Search results for: gender specific data
25230 The Nutrient Foramen of the Scaphoid Bone – A Morphological Study
Authors: B. V. Murlimanju, P. J. Jiji, Latha V. Prabhu, Mangala M. Pai
Abstract:
Background: The scaphoid is the most commonly fractured bone of the wrist. The fracture may disrupt the vessels and end up as the avascular necrosis of the bone. The objective of the present study was to investigate the morphology and number of the nutrient foramina in the cadaveric dried scaphoid bones of the Indian population. Methods: The present study included 46 scaphoid bones (26 right sided and 20 left sided) which were obtained from the gross anatomy laboratory of our institution. The bones were macroscopically observed for the nutrient foramina and the data was collected with respect to their number. The tabulation of the data and analysis were done. Results: All of our specimens (100%) exhibited the nutrient foramina over the non-articular surfaces. The foramina were observed only over the palmar and dorsal surfaces of the scaphoid bones. The foramina were observed both proximal and distal to the mid waist of the scaphoid bone. The foramen ranged between 9 and 54 in each scaphoid bone. The foramina over the palmar surface ranged between, 2-24 in number. The foramina over the dorsal surface ranged between, 7-36 in number. The foramina proximal to the waist ranged between 2 and 24 in number and distal to the waist ranged between 3 and 39. Conclusion: We believe that the present study has provided additional data about the nutrient foramina of the scaphoid bones. The data is enlightening to the orthopedic surgeon and would help in the hand surgeries. The morphological knowledge of the vasculature, their foramina of entry and their number is required to understand the concepts in the avascular necrosis of the proximal scaphoid and non-union of the fracture at the waist of the scaphoid.Keywords: avascular necrosis, nutrient, scaphoid, vascular
Procedia PDF Downloads 34925229 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries
Authors: Bruno Vilić Belina, Ivan Župan
Abstract:
Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration, and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in service level agreements (SLAs), customer relationship management (CRM) relations, trends, and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.Keywords: cybersecurity, critical infrastructure, smart industries, digital platform
Procedia PDF Downloads 11325228 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences
Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam
Abstract:
The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.Keywords: learning experiences, innovation, traditional games, trainee teachers
Procedia PDF Downloads 33525227 Combination of Topology and Rough Set for Analysis of Power System Control
Authors: M. Kamel El-Sayed
Abstract:
In this research, we have linked the concept of rough set and topological structure to the creation of a new topological structure that assists in the analysis of the information systems of some electrical engineering issues. We used non-specific information whose boundaries do not have an empty set in the top topological structure is rough set. It is characterized by the fact that it does not contain a large number of elements and facilitates the establishment of rules. We used this structure in reducing the specifications of electrical information systems. We have provided a detailed example of this method illustrating the steps used. This method opens the door to obtaining multiple topologies, each of which uses one of the non-defined groups (rough set) in the overall information system.Keywords: electrical engineering, information system, rough set, rough topology, topology
Procedia PDF Downloads 45625226 Processing Mild versus Strong Violations in Music: A Pilot Study Using Event-Related Potentials
Authors: Marie-Eve Joret, Marijn Van Vliet, Flavio Camarrone, Marc M. Van Hulle
Abstract:
Event-related potentials (ERPs) provide evidence that the human brain can process and understand music at a pre-attentive level. Music-specific ERPs include the Early Right Anterior Negativity (ERAN) and a late Negativity (N5). This study aims to further investigate this issue using two types of syntactic manipulations in music: mild violations, containing no out-of-key tones and strong violations, containing out-of-key tones. We will examine whether both manipulations will elicit the same ERPs.Keywords: ERAN ERPs, Music, N5, P3, ERPs, Music, N5 component, P3 component
Procedia PDF Downloads 27925225 Trend Analysis for Extreme Rainfall Events in New South Wales, Australia
Authors: Evan Hajani, Ataur Rahman, Khaled Haddad
Abstract:
Climate change will affect the hydrological cycle in many different ways such as increase in evaporation and rainfalls. There have been growing interests among researchers to identify the nature of trends in historical rainfall data in many different parts of the world. This paper examines the trends in annual maximum rainfall data from 30 stations in New South Wales, Australia by using two non-parametric tests, Mann-Kendall (MK) and Spearman’s Rho (SR). Rainfall data were analyzed for fifteen different durations ranging from 6 min to 3 days. It is found that the sub-hourly durations (6, 12, 18, 24, 30, and 48 minutes) show statistically significant positive (upward) trends whereas longer duration (sub-daily and daily) events generally show a statistically significant negative (downward) trend. It is also found that the MK test and SR test provide notably different results for some rainfall event durations considered in this study. Since shorter duration sub-hourly rainfall events show positive trends at many stations, the design rainfall data based on stationary frequency analysis for these durations need to be adjusted to account for the impact of climate change. These shorter durations are more relevant to many urban development projects based on smaller catchments having a much shorter response time.Keywords: climate change, Mann-Kendall test, Spearman’s Rho test, trends, design rainfall
Procedia PDF Downloads 27525224 Facial Behavior Modifications Following the Diffusion of the Use of Protective Masks Due to COVID-19
Authors: Andreas Aceranti, Simonetta Vernocchi, Marco Colorato, Daniel Zaccariello
Abstract:
Our study explores the usefulness of implementing facial expression recognition capabilities and using the Facial Action Coding System (FACS) in contexts where the other person is wearing a mask. In the communication process, the subjects use a plurality of distinct and autonomous reporting systems. Among them, the system of mimicking facial movements is worthy of attention. Basic emotion theorists have identified the existence of specific and universal patterns of facial expressions related to seven basic emotions -anger, disgust, contempt, fear, sadness, surprise, and happiness- that would distinguish one emotion from another. However, due to the COVID-19 pandemic, we have come up against the problem of having the lower half of the face covered and, therefore, not investigable due to the masks. Facial-emotional behavior is a good starting point for understanding: (1) the affective state (such as emotions), (2) cognitive activity (perplexity, concentration, boredom), (3) temperament and personality traits (hostility, sociability, shyness), (4) psychopathology (such as diagnostic information relevant to depression, mania, schizophrenia, and less severe disorders), (5) psychopathological processes that occur during social interactions patient and analyst. There are numerous methods to measure facial movements resulting from the action of muscles, see for example, the measurement of visible facial actions using coding systems (non-intrusive systems that require the presence of an observer who encodes and categorizes behaviors) and the measurement of electrical "discharges" of contracting muscles (facial electromyography; EMG). However, the measuring system invented by Ekman and Friesen (2002) - "Facial Action Coding System - FACS" is the most comprehensive, complete, and versatile. Our study, carried out on about 1,500 subjects over three years of work, allowed us to highlight how the movements of the hands and upper part of the face change depending on whether the subject wears a mask or not. We have been able to identify specific alterations to the subjects’ hand movement patterns and their upper face expressions while wearing masks compared to when not wearing them. We believe that finding correlations between how body language changes when our facial expressions are impaired can provide a better understanding of the link between the face and body non-verbal language.Keywords: facial action coding system, COVID-19, masks, facial analysis
Procedia PDF Downloads 8425223 The Role of Japan's Land-Use Planning in Farmland Conservation: A Statistical Study of Tokyo Metropolitan District
Authors: Ruiyi Zhang, Wanglin Yan
Abstract:
Strict land-use plan is issued based on city planning act for controlling urbanization and conserving semi-natural landscape. And the agrarian land resource in the suburbs has indispensable socio-economic value and contributes to the sustainability of the regional environment. However, the agrarian hinterland of metropolitan is witnessing severe farmland conversion and abandonment, while the contribution of land-use planning to farmland conservation remains unclear in those areas. Hypothetically, current land-use plan contributes to farmland loss. So, this research investigated the relationship between farmland loss and land-use planning at municipality level to provide base data for zoning in the metropolitan suburbs, and help to develop a sustainable land-use plan that will conserve the agrarian hinterland. As data and methods, 1) Farmland data of Census of Agriculture and Forestry for 2005 to 2015 and population data of 2015 and 2018 were used to investigate spatial distribution feathers of farmland loss in Tokyo Metropolitan District (TMD) for two periods: 2005-2010;2010-2015. 2) And the samples were divided by four urbanization facts. 3) DID data and zoning data for 2006 to 2018 were used to specify urbanization level of zones for describing land-use plan. 4) Then we conducted multiple regression between farmland loss, both abandonment and conversion amounts, and the described land-use plan in each of the urbanization scenario and in each period. As the results, the study reveals land-use plan has unignorable relation with farmland loss in the metropolitan suburbs at ward-city-town-village level. 1) The urban promotion areas planned larger than necessity and unregulated urbanization promote both farmland conversion and abandonment, and the effect weakens from inner suburbs to outer suburbs. 2) And the effect of land-use plan on farmland abandonment is more obvious than that on farmland conversion. The study advocates that, optimizing land-use plan will hopefully help the farmland conservation in metropolitan suburbs, which contributes to sustainable regional policy making.Keywords: Agrarian land resource, land-use planning, urbanization level, multiple regression
Procedia PDF Downloads 15325222 A Metaheuristic for the Layout and Scheduling Problem in a Job Shop Environment
Authors: Hernández Eva Selene, Reyna Mary Carmen, Rivera Héctor, Barragán Irving
Abstract:
We propose an approach that jointly addresses the layout of a facility and the scheduling of a sequence of jobs. In real production, these two problems are interrelated. However, they are treated separately in the literature. Our approach is an extension of the job shop problem with transportation delay, where the location of the machines is selected among possible sites. The model minimizes the makespan, using the short processing times rule with two algorithms; the first one considers all the permutations for the location of machines, and the second only a heuristic to select some specific permutations that reduces computational time. Some instances are proved and compared with literature.Keywords: layout problem, job shop scheduling problem, concurrent scheduling and layout problem, metaheuristic
Procedia PDF Downloads 61325221 A Survey of Grammar-Based Genetic Programming and Applications
Authors: Matthew T. Wilson
Abstract:
This paper covers a selection of research utilizing grammar-based genetic programming, and illustrates how context-free grammar can be used to constrain genetic programming. It focuses heavily on grammatical evolution, one of the most popular variants of grammar-based genetic programming, and the way its operators and terminals are specialized and modified from those in genetic programming. A variety of implementations of grammatical evolution for general use are covered, as well as research each focused on using grammatical evolution or grammar-based genetic programming on a single application, or to solve a specific problem, including some of the classically considered genetic programming problems, such as the Santa Fe Trail.Keywords: context-free grammar, genetic algorithms, genetic programming, grammatical evolution
Procedia PDF Downloads 19125220 A Method for Reduction of Association Rules in Data Mining
Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa
Abstract:
The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.Keywords: data mining, association rules, rules reduction, artificial intelligence
Procedia PDF Downloads 16525219 Using a Robot Companion to Detect and Visualize the Indicators of Dementia Progression and Quality of Life of People Aged 65 and Older
Authors: Jeoffrey Oostrom, Robbert James Schlingmann, Hani Alers
Abstract:
This document depicts the research into the indicators of dementia progression, the automation of quality of life assignments, and the visualization of it. To do this, the Smart Teddy project was initiated to make a smart companion that both monitors the senior citizen as well as processing the captured data into an insightful dashboard. With around 50 million diagnoses worldwide, dementia proves again and again to be a bothersome strain on the lives of many individuals, their relatives, and society as a whole. In 2015 it was estimated that dementia care cost 818 billion U.S Dollars globally. The Smart Teddy project aims to take away a portion of the burden from caregivers by automating the collection of certain data, like movement, geolocation, and sound-levels. This paper proves that the Smart Teddy has the potential to become a useful tool for caregivers but won’t pose as a solution. The Smart Teddy still faces some problems in terms of emotional privacy, but its non-intrusive nature, as well as diversity in usability, can make up for it.Keywords: dementia care, medical data visualization, quality of life, smart companion
Procedia PDF Downloads 14625218 Calculational-Experimental Approach of Radiation Damage Parameters on VVER Equipment Evaluation
Authors: Pavel Borodkin, Nikolay Khrennikov, Azamat Gazetdinov
Abstract:
The problem of ensuring of VVER type reactor equipment integrity is now most actual in connection with justification of safety of the NPP Units and extension of their service life to 60 years and more. First of all, it concerns old units with VVER-440 and VVER-1000. The justification of the VVER equipment integrity depends on the reliability of estimation of the degree of the equipment damage. One of the mandatory requirements, providing the reliability of such estimation, and also evaluation of VVER equipment lifetime, is the monitoring of equipment radiation loading parameters. In this connection, there is a problem of justification of such normative parameters, used for an estimation of the pressure vessel metal embrittlement, as the fluence and fluence rate (FR) of fast neutrons above 0.5 MeV. From the point of view of regulatory practice, a comparison of displacement per atom (DPA) and fast neutron fluence (FNF) above 0.5 MeV has a practical concern. In accordance with the Russian regulatory rules, neutron fluence F(E > 0.5 MeV) is a radiation exposure parameter used in steel embrittlement prediction under neutron irradiation. However, the DPA parameter is a more physically legitimate quantity of neutron damage of Fe based materials. If DPA distribution in reactor structures is more conservative as neutron fluence, this case should attract the attention of the regulatory authority. The purpose of this work was to show what radiation load parameters (fluence, DPA) on all VVER equipment should be under control, and give the reasonable estimations of such parameters in the volume of all equipment. The second task is to give the conservative estimation of each parameter including its uncertainty. Results of recently received investigations allow to test the conservatism of calculational predictions, and, as it has been shown in the paper, combination of ex-vessel measured data with calculated ones allows to assess unpredicted uncertainties which are results of specific unique features of individual equipment for VVER reactor. Some results of calculational-experimental investigations are presented in this paper.Keywords: equipment integrity, fluence, displacement per atom, nuclear power plant, neutron activation measurements, neutron transport calculations
Procedia PDF Downloads 16125217 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach
Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft
Abstract:
Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology
Procedia PDF Downloads 11325216 Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability.Keywords: agri food traceability, agri-food transparency, clear label, food system, internet of things
Procedia PDF Downloads 16225215 Effectiveness of Office-Based Occupational Therapy for Office Workers with Low Back Pain: A Public Health Approach
Authors: Dina Jalalvand, Joshua A. Cleland
Abstract:
This double-blind, randomized control trial with parallel groups aimed to examine the effectiveness of office-based occupational therapy for office workers with low back pain on the intensity of pain and range of motion. Seventy-two male office workers (age: 20-50 years) with chronic low back pain (more than three months with at least two symptoms of chronic low back pain) satisfied eligibility criteria and agreed to participate in this study. The absence of joint burst following magnetic resonance imagining (MRI) was considered as an important inclusion criterion as well. Subjects were randomly assigned to a control or experimental group. The experimental group received the modified package of exercise-based occupational therapy, which included 11 simple exercise movements (derived from Williams and McKenzie), and the control group just received the conventional therapy, which included their routine physiotherapy sessions. The subjects completed the exercises three times a week for a duration of six weeks. Each exercise session was 10-15 minutes. Pain intensity and range of motion were the primary outcomes and were measured at baseline, 6 weeks, and 12 weeks after the end of the intervention using the numerical rating scale (NRS) and goniometer accordingly. Repeated measure ANOVA was used for analyzing data. The results of this study showed that significant decreases in pain intensity (p ≤ 0.05) and an increase in range of motion (p ≤ 0.001) in the experimental group in comparison with the control group after 6 and 12 weeks of intervention (between-group comparisons). In addition, there was a significant decrease in intensity of the pain (p ≤ 0.05) and an increase (p ≤ 0.001) in range of motion in the intervention group in comparison with baseline after 6 and 12 weeks (within-group comparison). This showed a positive effect of exercise-based occupational therapy that could potentially be used with low cost among office workers who suffer from low back pain. In addition, it should be noted that the introduced package of exercise training is easy to do, and there is not a need for a specific introduction.Keywords: public health, office workers, low back pain, occupational therapy
Procedia PDF Downloads 22225214 Lyapunov Functions for Extended Ross Model
Authors: Rahele Mosleh
Abstract:
This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system.Keywords: global stability, invariant solutions, Lyapunov function, stationary points
Procedia PDF Downloads 16825213 Prevalence of Trichomonas Tenax in Patients with Pulmonary Disease and Watersheds and Its Potential Implications for Pulmonary Virus Infection
Authors: Pei Chi Fang, Wei Chen Lin
Abstract:
Trichomonas tenax is a microaerophilic oral protozoan found in patients with poor oral hygiene. It participates in the inflammatory process of periodontal disease and can potentially be aspirated into the lungs, giving rise to pulmonary trichomoniasis. However, the precise roles of T. tenax in the pulmonary system remain largely unexplored and warrant comprehensive epidemiological investigation. To assess the prevalence of T. tenax infection, we collected bronchoalveolar lavage fluid (BALF) samples from hospitalized patients with lung diseases. A specific nested PCR approach was employed to determine prevalence rates, yielding 21 positive cases out of 61 samples from Ditmanson Medical Foundation Chia-Yi Christian Hospital, and 11 positive cases out of 55 samples from National Cheng Kung University Hospital. Furthermore, there is a critical need for comprehensive data regarding the presence of T. tenax in environmental surface watersheds. In this context, we present findings from investigations in the Yanshuei and Donggang river basins in southern Taiwan, which are crucial sources for public drinking water in the region. In order to elucidate potential implications on pulmonary virus infections, we conducted an analysis of gene expression level changes in H292 cell line after exposure to T. tenax. Our findings revealed significant regulation of multiple virus-related genes, including IFI44L and IFITM3. Ongoing research endeavors are focused on identifying the key components within T. tenax responsible for these observed effects. Crucially, this study lays the groundwork for a preliminary understanding of T. tenax prevalence in patients with pulmonary diseases. It also seeks to establish a meaningful correlation between lung infections and oral hygiene practices, with the ultimate aim of informing distinct treatment and prevention strategies.Keywords: parasitology, genes, virus, human health, infection, lung
Procedia PDF Downloads 7925212 The Challenge of Characterising Drought Risk in Data Scarce Regions: The Case of the South of Angola
Authors: Natalia Limones, Javier Marzo, Marcus Wijnen, Aleix Serrat-Capdevila
Abstract:
In this research we developed a structured approach for the detection of areas under the highest levels of drought risk that is suitable for data-scarce environments. The methodology is based on recent scientific outcomes and methods and can be easily adapted to different contexts in successive exercises. The research reviews the history of drought in the south of Angola and characterizes the experienced hazard in the episode from 2012, focusing on the meteorological and the hydrological drought types. Only global open data information coming from modeling or remote sensing was used for the description of the hydroclimatological variables since there is almost no ground data in this part of the country. Also, the study intends to portray the socioeconomic vulnerabilities and the exposure to the phenomenon in the region to fully understand the risk. As a result, a map of the areas under the highest risk in the south of the country is produced, which is one of the main outputs of this work. It was also possible to confirm that the set of indicators used revealed different drought vulnerability profiles in the South of Angola and, as a result, several varieties of priority areas prone to distinctive impacts were recognized. The results demonstrated that most of the region experienced a severe multi-year meteorological drought that triggered an unprecedent exhaustion of the surface water resources, and that the majority of their socioeconomic impacts started soon after the identified onset of these processes.Keywords: drought risk, exposure, hazard, vulnerability
Procedia PDF Downloads 19625211 Charting Sentiments with Naive Bayes and Logistic Regression
Authors: Jummalla Aashrith, N. L. Shiva Sai, K. Bhavya Sri
Abstract:
The swift progress of web technology has not only amassed a vast reservoir of internet data but also triggered a substantial surge in data generation. The internet has metamorphosed into one of the dynamic hubs for online education, idea dissemination, as well as opinion-sharing. Notably, the widely utilized social networking platform Twitter is experiencing considerable expansion, providing users with the ability to share viewpoints, participate in discussions spanning diverse communities, and broadcast messages on a global scale. The upswing in online engagement has sparked a significant curiosity in subjective analysis, particularly when it comes to Twitter data. This research is committed to delving into sentiment analysis, focusing specifically on the realm of Twitter. It aims to offer valuable insights into deciphering information within tweets, where opinions manifest in a highly unstructured and diverse manner, spanning a spectrum from positivity to negativity, occasionally punctuated by neutrality expressions. Within this document, we offer a comprehensive exploration and comparative assessment of modern approaches to opinion mining. Employing a range of machine learning algorithms such as Naive Bayes and Logistic Regression, our investigation plunges into the domain of Twitter data streams. We delve into overarching challenges and applications inherent in the realm of subjectivity analysis over Twitter.Keywords: machine learning, sentiment analysis, visualisation, python
Procedia PDF Downloads 5925210 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges
Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour
Abstract:
The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model
Procedia PDF Downloads 8725209 Interventions for Children with Autism Using Interactive Technologies
Authors: Maria Hopkins, Sarah Koch, Fred Biasini
Abstract:
Autism is lifelong disorder that affects one out of every 110 Americans. The deficits that accompany Autism Spectrum Disorders (ASD), such as abnormal behaviors and social incompetence, often make it extremely difficult for these individuals to gain functional independence from caregivers. These long-term implications necessitate an immediate effort to improve social skills among children with an ASD. Any technology that could teach individuals with ASD necessary social skills would not only be invaluable for the individuals affected, but could also effect a massive saving to society in treatment programs. The overall purpose of the first study was to develop, implement, and evaluate an avatar tutor for social skills training in children with ASD. “Face Say” was developed as a colorful computer program that contains several different activities designed to teach children specific social skills, such as eye gaze, joint attention, and facial recognition. The children with ASD were asked to attend to FaceSay or a control painting computer game for six weeks. Children with ASD who received the training had an increase in emotion recognition, F(1, 48) = 23.04, p < 0.001 (adjusted Ms 8.70 and 6.79, respectively) compared to the control group. In addition, children who received the FaceSay training had higher post-test scored in facial recognition, F(1, 48) = 5.09, p < 0.05 (adjusted Ms: 38.11 and 33.37, respectively) compared to controls. The findings provide information about the benefits of computer-based training for children with ASD. Recent research suggests the value of also using socially assistive robots with children who have an ASD. Researchers investigating robots as tools for therapy in ASD have reported increased engagement, increased levels of attention, and novel social behaviors when robots are part of the social interaction. The overall goal of the second study was to develop a social robot designed to teach children specific social skills such as emotion recognition. The robot is approachable, with both an animal-like appearance and features of a human face (i.e., eyes, eyebrows, mouth). The feasibility of the robot is being investigated in children ages 7-12 to explore whether the social robot is capable of forming different facial expressions to accurately display emotions similar to those observed in the human face. The findings of this study will be used to create a potentially effective and cost efficient therapy for improving the cognitive-emotional skills of children with autism. Implications and study findings using the robot as an intervention tool will be discussed.Keywords: autism, intervention, technology, emotions
Procedia PDF Downloads 38525208 The Potential Impact of Big Data Analytics on Pharmaceutical Supply Chain Management
Authors: Maryam Ziaee, Himanshu Shee, Amrik Sohal
Abstract:
Big Data Analytics (BDA) in supply chain management has recently drawn the attention of academics and practitioners. Big data refers to a massive amount of data from different sources, in different formats, generated at high speed through transactions in business environments and supply chain networks. Traditional statistical tools and techniques find it difficult to analyse this massive data. BDA can assist organisations to capture, store, and analyse data specifically in the field of supply chain. Currently, there is a paucity of research on BDA in the pharmaceutical supply chain context. In this research, the Australian pharmaceutical supply chain was selected as the case study. This industry is highly significant since the right medicine must reach the right patients, at the right time, in right quantity, in good condition, and at the right price to save lives. However, drug shortages remain a substantial problem for hospitals across Australia with implications on patient care, staff resourcing, and expenditure. Furthermore, a massive volume and variety of data is generated at fast speed from multiple sources in pharmaceutical supply chain, which needs to be captured and analysed to benefit operational decisions at every stage of supply chain processes. As the pharmaceutical industry lags behind other industries in using BDA, it raises the question of whether the use of BDA can improve transparency among pharmaceutical supply chain by enabling the partners to make informed-decisions across their operational activities. This presentation explores the impacts of BDA on supply chain management. An exploratory qualitative approach was adopted to analyse data collected through interviews. This study also explores the BDA potential in the whole pharmaceutical supply chain rather than focusing on a single entity. Twenty semi-structured interviews were undertaken with top managers in fifteen organisations (five pharmaceutical manufacturers, five wholesalers/distributors, and five public hospital pharmacies) to investigate their views on the use of BDA. The findings revealed that BDA can enable pharmaceutical entities to have improved visibility over the whole supply chain and also the market; it enables entities, especially manufacturers, to monitor consumption and the demand rate in real-time and make accurate demand forecasts which reduce drug shortages. Timely and precise decision-making can allow the entities to source and manage their stocks more effectively. This can likely address the drug demand at hospitals and respond to unanticipated issues such as drug shortages. Earlier studies explore BDA in the context of clinical healthcare; however, this presentation investigates the benefits of BDA in the Australian pharmaceutical supply chain. Furthermore, this research enhances managers’ insight into the potentials of BDA at every stage of supply chain processes and helps to improve decision-making in their supply chain operations. The findings will turn the rhetoric of data-driven decision into a reality where the managers may opt for analytics for improved decision-making in the supply chain processes.Keywords: big data analytics, data-driven decision, pharmaceutical industry, supply chain management
Procedia PDF Downloads 11125207 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics
Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari
Abstract:
The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration
Procedia PDF Downloads 7025206 Innovativeness of the Furniture Enterprises in Bulgaria
Authors: Radostina Popova
Abstract:
The paper presents an analysis of the innovation performance of small and medium-sized furniture enterprises in Bulgaria, accounting for over 97% of the companies in the sector. It contains advanced features of innovation in enterprises, specific features of the furniture industry in Bulgaria and analysis of the results of studies on the topic. The results from studies of three successive periods - 2006-2008; 2008-2010; 2010-2012, during which were studied 594 small and medium-sized furniture enterprises. There are commonly used in the EU definitions and indicators (European Commission, OECD, Oslo Manual), which allows for the comparability of results.Keywords: innovation activity, competitiveness of innovation, furniture enterprises in Bulgaria
Procedia PDF Downloads 27625205 Neurophysiology of Domain Specific Execution Costs of Grasping in Working Memory Phases
Authors: Rumeysa Gunduz, Dirk Koester, Thomas Schack
Abstract:
Previous behavioral studies have shown that working memory (WM) and manual actions share limited capacity cognitive resources, which in turn results in execution costs of manual actions in WM. However, to the best of our knowledge, there is no study investigating the neurophysiology of execution costs. The current study aims to fill this research gap investigating the neurophysiology of execution costs of grasping in WM phases (encoding, maintenance, retrieval) considering verbal and visuospatial domains of WM. A WM-grasping dual task paradigm was implemented to examine execution costs. Baseline single task required performing verbal or visuospatial version of a WM task. Dual task required performing the WM task embedded in a high precision grasp to place task. 30 participants were tested in a 2 (single vs. dual task) x 2 (visuo-spatial vs. verbal WM) within subject design. Event related potentials (ERPs) were extracted for each WM phase separately in the single and dual tasks. Memory performance for visuospatial WM, but not for verbal WM, was significantly lower in the dual task compared to the single task. Encoding related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral anterior sites and right posterior site. In the dual task, bilateral anterior difference disappeared due to bilaterally increased anterior negativities for visuospatial WM. Maintenance related ERPs in the dual task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. There was also anterior negativity for visuospatial WM. Retrieval related ERPs in the single task revealed different ERPs of verbal WM and visuospatial WM at bilateral posterior sites. In the dual task, there was no difference between verbal WM and visuospatial WM. Behavioral and ERP findings suggest that execution of grasping shares cognitive resources only with visuospatial WM, which in turn results in domain specific execution costs. Moreover, ERP findings suggest unique patterns of costs in each WM phase, which supports the idea that each WM phase reflects a separate cognitive process. This study not only contributes to the understanding of cognitive principles of manual action control, but also contributes to the understanding of WM as an entity consisting of separate modalities and cognitive processes.Keywords: dual task, grasping execution, neurophysiology, working memory domains, working memory phases
Procedia PDF Downloads 42925204 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm
Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang
Abstract:
Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR
Procedia PDF Downloads 12525203 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Zinc is a vital element required for growth and development. This fact makes zinc important, particularly for children. It maintains normal cellular structure and functions. This essential element appears to have protective effects against coronary artery disease and cardiomyopathy. Higher serum zinc levels are associated with lower risk of cardiovascular diseases (CVDs). There is a significant association between low serum zinc levels and heart failure. Zinc may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis, and prognosis of CVDs. The aim of this study is to determine zinc as well as new generation cardiac markers profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children, and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. Forty-five MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99, and above 99 for N-BMI, OB, and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses, including zinc, were performed. High sensitive-cTnT and cMyBP-C concentrations were measured by kits based on enzyme-linked immunosorbent assay principle. Appropriate statistical tests within the scope of SPSS were used for the evaluation of the study data. p<0.05 was accepted as statistically significant. Four groups were matched for age and gender. Decreased zinc concentrations were measured in Groups 2, 3, and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between zinc and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between zinc and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of this physiologically essential trace element accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both zinc and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.Keywords: cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity
Procedia PDF Downloads 11425202 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 6825201 Characterization of Agroforestry Systems in Burkina Faso Using an Earth Observation Data Cube
Authors: Dan Kanmegne
Abstract:
Africa will become the most populated continent by the end of the century, with around 4 billion inhabitants. Food security and climate changes will become continental issues since agricultural practices depend on climate but also contribute to global emissions and land degradation. Agroforestry has been identified as a cost-efficient and reliable strategy to address these two issues. It is defined as the integrated management of trees and crops/animals in the same land unit. Agroforestry provides benefits in terms of goods (fruits, medicine, wood, etc.) and services (windbreaks, fertility, etc.), and is acknowledged to have a great potential for carbon sequestration; therefore it can be integrated into reduction mechanisms of carbon emissions. Particularly in sub-Saharan Africa, the constraint stands in the lack of information about both areas under agroforestry and the characterization (composition, structure, and management) of each agroforestry system at the country level. This study describes and quantifies “what is where?”, earliest to the quantification of carbon stock in different systems. Remote sensing (RS) is the most efficient approach to map such a dynamic technology as agroforestry since it gives relatively adequate and consistent information over a large area at nearly no cost. RS data fulfill the good practice guidelines of the Intergovernmental Panel On Climate Change (IPCC) that is to be used in carbon estimation. Satellite data are getting more and more accessible, and the archives are growing exponentially. To retrieve useful information to support decision-making out of this large amount of data, satellite data needs to be organized so to ensure fast processing, quick accessibility, and ease of use. A new solution is a data cube, which can be understood as a multi-dimensional stack (space, time, data type) of spatially aligned pixels and used for efficient access and analysis. A data cube for Burkina Faso has been set up from the cooperation project between the international service provider WASCAL and Germany, which provides an accessible exploitation architecture of multi-temporal satellite data. The aim of this study is to map and characterize agroforestry systems using the Burkina Faso earth observation data cube. The approach in its initial stage is based on an unsupervised image classification of a normalized difference vegetation index (NDVI) time series from 2010 to 2018, to stratify the country based on the vegetation. Fifteen strata were identified, and four samples per location were randomly assigned to define the sampling units. For safety reasons, the northern part will not be part of the fieldwork. A total of 52 locations will be visited by the end of the dry season in February-March 2020. The field campaigns will consist of identifying and describing different agroforestry systems and qualitative interviews. A multi-temporal supervised image classification will be done with a random forest algorithm, and the field data will be used for both training the algorithm and accuracy assessment. The expected outputs are (i) map(s) of agroforestry dynamics, (ii) characteristics of different systems (main species, management, area, etc.); (iii) assessment report of Burkina Faso data cube.Keywords: agroforestry systems, Burkina Faso, earth observation data cube, multi-temporal image classification
Procedia PDF Downloads 152