Search results for: multi sector intervention
2728 Automatic Detection Of Diabetic Retinopathy
Authors: Zaoui Ismahene, Bahri Sidi Mohamed, Abbassa Nadira
Abstract:
Diabetic Retinopathy (DR) is a leading cause of vision impairment and blindness among individuals with diabetes. Early diagnosis is crucial for effective treatment, yet current diagnostic methods rely heavily on manual analysis of retinal images, which can be time-consuming and prone to subjectivity. This research proposes an automated system for the detection of DR using Jacobi wavelet-based feature extraction combined with Support Vector Machines (SVM) for classification. The integration of wavelet analysis with machine learning techniques aims to improve the accuracy, efficiency, and reliability of DR diagnosis. In this study, retinal images are preprocessed through normalization, resizing, and noise reduction to enhance the quality of the images. The Jacobi wavelet transform is then applied to extract both global and local features, effectively capturing subtle variations in retinal images that are indicative of DR. These extracted features are fed into an SVM classifier, known for its robustness in handling high-dimensional data and its ability to achieve high classification accuracy. The SVM classifier is optimized using parameter tuning to improve performance. The proposed methodology is evaluated using a comprehensive dataset of retinal images, encompassing a range of DR severity levels. The results show that the proposed system outperforms traditional wavelet-based methods, demonstrating significantly higher accuracy, sensitivity, and specificity in detecting DR. By leveraging the discriminative power of Jacobi wavelet features and the robustness of SVM, the system provides a promising solution for the automatic detection of DR, which could assist ophthalmologists in early diagnosis and intervention, ultimately improving patient outcomes. This research highlights the potential of combining wavelet-based image processing with machine learning for advancing automated medical diagnostics.Keywords: iabetic retinopathy (DR), Jacobi wavelets, machine learning, feature extraction, classification
Procedia PDF Downloads 132727 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Shaheen Bachy, Jörg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.Keywords: laser structuring, simulation, finite element analysis, thermal modeling
Procedia PDF Downloads 3532726 An Efficient Subcarrier Scheduling Algorithm for Downlink OFDMA-Based Wireless Broadband Networks
Authors: Hassen Hamouda, Mohamed Ouwais Kabaou, Med Salim Bouhlel
Abstract:
The growth of wireless technology made opportunistic scheduling a widespread theme in recent research. Providing high system throughput without reducing fairness allocation is becoming a very challenging task. A suitable policy for resource allocation among users is of crucial importance. This study focuses on scheduling multiple streaming flows on the downlink of a WiMAX system based on orthogonal frequency division multiple access (OFDMA). In this paper, we take the first step in formulating and analyzing this problem scrupulously. As a result, we proposed a new scheduling scheme based on Round Robin (RR) Algorithm. Because of its non-opportunistic process, RR does not take in account radio conditions and consequently it affect both system throughput and multi-users diversity. Our contribution called MORRA (Modified Round Robin Opportunistic Algorithm) consists to propose a solution to this issue. MORRA not only exploits the concept of opportunistic scheduler but also takes into account other parameters in the allocation process. The first parameter is called courtesy coefficient (CC) and the second is called Buffer Occupancy (BO). Performance evaluation shows that this well-balanced scheme outperforms both RR and MaxSNR schedulers and demonstrate that choosing between system throughput and fairness is not required.Keywords: OFDMA, opportunistic scheduling, fairness hierarchy, courtesy coefficient, buffer occupancy
Procedia PDF Downloads 3042725 Optimisation of B2C Supply Chain Resource Allocation
Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka
Abstract:
The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation
Procedia PDF Downloads 2782724 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation
Procedia PDF Downloads 2382723 Human-Centred Data Analysis Method for Future Design of Residential Spaces: Coliving Case Study
Authors: Alicia Regodon Puyalto, Alfonso Garcia-Santos
Abstract:
This article presents a method to analyze the use of indoor spaces based on data analytics obtained from inbuilt digital devices. The study uses the data generated by the in-place devices, such as smart locks, Wi-Fi routers, and electrical sensors, to gain additional insights on space occupancy, user behaviour, and comfort. Those devices, originally installed to facilitate remote operations, report data through the internet that the research uses to analyze information on human real-time use of spaces. Using an in-place Internet of Things (IoT) network enables a faster, more affordable, seamless, and scalable solution to analyze building interior spaces without incorporating external data collection systems such as sensors. The methodology is applied to a real case study of coliving, a residential building of 3000m², 7 floors, and 80 users in the centre of Madrid. The case study applies the method to classify IoT devices, assess, clean, and analyze collected data based on the analysis framework. The information is collected remotely, through the different platforms devices' platforms; the first step is to curate the data, understand what insights can be provided from each device according to the objectives of the study, this generates an analysis framework to be escalated for future building assessment even beyond the residential sector. The method will adjust the parameters to be analyzed tailored to the dataset available in the IoT of each building. The research demonstrates how human-centered data analytics can improve the future spatial design of indoor spaces.Keywords: in-place devices, IoT, human-centred data-analytics, spatial design
Procedia PDF Downloads 2012722 An Investigation of Crop Diversity’s Impact on Income Risk of Selected Crops
Authors: Saeed Yazdani, Sima Mohamadi Amidabadi, Amir Mohamadi Nejad, Farahnaz Nekoofar
Abstract:
As a result of uncertainty and doubts about the quantity of agricultural products, greater significance has been attached to risk management in the agricultural sector. Normally, farmers seek to minimize risks, and crop diversity has always been a means to reduce risk. The study at hand seeks to explore the long-term impact of crop diversity on income risk reduction. The timeframe of the study is 1998 to 2018. Initially, the Herfindahl index was used to estimate crop diversity in different periods, and next, the Hodrick-Prescott filter was applied to estimate income risk both in nominal and real terms. Finally, using the Vector Error Correction Model (VECM), the long-term impact of crop diversity on two modes of risk for the farmer's income has been estimated. Given the long-term pattern’s results, it is evident that in the long-run, crop diversity can reduce income fluctuations in two nominal and real terms. Moreover, results showed that in case the fluctuation shock affects the agricultural income in the short run, to balance out the shock in nominal and real terms, 4 and 3 cycles are needed respectively. In other words, in each cycle, 25% and 33% of the shock impact can be removed, respectively. Thus, as the results of the error correction coefficient showed, policies need to be put in place to prevent income shocks. In case of a shock, they need to be balanced out in a four-year period, taking inflation into account, and in a three-year period irrespective of the inflation and reparative policies such as insurance services should be developed.Keywords: risk, long-term model, Herfindahl index, time series model, vector error correction model
Procedia PDF Downloads 302721 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao
Abstract:
This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.Keywords: MBE, AlN/GaN, RTDs, double NDR
Procedia PDF Downloads 672720 Effectiveness of Educational and Supportive Interventions for Primiparous Women on Breastfeeding Outcomes: A Systematic Review and Meta-Analysis
Authors: Mei Sze Wong, Huanyu Mou, Wai-Tong Chien
Abstract:
Background: Breastmilk is the most nutritious food for infants to support their growth and protect them from infection. Therefore, breastfeeding promotion is an important topic for infant health; whereas, different educational and supportive approaches to interventions have been prompted and targeted at antenatal, postnatal, or both periods to promote and sustain exclusive breastfeeding. This systematic review aimed to identify the effective approaches of educational and supportive interventions to improve breastfeeding. Outcome measures were exclusive breastfeeding, partial breastfeeding, and breastfeeding self-efficacy, being analyzed in terms of ≤ 2 months, 3-5 months, and ≥ 6 months postpartum. Method: Eleven electronic databases and the reference lists of eligible articles were searched. English or Chinese articles of randomized controlled trials on educational and supportive intervention with the above breastfeeding outcomes over recent 20 years were searched. Quality appraisal and risk of bias of the studies were checked by Effective Public Health Practice Project tool and Revised Cochrane risk-of-bias tool, respectively. Results: 13 articles that met the inclusion criteria were included; and they had acceptable quality and risk of bias. The optimal structure, format, and delivery of the interventions significantly increased exclusive breastfeeding rate at ≤ 2 months and ≥ 6 months and breastfeeding self-efficacy at ≤ 2 months included: (a) delivering from antenatal to postnatal period, (b) multicomponent involving antenatal group education, postnatal individual breastfeeding coaching and telephone follow-ups, (c) both individual and group basis, (d) being guided by self-efficacy theory, and (e) having ≥ 3 sessions. Conclusion: The findings showed multicomponent theory-based interventions with ≥ 3 sessions that delivered across antenatal and postnatal period; using both face-to-face teaching and telephone follow-ups can be useful to enhance exclusive breastfeeding rate for more than 6 months and breastfeeding self-efficacy over the first two months of postpartum.Keywords: breastfeeding self-efficacy, education, exclusive breastfeeding, primiparous, support
Procedia PDF Downloads 1392719 Assessment Power and Oscillation Damping Using the POD Controller and Proposed FOD Controller
Authors: Tohid Rahimi, Yahya Naderi, Babak Yousefi, Seyed Hossein Hoseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. However, FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. However, Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper, firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. Therefore, FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.Keywords: power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA)
Procedia PDF Downloads 4792718 TCTN2 Maintains the Transition Zone Stability and Controls the Entrance of the Ciliary Membrane Protein into Primary Cilia
Authors: Rueyhung Weng, Chia-En Huang, Jung-Chi-Liao
Abstract:
The transition zone (TZ) serves as a diffusion barrier to regulate the ins and outs of the proteins recruited to the primary cilia. TCTN2 is one of the TZ proteins and its mutation causes Joubert syndrome, a serious multi-organ disease. Despite its important medical relevance, the functions of TCTN2 remain elusive. Here we created a TCTN2 gene deleted retinal pigment epithelial cells (RPE1) using CRISPR/Cas9-based genome editing technique and used this knockout line to reveal roles of TCTN2. TCTN2 knockout RPE1 cells displayed a significantly reduced ciliogenesis or a shortened primary cilium length in the cilium-remaining population. Intraflagellar transport protein IFT88 aberrantly accumulated at the tip of TCTN2 deficient cells. Guanine nucleotide exchange factor Arl13B was mostly absent from the ciliary compartment, with a small population localizing at the ciliary tip. The deficient TZ was corroborated with the mislocalization of two other TZ proteins TMEM67 and MKS1. In addition, TCTN2 deficiency induced TZ impairment led to the suppression of Sonic hedgehog signaling in response to Smoothened (Smo) agonist. Together, depletion of TCTN2 destabilizes other TZ proteins and considerably alters the localization of key transport and signaling-associated proteins, including IFT88, Arl13B, and Smo.Keywords: CRISPR/Cas9, primary cilia, Sonic hedgehog signaling, transition zone
Procedia PDF Downloads 3542717 Fuzzy Approach for the Evaluation of Feasibility Levels of Vehicle Movement on the Disaster-Streaking Zone’s Roads
Authors: Gia Sirbiladze
Abstract:
Route planning problems are among the activities that have the highest impact on logistical planning, transportation, and distribution because of their effects on efficiency in resource management, service levels, and client satisfaction. In extreme conditions, the difficulty of vehicle movement between different customers causes the imprecision of time of movement and the uncertainty of the feasibility of movement. A feasibility level of vehicle movement on the closed route of the disaster-streaking zone is defined for the construction of an objective function. Experts’ evaluations of the uncertain parameters in q-rung ortho-pair fuzzy numbers (q-ROFNs) are presented. A fuzzy bi-objective combinatorial optimization problem of fuzzy vehicle routine problem (FVRP) is constructed based on the technique of possibility theory. The FVRP is reduced to the bi-criteria partitioning problem for the so-called “promising” routes which were selected from the all-admissible closed routes. The convenient selection of the “promising” routes allows us to solve the reduced problem in real-time computing. For the numerical solution of the bi-criteria partitioning problem, the -constraint approach is used. The main results' support software is designed. The constructed model is illustrated with a numerical example.Keywords: q-rung ortho-pair fuzzy sets, facility location selection problem, multi-objective combinatorial optimization problem, partitioning problem
Procedia PDF Downloads 1402716 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 3292715 ESG and Corporate Financial Performance: Empirical Evidence from Vietnam’s Listed Construction Companies
Authors: My Linh Hoang, Van Dung Hoang
Abstract:
Environmental, Social, and Governance (ESG) factors have become a focus for companies globally, as businesses are now focusing on long-term sustainable goals rather than only operating for the goals of profit maximization. According to recent research, in several countries, companies have shown positive results in their financial performance by improving their ESG performance. The construction industry is one of the most crucial components of social and economic development; as a result, considerations for ESG factors are becoming more and more essential for companies in this sector. In Vietnam, the construction industry has been growing rapidly in recent years; however, it has yet to be discussed and studied extensively in Vietnam how ESG factors create impacts on corporate financial performance in general and construction corporations’ financial performance in particular. This research aims to examine the relationship between ESG factors and financial indicators in construction companies from 2011 to 2021 through panel data analysis of 75 listed construction companies in Vietnam and to provide insights into how these companies can better integrate ESG considerations into their operations to enhance their financial performance. The data was analyzed through 3 main methods: descriptive statistics, correlation coefficient analysis applied to all dependent, explanatory and control variables, and panel data analysis method. In panel data analysis, the study uses the fixed effects model (FEM) and random effects model (REM). The Hausman test will be used to select which model is suitable to be used. The findings indicate that maintaining a strong commitment to ESG principles can have a positive impact on financial performance. Finally, FGLS estimation will be performed when the problem of autocorrelation and variable variance appears in the model. This is significant for all parties involved, including investors, company managers, decision-makers, and industry regulators.Keywords: ESG, financial performance, construction company, Vietnam
Procedia PDF Downloads 972714 Campus Signage and Wayfinding Design Guidelines: Challenges of Visual Literacy in University of Port Harcourt
Authors: Kasi Jockeil-Ojike
Abstract:
The study of signage and wayfinding design guidelines is to provide consistent, coherent, and comprehensive guidelines for all type of signage design that may be applied to guide persons from the freeway into campus, and to specific building. As the world becomes more complex and the population increases, people increasingly rely on signage and wayfinding systems to navigate their way in built environment such as university campus. This paper will demonstrate and discuss signage and wayfinding, and the importance of visual literacy in university campuses. It discusses the process of wayfinding and signage, how poor signage and wayfinding systems affect people when navigating, and why wayfinding is more than just signage. Hence, this paper tries to examine the design guideline that primarily addresses the signage and wayfinding system that improves visual literacy within University of Port Harcourt multi-campuses. In doing this, the paper explore the environmental graphic design senori-emotional values and communicative information theories that takes the subjectivity of the observer in account. By making these connections, the paper will also determine what University of Port Harcourt need to focus on to be counted in the global trends, using developed visual communication guidelines based on previous studies or concept from professional. In conclusion, information about why physical structures (buildings and waypaths) on University of Port Harcourt multiple campuses need to be branded in self-communicative manner using signage and wayfinding design as integral part of its physical planning policy is recommended.Keywords: campus-signage, movement, visual-literacy, wayfinding-guidelines
Procedia PDF Downloads 4562713 Psychological Well-Being and Perception of Disease Severity in People with Multiple Sclerosis, Who Underwent a Program of Self-Regulation to Promote Physical Activity
Authors: Luísa Pedro, José Pais-Ribeiro, João Páscoa Pinheiro
Abstract:
Multiple Sclerosis (MS) is a chronic disease of the central nervous system that affects more often young adults in the prime of his career and personal development, with no cure and unknown causes. The most common signs and symptoms are fatigue, muscle weakness, changes in sensation, ataxia, changes in balance, gait difficulties, memory difficulties, cognitive impairment and difficulties in problem solving. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. MS is a relatively common neurological disorder in which various impairments and disabilities impact strongly on function and daily life activities. The aim of this study is to examine the implications of the program of self-regulation in the perception of illness and mental health (psychological well-being domain) in MS patients. After this, a set of exercises was implemented to be used in daily life activities, according to studies developed with MS patients. We asked the subjects the question “Please classify the severity of your disease?” and used the domain of psychological well-being, the Mental Health Inventory (MHI-38) at the beginning (time A) and end (time B) of the program of self-regulation. We used the Statistical Package for the Social Sciences (SPSS) version 20. A non-parametric statistical hypothesis test (Wilcoxon test) was used for the variable analysis. The intervention followed the recommendations of the Helsinki Declaration. The age range of the subjects was between 20 and 58 years with a mean age of 44 years. 58.3 % were women, 37.5 % were currently married, 67% were retired and the mean level of education was 12.5 years. In the correlation between the severity of the disease perception and psychological well before the self-regulation program, an obtained result (r = 0.26, p <0.05), then the self-regulation program, was (r = 0.37, p <0.01), from a low to moderate correlation. We conclude that the program of self-regulation for physical activity in patients with MS can improve the relationship between the perception of disease severity and psychological well-being.Keywords: psychological well-being, multiple sclerosis, self-regulation, physical activity
Procedia PDF Downloads 4922712 Neurofeedback for Anorexia-RelaxNeuron-Aimed in Dissolving the Root Neuronal Cause
Authors: Kana Matsuyanagi
Abstract:
Anorexia Nervosa (AN) is a psychiatric disorder characterized by a relentless pursuit of thinness and strict restriction of food. The current therapeutic approaches for AN predominantly revolve around outpatient psychotherapies, which create significant financial barriers for the majority of affected patients, hindering their access to treatment. Nonetheless, AN exhibit one of the highest mortality and relapse rates among psychological disorders, underscoring the urgent need to provide patients with an affordable self-treatment tool, enabling those unable to access conventional medical intervention to address their condition autonomously. To this end, a neurofeedback software, termed RelaxNeuron, was developed with the objective of providing an economical and portable means to aid individuals in self-managing AN. Electroencephalography (EEG) was chosen as the preferred modality for RelaxNeuron, as it aligns with the study's goal of supplying a cost-effective and convenient solution for addressing AN. The primary aim of the software is to ameliorate the negative emotional responses towards food stimuli and the accompanying aberrant eye-tracking patterns observed in AN patient, ultimately alleviating the profound fear towards food an elemental symptom and, conceivably, the fundamental etiology of AN. The core functionality of RelaxNeuron hinges on the acquisition and analysis of EEG signals, alongside an electrocardiogram (ECG) signal, to infer the user's emotional state while viewing dynamic food-related imagery on the screen. Moreover, the software quantifies the user's performance in accurately tracking the moving food image. Subsequently, these two parameters undergo further processing in the subsequent algorithm, informing the delivery of either negative or positive feedback to the user. Preliminary test results have exhibited promising outcomes, suggesting the potential advantages of employing RelaxNeuron in the treatment of AN, as evidenced by its capacity to enhance emotional regulation and attentional processing through repetitive and persistent therapeutic interventions.Keywords: Anorexia Nervosa, fear conditioning, neurofeedback, BCI
Procedia PDF Downloads 512711 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education
Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina
Abstract:
Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory
Procedia PDF Downloads 3962710 Study of Information Technology Support to Knowledge Sharing in Social Enterprises
Authors: Maria Granados
Abstract:
Information technology (IT) facilitates the management of knowledge in organisations through the effective leverage of collective experience and knowledge of employees. This supports information processing needs, as well as enables and facilitates sense-making activities of knowledge workers. The study of IT support for knowledge management (KM) has been carried out mainly in larger organisations where resources and competitive conditions can trigger the use of KM. However, there is still a lack of understanding on how IT can support the management of knowledge under different organisational settings influenced by: constant tensions between social and economic objectives, more focus on sustainability than competiveness, limited resources, and high levels of democratic participation and intrinsic motivations among employees. All these conditions are presented in Social Enterprises (SEs), which are normally micro and small businesses that trade to tackle social problems, improve communities, people’s life chances, and the environment. Thus, their importance to society and economies is increasing. However, there is still a need for more understanding of how these organisations operate, perform, innovate and scale-up. This knowledge is crucial to design and provide accurate strategies to enhance the sector and increase its impact and coverage. To obtain a conceptual and empirical understanding of how IT can facilitate KM in the particular organisational conditions of SEs, a quantitative study was conducted with 432 owners and senior members of SEs in UK, underpinned by 21 interviews. The findings demonstrated how IT was supporting more the recovery and storage of necessary information in SEs, and less the collaborative work and communication among enterprise members. However, it was established that SEs were using cloud solutions, web 2.0 tools, Skype and centralised shared servers to manage informally their knowledge. The possible impediments for SEs to support themselves more on IT solutions can be linked mainly to economic and human constraints. These findings elucidate new perspectives that can contribute not only to SEs and SE supporters, but also to other businesses.Keywords: social enterprises, knowledge management, information technology, collaboration, small firms
Procedia PDF Downloads 2722709 Social Media Advertising and Acceptability of Fast Moving Consumer Goods in Nigeria’s Manufacturing Industry
Authors: John Akinwumi Makinde
Abstract:
Nigerian manufacturing industry, particularly the fast moving consumer producing firms play vital roles in Nigerian economy. This sector’s product acceptability is given very little attention along with social media advertising that communicate product information to audience across the globe need to be documented. Procter and Gamble Plc operate in Nigeria with appreciable number of fast moving consumer goods that service Nigerian economy. Social media advertising disposition of the company and product acceptability of the company deserve some elucidations. This study therefore examined the impact of social media advertising on product acceptability of FMCG in Nigerian manufacturing industry, using Procter and Gamble Plc as case study. The study employed the case study type of descriptive survey research design. The population consisted of 235 customers of G&P Plc, which were selected through random sampling method. A total of 235 copies of questionnaires titled 'Social Media Advertising and Product Acceptability (SMA-PA) Questionnaire' was administered and retrieved. Data generated were analysed using frequency distribution and regression analysis at 0.05 level. It was found that social media advertising positively and significantly motivated customers to buy product of P&G Plc (r =.147**, N= 235, p(.000) < .01). Findings also showed that social media advertising has significant impact on product acceptability of FCMG in P&G Plc (F(2,61)=22.250; R2=.629; P(.000) < .05). The study concluded that social media advertising is a determinant factor of consumer decision to accept fast moving consumer goods in Nigerian manufacturing industry. It is recommended that with the growing market of FMCG, there is need to educate the market with the product unique features, standard and quality on social media. Finally, Fast Moving Consumer Goods firms should deploy excellent marketing mix on social media.Keywords: advertising, fast moving consumer goods, manufacturing industry, product acceptability, social media
Procedia PDF Downloads 3242708 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 802707 Neonatal Mortality, Infant Mortality, and Under-five Mortality Rates in the Provinces of Zimbabwe: A Geostatistical and Spatial Analysis of Public Health Policy Provisions
Authors: Jevonte Abioye, Dylan Savary
Abstract:
The aim of this research is to present a disaggregated geostatistical analysis of the subnational provincial trends of child mortality variation in Zimbabwe from a child health policy perspective. Soon after gaining independence in 1980, the government embarked on efforts towards promoting equitable health care, namely through the provision of primary health care. Government intervention programmes brought hope and promise, but achieving equity in primary health care coverage was hindered by previous existing disparities in maternal health care disproportionately concentrated in urban settings to the detriment of rural communities. The article highlights policies and programs adopted by the government during the millennium development goals period between 1990-2015 as a response to the inequities that characterised the country’s maternal health care. A longitudinal comparative method for a spatial variation on child mortality rates across provinces is developed based on geostatistical analysis. Cross-sectional and time-series data was extracted from the World Health Organisation (WHO) global health observatory data repository, demographic health survey reports, and previous academic and technical publications. Results suggest that although health care policy was uniform across provinces, not all provinces received the same antenatal and perinatal services. Accordingly, provincial rates of child mortality growth between 1994 and 2015 varied significantly. Evidence on the trends of child mortality rates and maternal health policies in Zimbabwe can be valuable for public child health policy planning and public service delivery design both in Zimbabwe and across developing countries pursuing the sustainable development agenda.Keywords: antenatal care, perinatal care, infant mortality rate, neonatal mortality rate, under-five mortality rate, millennium development goals, sustainable development agenda
Procedia PDF Downloads 2082706 Diagnostic Clinical Skills in Cardiology: Improving Learning and Performance with Hybrid Simulation, Scripted Histories, Wearable Technology, and Quantitative Grading – The Assimilate Excellence Study
Authors: Daly M. J, Condron C, Mulhall C, Eppich W, O'Neill J.
Abstract:
Introduction: In contemporary clinical cardiology, comprehensive and holistic bedside evaluation including accurate cardiac auscultation is in decline despite having positive effects on patients and their outcomes. Methods: Scripted histories and scoring checklists for three clinical scenarios in cardiology were co-created and refined through iterative consensus by a panel of clinical experts; these were then paired with recordings of auscultatory findings from three actual patients with known valvular heart disease. A wearable vest with embedded pressure-sensitive panel speakers was developed to transmit these recordings when examined at the standard auscultation points. RCSI medical students volunteered for a series of three formative long case examinations in cardiology (LC1 – LC3) using this hybrid simulation. Participants were randomised into two groups: Group 1 received individual teaching from an expert trainer between LC1 and LC2; Group 2 received the same intervention between LC2 and LC3. Each participant’s long case examination performance was recorded and blindly scored by two peer participants and two RCSI examiners. Results: Sixty-eight participants were included in the study (age 27.6 ± 0.1 years; 74% female) and randomised into two groups; there were no significant differences in baseline characteristics between groups. Overall, the median total faculty examiner score was 39.8% (35.8 – 44.6%) in LC1 and increased to 63.3% (56.9 – 66.4%) in LC3, with those in Group 1 showing a greater improvement in LC2 total score than that observed in Group 2 (p < .001). Using the novel checklist, intraclass correlation coefficients (ICC) were excellent between examiners in all cases: ICC .994 – .997 (p < .001); correlation between peers and examiners improved in LC2 following peer grading of LC1 performances: ICC .857 – .867 (p < .001). Conclusion: Hybrid simulation and quantitative grading improve learning, standardisation of assessment, and direct comparisons of both performance and acumen in clinical cardiology.Keywords: cardiology, clinical skills, long case examination, hybrid simulation, checklist
Procedia PDF Downloads 1142705 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors
Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao
Abstract:
Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff
Procedia PDF Downloads 4782704 Predicting the Quality of Life on the Basis of Perceived Social Support among Patients with Coronary Artery Bypass Graft
Authors: Azadeh Yaraghchi, Reza Bagherian Sararoodi, Niknaz Salehi Moghadam, Mohammad Hossein Mandegar, Adis Kraskian Mujembari, Omid Rezaei
Abstract:
Background: Quality of life is one of the most important consequences of disease in psychosomatic disorders. Many psychological factors are considered in predicting quality of life in patients with coronary artery bypass graft (CABG). The present study was aimed to determine the relationship between perceived social support and quality of life in patients with coronary artery bypass graft (CABG). Methods: The population included 82 patients who had undergone CABG from October 2014 to May 2015 in four different hospitals in Tehran. The patients were evaluated with Multi-dimension scale of perceived social support (MSPSS) and after three months follow up were evaluated by Short-Form quality of life questionnaire (SF-36). The obtained data were analyzed through Pearson correlation test and multiple variable regression models. Findings: A relationship between perceived social support and quality of life in patients with CABG was observed (r=0.374, p<0.01). The results showed that 22.4% of variation in quality of life is predicted by perceived social support components (p<0.01, R2 =0.224). Conclusion: Based on the results, perceived social support is one of the predictors of quality of life in patients with coronary artery bypass graft. Accordingly, these results can be useful in conceiving proactive policies, detecting high risk patients and planning for psychological interventions.Keywords: coronary artery bypass graft, perceived social support, psychological factors, quality of life
Procedia PDF Downloads 3742703 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning
Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie
Abstract:
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue
Procedia PDF Downloads 1942702 Human Resource Information System: Role in HRM Practices and Organizational Performance
Authors: Ejaz Ali M. Phil
Abstract:
Enterprise Resource Planning (ERP) systems are playing a vital role in effective management of business functions in large and complex organizations. Human Resource Information System (HRIS) is a core module of ERP, providing concrete solutions to implement Human Resource Management (HRM) Practices in an innovative and efficient manner. Over the last decade, there has been considerable increase in the studies on HRIS. Nevertheless, previous studies relatively lacked to examine the moderating role of HRIS in performing HRM practices that may affect the firms’ performance. The current study was carried out to examine the impact of HRM practices (training, performance appraisal) on perceived organizational performance, with moderating role of HRIS, where the system is in place. The study based on Resource Based View (RBV) and Ability Motivation Opportunity (AMO) Theories, advocating that strengthening of human capital enables an organization to achieve and sustain competitive advantage which leads to improved organizational performance. Data were collected through structured questionnaire based upon adopted instruments after establishing reliability and validity. The structural equation modeling (SEM) were used to assess the model fitness, hypotheses testing and to establish validity of the instruments through Confirmatory Factor Analysis (CFA). A total 220 employees of 25 firms in corporate sector were sampled through non-probability sampling technique. Path analysis revealing that HRM practices and HRIS have significant positive impact on organizational performance. The results further showed that the HRIS moderated the relationships between training, performance appraisal and organizational performance. The interpretation of the findings and limitations, theoretical and managerial implications are discussed.Keywords: enterprise resource planning, human resource, information system, human capital
Procedia PDF Downloads 3992701 Access to Higher Education During Covid-19: Challenges and Key Success Factors
Authors: Samia Jamshed Nauman Majeed
Abstract:
Purpose: Globally, the pandemic of COVID -19 has created a massive distraction for educational reforms influencing learning options, education access, and outcomes of students in more than 190 countries which has carved marks in history. To explore the challenges and complications confronted by students and faculty members while ensuring access to online education, qualitative research was conducted. Methodology: For this purpose, a series of focus group discussions were conducted in different regions of Pakistan, which revealed interesting findings shared by Panelists, which include Vice-Chancellors, Rectors, and Deans of different private and public sector universities of Pakistan. The qualitative research aims to explore the challenges and success factors of online educations by students with diverse backgrounds of higher education institutions to maximize student educational outcomes. Findings: The findings revealed several challenges and opportunities when it comes to online education for students of higher education institutions. Simultaneously, the researchers discovered the key success factors necessary for online education. Lastly, the paper presents the research limitations and future research recommendations to streamline online education in a better way ensuring the students' success. Originality: The pandemic has forced the closure of social, business, and educational activities, which has drastically influence the quality of education with its subsequent impact on the economy. In response, numerous universities across the globe are forced to suspend their educational activities by closing the universities. Though online education has been adopted worldwide by the universities, which brought numerous issues for academia, particularly for underdeveloped countries, and Pakistani higher education reforms are no exception to this.Keywords: online education, higher education institutions, COVID-19, challenges, key success factors
Procedia PDF Downloads 932700 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends
Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez
Abstract:
This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis
Procedia PDF Downloads 902699 The Role of Acoustical Design within Architectural Design in the Early Design Phase
Authors: O. Wright, N. Perkins, M. Donn, M. Halstead
Abstract:
This research responded to anecdotal evidence that suggested inefficiencies within the Architect and Acoustician relationship may lead to ineffective acoustic design decisions. The acoustician spoken to believed that he was approached too late in the design phase. The approached architect valued acoustical qualities, yet, struggled to interpret common measurement parameters. The preliminary investigation of these opinions indicated a gap in the current New Zealand Architectural discourse and currently informs the creation of a 2016 Master of Architecture (Prof) thesis research. Little meaningful information about acoustic intervention in the early design phase could be found from past literature. In the information that was sourced, authors focus on software as an incorporation tool without investigating why the flaws in the relationship originally exist. To further explore this relationship, a survey was designed. It underwent three phases to ensure its consistency, and was delivered to a group of 51 acousticians from one international Acoustics company. The results were then separated between New Zealand and off-shore to identify trends. The survey results suggest that 75% of acousticians meet the architect less than 5 times per project. Instead of regular contact, a mediated method is adopted though a mix of telecommunication and written reports. Acousticians tend to be introduced later into New Zealand building project than the corresponding off-shore building. This delay corresponds to an increase in remedial action for each of the building types in the survey except Auditoria and Office Buildings. 31 participants have had their specifications challenged by an architect. Furthermore, 71% of the acousticians believe that architects do not have the knowledge to understand why the acoustic specifications are in place. The issues raised in this investigation align to the colloquial evidence expressed by the two consultants. It identifies a larger gap in the industry were acoustics is remedially treated rather than identified as a possible design driver. Further research through design is suggested to understand the role of acoustics within architectural design and potential tools for its inclusion during, not after, the design process.Keywords: architectural acoustics, early-design, interdisciplinary communication, remedial response
Procedia PDF Downloads 257