachers’ attitudes to teaching profession in higher institutions in Ondo State were not favorable and this could be improved through capacity building for effective pedagogical skills, conducive environment, well equipped libraries and laboratories, and provision of incentives for university teachers.

Keywords: capacity building, pedagogical skills, teachers’ attitude, students’ assessment

Procedia PDF Downloads 297
20176 Effect of Aging on the Second Law Efficiency, Exergy Destruction and Entropy Generation in the Skeletal Muscles during Exercise

Authors: Jale Çatak, Bayram Yılmaz, Mustafa Ozilgen

Abstract:

The second law muscle work efficiency is obtained by multiplying the metabolic and mechanical work efficiencies. Thermodynamic analyses are carried out with 19 sets of arms and legs exercise data which were obtained from the healthy young people. These data are used to simulate the changes occurring during aging. The muscle work efficiency decreases with aging as a result of the reduction of the metabolic energy generation in the mitochondria. The reduction of the mitochondrial energy efficiency makes it difficult to carry out the maintenance of the muscle tissue, which in turn causes a decline of the muscle work efficiency. When the muscle attempts to produce more work, entropy generation and exergy destruction increase. Increasing exergy destruction may be regarded as the result of the deterioration of the muscles. When the exergetic efficiency is 0.42, exergy destruction becomes 1.49 folds of the work performance. This proportionality becomes 2.50 and 5.21 folds when the exergetic efficiency decreases to 0.30 and 0.17 respectively.

Keywords: aging mitochondria, entropy generation, exergy destruction, muscle work performance, second law efficiency

Procedia PDF Downloads 429
20175 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid

Procedia PDF Downloads 390
20174 Cardiovascular Disease Data Analysis Using Machine Learning Models

Authors: Ranveet Saggu, Saad Bin Ahmed

Abstract:

Cardiovascular Disease (CVD) is the leading cause of death worldwide. One of its main manifestations, myocardial infarction (commonly known as a heart attack), occurs about 750,000 times a year, caused by insufficient blood flow to a portion of the heart muscle. A quick and accurate diagnosis of a heart attack or heart failure is crucial in the treatment of the patient. The aim of this research project is to improve the prediction of cardiovascular diseases by automating risk assessment using binary classifiers. The methodology includes Exploratory Data Analysis (EDA), which helps to obtain information about the dataset with the help of visualizations and metrics. Additionally, Feature Engineering techniques is employed to address missing values, outliers, feature extraction, and normalizing the dataset. Subsequently, various classification machine learning algorithms are trained, and their accuracy along with other metrics are evaluated to identify the most efficient model in terms of processing time and predictive performance.

Keywords: cardiovascular disease, machine learning, deci- sion trees, logistic regression, k-nearest neighbor, xgboost, random forest, gradient boosting

Procedia PDF Downloads 15
20173 Integrated Marketing Communication to Influencing International Standard Energy Economy Car Buying Decision of Consumers in Bangkok

Authors: Pisit Potjanajaruwit

Abstract:

The objective of this research was to study the influence of Integrated Marketing Communication on Buying Decision of Consumers in Bangkok. A total of 397 respondents were collected from customers who drive in Bangkok. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The effect to the Buying Decision of Consumers in Bangkok to including sale promotion with the low interest and discount for an installment, selling by introducing and gave product information through sales persons, public relation by website, direct marketing by annual motor show and advertisement by television media.

Keywords: Bangkok metropolis, ECO car, integrated marketing communication, international standard

Procedia PDF Downloads 319
20172 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles

Authors: Siamack A. Shirazi, Farzin Darihaki

Abstract:

Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.

Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid

Procedia PDF Downloads 173
20171 The Influence of a Radio Intervention on Farmers’ Practices in Climate Change Mitigation and Adaptation in Kilifi, Kenya

Authors: Fiona Mwaniki

Abstract:

Climate change is considered a serious threat to sustainable development globally and as one of the greatest ecological, economic and social challenges of our time. The global demand for food is projected to increase by 60% by 2050. Small holder farmers who are vulnerable to the adverse effects of climate change are expected to contribute to this projected demand. Effective climate change education and communication is therefore required for smallholder and subsistence farmers’ in order to build communities that are more climate change aware, prepared and resilient. In Kenya radio is the most important and dominant mass communication tool for agricultural extension. This study investigated the potential role of radio in influencing farmers’ understanding and use of climate change information. The broad aims of this study were three-fold. Firstly, to identify Kenyan farmers’ perceptions and responses to the impacts of climate change. Secondly, to develop radio programs that communicate climate change information to Kenyan farmers and thirdly, to evaluate the impact of information disseminated through radio on farmers’ understanding and responses to climate change mitigation and adaptation. This study was conducted within the farming community of Kilifi County, located along the Kenyan coast. Education and communication about climate change was undertaken using radio to make available information understandable to different social and cultural groups. A mixed methods pre-and post-intervention design that provided the opportunity for triangulating results from both quantitative and qualitative data was used. Quantitative and qualitative data was collected simultaneously, where quantitative data was collected through semi structured surveys with 421 farmers’ and qualitative data was derived from 11 focus group interviews, six interviews with key informants and nine climate change experts. The climate change knowledge gaps identified in the initial quantitative and qualitative data were used in developing radio programs. Final quantitative and qualitative data collection and analysis enabled an assessment of the impact of climate change messages aired through radio on the farming community in Kilifi County. Results of this study indicate that 32% of the farmers’ listened to the radio programs and 26% implemented technologies aired on the programs that would help them adapt to climate change. The most adopted technologies were planting drought tolerant crops including indigenous crop varieties, planting trees, water harvesting and use of manure. The proportion of farmers who indicated they knew “a fair amount” about climate change increased significantly (Z= -5.1977, p < 0.001) from 33% (at the pre intervention phase of this study) to 64% (post intervention). However, 68% of the farmers felt they needed “a lot more” information on agriculture interventions (43%), access to financial resources (21%) and the effects of climate change (15%). The challenges farmers’ faced when adopting the interventions included lack of access to financial resources (18%), high cost of adaptation measures (17%), and poor access to water (10%). This study concludes that radio effectively complements other agricultural extension methods and has the potential to engage farmers’ on climate change issues and motivate them to take action.

Keywords: climate change, climate change intervention, farmers, radio

Procedia PDF Downloads 342
20170 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi

Abstract:

Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.

Keywords: decision tree, demographic characteristics, foot disorders, machine learning

Procedia PDF Downloads 266
20169 The Use of Respiratory Index of Severity in Children (RISC) for Predicting Clinical Outcomes for 3 Months-59 Months Old Patients Hospitalized with Community-Acquired Pneumonia in Visayas Community Medical Center, Cebu City from January 2013 - June 2

Authors: Karl Owen L. Suan, Juliet Marie S. Lambayan, Floramay P. Salo-Curato

Abstract:

Objective: To predict the outcome among patients admitted with community-acquired pneumonia (ages 3 months to 59 months old) admitted in Visayas Community Medical Center using the Respiratory Index of Severity in Children (RISC). Design: A cross-sectional study design was used. Setting: The study was done in Visayas Community Medical Center, which is a private tertiary level in Cebu City from January-June 2013. Patients/Participants: A total of 72 patients were initially enrolled in the study. However, 1 patient transferred to another institution, thus 71 patients were included in this study. Within 24 hours from admission, patients were assigned a RISC score. Statistical Analysis: Cohen’s kappa coefficient was used for inter-rater agreement for categorical data. This study used frequency and percentage distribution for qualitative data. Mean, standard deviation and range were used for quantitative data. To determine the relationship of each RISC score parameter and the total RISC score with the outcome, a Mann Whitney U Test and 2x2 Fischer Exact test for testing associations were used. A p value less of than 0.05 alpha was considered significant. Results: There was a statistical significance between RISC score and clinical outcome. RISC score of greater than 4 was correlated with intubation and/or mortality. Conclusion: The RISC scoring system is a simple combination of clinical parameters and a reliable tool that will help stratify patients aged 3 months to 59 months in predicting clinical outcome.

Keywords: RISC, clinical outcome, community-acquired pneumonia, patients

Procedia PDF Downloads 305
20168 The Relationship between Marketing Mix Strategy and Valuable of Muay Thai Training and Thai Massage in Foreign Tourists' Perception

Authors: Thammamonr Khunrattanaporn

Abstract:

The purpose of the research was to examine the relationship between the marketing mix factors and valuable of Muay Thai Training and Thai massage in foreign tourists’ perception. The research used the 8 P’s of marketing framework presented in the theory of compound marketing services strategy. Data was collect using survey for 400 questionnaires using the Quota sampling from foreign tourists travelling in Thailand. The data was analyzed to determine valuation statistics, the frequency, percent average, means and standard deviation and pearson's correlation coefficients. The result shows the foreign tourists’ perception with the marketing mix strategy in term of Muay Thai training and massage regarding curriculum areas: product, pricing, channel distribution, Promotion, Personnel services, Physical evidence and external partnerships the overall, it significant at a high level. The awareness level of service and value for travelers had two aspects of service quality and value for money it significant at the highest level.

Keywords: foreign tourists’ perception, marketing mix strategy, Muay Thai training, the massage

Procedia PDF Downloads 267
20167 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 86
20166 Reasons for Lack of an Ideal Disinfectant after Dental Treatments

Authors: Ilma Robo, Saimir Heta, Rialda Xhizdari, Kers Kapaj

Abstract:

Background: The ideal disinfectant for surfaces, instruments, air, skin, both in dentistry and in the fields of medicine, does not exist.This is for the sole reason that all the characteristics of the ideal disinfectant cannot be contained in one; these are the characteristics that if one of them is emphasized, it will conflict with the other. A disinfectant must be stable, not be affected by changes in the environmental conditions where it stands, which means that it should not be affected by an increase in temperature or an increase in the humidity of the environment. Both of these elements contradict the other element of the idea of an ideal disinfectant, as they disrupt the solubility ratios of the base substance of the disinfectant versus the diluent. Material and methods: The study aims to extract the constant of each disinfectant/antiseptic used during dental disinfection protocols, accompanied by the side effects of the surface of the skin or mucosa where it is applied in the role of antiseptic. In the end, attempts were made to draw conclusions about the best possible combination for disinfectants after a dental procedure, based on the data extracted from the basic literature required during the development of the pharmacology module, as a module in the formation of a dentist, against data published in the literature. Results: The sensitivity of the disinfectant to changes in the atmospheric conditions of the environment where it is kept is a known fact. The care against this element is always accompanied by the advice on the application of the specific disinfectant, in order to have the desired clinical result. The constants of disinfectants according to the classification based on the data collected and presented are for alcohols 70-120, glycols 0.2, aldehydes 30-200, phenols 15-60, acids 100, povidone iodine halogens 5-75, hypochlorous acid halogens 150, sodium hypochlorite halogens 30-35, oxidants 18-60, metals 0.2-10. The part of halogens should be singled out, where specific results were obtained according to the representatives of this class, since it is these representatives that find scope for clinical application in dentistry. Conclusions: The search for the "ideal", in the conditions where its defining criteria are also established, not only for disinfectants but also for any medication or pharmaceutical product, is an ongoing search, without any definitive results. In this mine of data in the published literature if there is something fixed, calculable, such as the specific constant for disinfectants, the search for the ideal is more concrete. During the disinfection protocols, different disinfectants are applied since the field of action is different, including water, air, aspiration devices, tools, disinfectants used in full accordance with the production indications.

Keywords: disinfectant, constant, ideal, side effects

Procedia PDF Downloads 75
20165 Use of Remote Sensing for Seasonal and Temporal Monitoring in Wetlands: A Case Study of Akyatan Lagoon

Authors: A. Cilek, S. Berberoglu, A. Akin Tanriover, C. Donmez

Abstract:

Wetlands are the areas which have important effects and functions on protecting human life, adjust to nature, and biological variety, besides being potential exploitation sources. Observing the changes in these sensitive areas is important to study for data collecting and correct planning for the future. Remote sensing and Geographic Information System are being increasingly used for environmental studies such as biotope mapping and habitat monitoring. Akyatan Lagoon, one of the most important wetlands in Turkey, has been facing serious threats from agricultural applications in recent years. In this study, seasonal and temporal monitoring in wetlands system are determined by using remotely sensed data and Geographic Information Systems (GIS) between 1985 and 2015. The research method is based on classifying and mapping biotopes in the study area. The natural biotope types were determined as coastal sand dunes, salt marshes, river beds, coastal woods, lakes, lagoons.

Keywords: biotope mapping, GIS, remote sensing, wetlands

Procedia PDF Downloads 396
20164 Foreign Direct Investment and Its Impact on the Economic Growth of Emerging Economies: Does Ease of Doing Business Matter?

Authors: Mutaju Marobhe, Pastory Dickson

Abstract:

This study explores the role of Foreign Direct Investment (FDI) in stimulating economic growth of emerging economies. FDIs have been associated with higher economic growth rates in developed countries due to the presence of conducive business conditions e.g. advanced financial markets which may accelerate the rate at which FDI boosts economic growth. So this study sets out to evaluate this macroeconomic phenomenon in emerging economies using the case study of Southern Africa Development Community (SADC) countries. The study uses Ease of Doing Business Index as a variable that moderates the relationship between FDI and economic growth. Panel data ranging from 2010 to 2019 from all SADC members are used and due to the unbalanced nature of the data, fixed effects regression analysis with moderation effect is used to assess this phenomenon. The conclusions and recommendations generated by this study will enable emerging economies to depict how they can be able to significantly improve FDI’s role in accelerating economic growth similarly to developed economies.

Keywords: ease of doing business, economic growth, emerging economies, foreign direct investment

Procedia PDF Downloads 150
20163 Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector

Authors: Arnold I. Malag

Abstract:

The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment.

Keywords: solid waste, coastal waste, waste characterization, waste collector

Procedia PDF Downloads 88
20162 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 112
20161 Coordination Behavior, Theoretical studies and Biological Activity of Some Transition Metal Complexes with Oxime Ligands

Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank

Abstract:

The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands: glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.

Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity

Procedia PDF Downloads 117
20160 Distance Education Technologies for Empowerment and Equity in an Information Technology Environment

Authors: Leila Goosen, Toppie N. Mukasa-Lwanga

Abstract:

The purpose of this paper relates to exploring academics’ use of distance education technologies for empowerment and equity in an Information Technology environment. Literature was studied on academics’ technology use towards effective teaching and meaningful learning in a distance education Information Technology environment. Main arguments presented center on formulating and situating significant concepts within an appropriate theoretical and conceptual framework, including those related to distance education, throughput and other measures of academic efficiency. The research design, sampling, data collection instrument and the validity and reliability thereof, as well as the data analysis method used is described. The paper discusses results related to academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment. Conclusions are finally presented on the way in which this paper makes a significant and original contribution regarding academics’ use of technology towards effective teaching and meaningful learning in a distance education Information Technology environment.

Keywords: distance, education, technologies, Information Technology Environment

Procedia PDF Downloads 530
20159 2D-Modeling with Lego Mindstorms

Authors: Miroslav Popelka, Jakub Nozicka

Abstract:

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Keywords: LEGO Mindstorms, ultrasonic sensor, real-time modeling, 2D object, low-cost robotics systems, sensors, Matlab, EV3 Home Edition Software

Procedia PDF Downloads 475
20158 Advanced Structural Analysis of Energy Storage Materials

Authors: Disha Gupta

Abstract:

The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.

Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD

Procedia PDF Downloads 153
20157 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 383
20156 African American Female Caregivers’ Perceptions, Experiences, and Expectations of the Special Education Process

Authors: Lenell D. Walton

Abstract:

African American families have consistently contended that their child’s special education team does not provide the services necessary to meet their child’s academic goals. Special education teams must guide and mentor African American students and their families through the special education process. This qualitative study examined African American female caregivers' perceptions, experiences, and expectations regarding the special education process. Data collection methods utilized in the study included a survey, semi-structured interviews, and three focus groups. Data were analyzed and compared to identify themes. Three themes emerged from the survey: education and training, participation, and challenges. Six major themes emerged: (a) differences in treatment and cultural disconnect, (b) lack of support and resources, (c) participants’ experiences of the special education process, (d) parent participation, (e) barriers and concerns, and (f) expectations. Implications for policy and practice to improve the special education process are discussed.

Keywords: African American, caregivers, critical race theory, special education

Procedia PDF Downloads 111
20155 Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database

Authors: Scott A. Ochsner, Christopher M. Watkins, Apollo McOwiti, David L. Steffen Lauren B. Becnel, Neil J. McKenna

Abstract:

Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field.

Keywords: target gene database, informatics, gene expression, transcriptomics

Procedia PDF Downloads 278
20154 The Truth about Good and Evil: A Mixed-Methods Approach to Color Theory

Authors: Raniya Alsharif

Abstract:

The color theory of good and evil is the association of colors to the omnipresent concept of good and evil, where human behavior and perception can be highly influenced by seeing black and white, making these connotations almost dangerously distinctive where they can be very hard to distinguish. This theory is a human construct that dates back to ancient Egypt and has been used since then in almost all forms of communication and expression, such as art, fashion, literature, and religious manuscripts, helping the implantation of preconceived ideas that influence behavior and society. This is a mixed-methods research that uses both surveys to collect quantitative data related to the theory and a vignette to collect qualitative data by using a scenario where participants aged between 18-25 will style two characters of good and bad characteristics with color contrasting clothes, both yielding results about the nature of the preconceived perceptions associated with ‘black and white’ and ‘good and evil’, illustrating the important role of media and communications in human behavior and subconscious, and also uncover how far this theory goes in the age of social media enlightenment.

Keywords: color perception, interpretivism, thematic analysis, vignettes

Procedia PDF Downloads 130
20153 The Effects of Adding Vibrotactile Feedback to Upper Limb Performance during Dual-Tasking and Response to Misleading Visual Feedback

Authors: Sigal Portnoy, Jason Friedman, Eitan Raveh

Abstract:

Introduction: Sensory substitution is possible due to the capacity of our brain to adapt to information transmitted by a synthetic receptor via an alternative sensory system. Practical sensory substitution systems are being developed in order to increase the functionality of individuals with sensory loss, e.g. amputees. For upper limb prosthetic-users the loss of tactile feedback compels them to allocate visual attention to their prosthesis. The effect of adding vibrotactile feedback (VTF) to the applied force has been studied, however its effect on the allocation if visual attention during dual-tasking and the response during misleading visual feedback have not been studied. We hypothesized that VTF will improve the performance and reduce visual attention during dual-task assignments in healthy individuals using a robotic hand and improve the performance in a standardized functional test, despite the presence of misleading visual feedback. Methods: For the dual-task paradigm, twenty healthy subjects were instructed to toggle two keyboard arrow keys with the left hand to retain a moving virtual car on a road on a screen. During the game, instructions for various activities, e.g. mix the sugar in the glass with a spoon, appeared on the screen. The subject performed these tasks with a robotic hand, attached to the right hand. The robotic hand was controlled by the activity of the flexors and extensors of the right wrist, recorded using surface EMG electrodes. Pressure sensors were attached at the tips of the robotic hand and induced VTF using vibrotactile actuators attached to the right arm of the subject. An eye-tracking system tracked to visual attention of the subject during the trials. The trials were repeated twice, with and without the VTF. Additionally, the subjects performed the modified box and blocks, hidden from eyesight, in a motion laboratory. A virtual presentation of a misleading visual feedback was be presented on a screen so that twice during the trial, the virtual block fell while the physical block was still held by the subject. Results: This is an ongoing study, which current results are detailed below. We are continuing these trials with transradial myoelectric prosthesis-users. In the healthy group, the VTF did not reduce the visual attention or improve performance during dual-tasking for the tasks that were typed transfer-to-target, e.g. place the eraser on the shelf. An improvement was observed for other tasks. For example, the average±standard deviation of time to complete the sugar-mixing task was 13.7±17.2s and 19.3±9.1s with and without the VTF, respectively. Also, the number of gaze shifts from the screen to the hand during this task were 15.5±23.7 and 20.0±11.6, with and without the VTF, respectively. The response of the subjects to the misleading visual feedback did not differ between the two conditions, i.e. with and without VTF. Conclusions: Our interim results suggest that the performance of certain activities of daily living may be improved by VTF. The substitution of visual sensory input by tactile feedback might require a long training period so that brain plasticity can occur and allow adaptation to the new condition.

Keywords: prosthetics, rehabilitation, sensory substitution, upper limb amputation

Procedia PDF Downloads 344
20152 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach

Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam

Abstract:

Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.

Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment

Procedia PDF Downloads 88
20151 Neural Network Based Approach of Software Maintenance Prediction for Laboratory Information System

Authors: Vuk M. Popovic, Dunja D. Popovic

Abstract:

Software maintenance phase is started once a software project has been developed and delivered. After that, any modification to it corresponds to maintenance. Software maintenance involves modifications to keep a software project usable in a changed or a changing environment, to correct discovered faults, and modifications, and to improve performance or maintainability. Software maintenance and management of software maintenance are recognized as two most important and most expensive processes in a life of a software product. This research is basing the prediction of maintenance, on risks and time evaluation, and using them as data sets for working with neural networks. The aim of this paper is to provide support to project maintenance managers. They will be able to pass the issues planned for the next software-service-patch to the experts, for risk and working time evaluation, and afterward to put all data to neural networks in order to get software maintenance prediction. This process will lead to the more accurate prediction of the working hours needed for the software-service-patch, which will eventually lead to better planning of budget for the software maintenance projects.

Keywords: laboratory information system, maintenance engineering, neural networks, software maintenance, software maintenance costs

Procedia PDF Downloads 364