Search results for: logistics network optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7907

Search results for: logistics network optimization

1337 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 135
1336 Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison

Authors: Po-Fang Hsu, Chiching Wei

Abstract:

In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing the whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In the beginning, we apply a document layout analysis that combines traditional and modern technics to segment layouts in blocks of various types appropriately. Then we transform this issue into a problem of layout graph matching with textual awareness. Regarding graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our neural graph approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets.

Keywords: document comparison, graph matching, graph neural network, modification similarity, multi-modal

Procedia PDF Downloads 179
1335 Moho Undulations beneath South of Egypt, Using the Seismic Waves Generated by Tele Earthquakes

Authors: Ahmed Hosny, Haroon Elshaikh, Gaber Hassib, Yassin Ali

Abstract:

The Moho discontinuity undulations beneath the southern part of Egypt have been defined using the seismic waves generated by tele earthquakes. These earthquakes have been recorded by the Aswan seismic network, which consists of 10 seismic stations established around the lake of Nasser. An additional seismic station was located towards the east of the Lake of Nasser by about ~ 150 km. Receiver functions and H-k stacking methods were used for obtaining the depths of Moho discontinuity and the Vp/Vs ratios beneath each seismic station. Our results revealed that, the depths of Moho discontinuity beneath the stations located around the Lake of Nasser range from 36 to 39 km, with an average value of 37.5 km. These results are consistent with the previous works done on the same area. The obtained Vp/Vs ratios for the crust of this area were ranged from 1.73 to 1.86, with an average value of 1.79. While beneath the station located towards the east, the Moho discontinuity was detected at a shallowest depth of 27 km and the Vp/Vs ratio was 1.82. The difference in the Moho depths beneath the stations located around the Lake of Nasser and the station located to the east revealed the boundary position between the Saharan Metacraton to the west and the Nubian-Arabian Shield to the east. This structural boundary delineates the position of the old collision of the Oceanic crust of the Nubian-Arabian Shield to the east with the Continental crust of the Saharan Metacraton to the west.

Keywords: Moho undulations, south of Egypt, seismic waves, earthquakes

Procedia PDF Downloads 513
1334 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 181
1333 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 361
1332 High-Resolution Spatiotemporal Retrievals of Aerosol Optical Depth from Geostationary Satellite Using Sara Algorithm

Authors: Muhammad Bilal, Zhongfeng Qiu

Abstract:

Aerosols, suspended particles in the atmosphere, play an important role in the earth energy budget, climate change, degradation of atmospheric visibility, urban air quality, and human health. To fully understand aerosol effects, retrieval of aerosol optical properties such as aerosol optical depth (AOD) at high spatiotemporal resolution is required. Therefore, in the present study, hourly AOD observations at 500 m resolution were retrieved from the geostationary ocean color imager (GOCI) using the simplified aerosol retrieval algorithm (SARA) over the urban area of Beijing for the year 2016. The SARA requires top-of-the-atmosphere (TOA) reflectance, solar and sensor geometry information and surface reflectance observations to retrieve an accurate AOD. For validation of the GOCI retrieved AOD, AOD measurements were obtained from the aerosol robotic network (AERONET) version 3 level 2.0 (cloud-screened and quality assured) data. The errors and uncertainties were reported using the root mean square error (RMSE), relative percent mean error (RPME), and the expected error (EE = ± (0.05 + 0.15AOD). Results showed that the high spatiotemporal GOCI AOD observations were well correlated with the AERONET AOD measurements with a correlation coefficient (R) of 0.92, RMSE of 0.07, and RPME of 5%, and 90% of the observations were within the EE. The results suggested that the SARA is robust and has the ability to retrieve high-resolution spatiotemporal AOD observations over the urban area using the geostationary satellite.

Keywords: AEORNET, AOD, SARA, GOCI, Beijing

Procedia PDF Downloads 171
1331 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
1330 Environmental Risk Assessment of Mechanization Waste Collection Scheme in Tehran

Authors: Amin Padash, Javad Kazem Zadeh Khoiy, Hossein Vahidi

Abstract:

Purpose: The mechanization system for the urban services was implemented in Tehran City in the year 2004 to promote the collection of domestic wastes; in 2010, in order to achieve the objectives of the project of urban services mechanization and qualitative promotion and improve the urban living environment, sustainable development and optimization of the recyclable solid wastes collection systems as well as other dry and non-organic wastes and conformity of the same to the modern urban management methods regarding integration of the mechanized urban services contractors and recycling contractors and in order to better and more correct fulfillment of the waste separation and considering the success of the mechanization plan of the dry wastes in most of the modern countries. The aim of this research is analyzing of Environmental Risk Assessment of the mechanization waste collection scheme in Tehran. Case Study: Tehran, the capital of Iran, with the population of 8.2 million people, occupies 730 km land expanse, which is 4% of total area of country. Tehran generated 2,788,912 ton (7,641 ton/day) of waste in year 2008. Hospital waste generation rate in Tehran reaches 83 ton/day. Almost 87% of total waste was disposed of by placing in a landfill located in Kahrizak region. This large amount of waste causes a significant challenge for the city. Methodology: To conduct the study, the methodology proposed in the standard Mil-St-88213 is used. This method is an efficient method to examine the position in opposition to the various processes and the action is effective. The method is based on the method of Military Standard and Specialized in the military to investigate and evaluate options to locate and identify the strengths and weaknesses of powers to decide on the best determining strategy has been used. Finding and Conclusion: In this study, the current status of mechanization systems to collect waste and identify its possible effects on the environment through a survey and assessment methodology Mil-St-88213, and then the best plan for action and mitigation of environmental risk has been proposed as Environmental Management Plan (EMP).

Keywords: environmental risk assessment, mechanization waste collection scheme, Mil-St-88213

Procedia PDF Downloads 439
1329 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads

Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed

Abstract:

Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.

Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads

Procedia PDF Downloads 343
1328 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 155
1327 Construction Unit Rate Factor Modelling Using Neural Networks

Authors: Balimu Mwiya, Mundia Muya, Chabota Kaliba, Peter Mukalula

Abstract:

Factors affecting construction unit cost vary depending on a country’s political, economic, social and technological inclinations. Factors affecting construction costs have been studied from various perspectives. Analysis of cost factors requires an appreciation of a country’s practices. Identified cost factors provide an indication of a country’s construction economic strata. The purpose of this paper is to identify the essential factors that affect unit cost estimation and their breakdown using artificial neural networks. Twenty-five (25) identified cost factors in road construction were subjected to a questionnaire survey and employing SPSS factor analysis the factors were reduced to eight. The 8 factors were analysed using the neural network (NN) to determine the proportionate breakdown of the cost factors in a given construction unit rate. NN predicted that political environment accounted 44% of the unit rate followed by contractor capacity at 22% and financial delays, project feasibility, overhead and profit each at 11%. Project location, material availability and corruption perception index had minimal impact on the unit cost from the training data provided. Quantified cost factors can be incorporated in unit cost estimation models (UCEM) to produce more accurate estimates. This can create improvements in the cost estimation of infrastructure projects and establish a benchmark standard to assist the process of alignment of work practises and training of new staff, permitting the on-going development of best practises in cost estimation to become more effective.

Keywords: construction cost factors, neural networks, roadworks, Zambian construction industry

Procedia PDF Downloads 364
1326 Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes

Authors: Jenny Radeva, Anke-Gundula Roth, Christian Goebbert, Robert Niestroj-Pahl, Lars Daehne, Axel Wolfram, Juergen Wiese

Abstract:

The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water.

Keywords: water treatment, hybrid membranes, layer-by-layer coating, filtration, polyelectrolytes

Procedia PDF Downloads 167
1325 In-silico DFT Study, Molecular Docking, ADMET Predictions, and DMS of Isoxazolidine and Isoxazoline Analogs with Anticancer Properties

Authors: Moulay Driss Mellaoui, Khadija Zaki, Khalid Abbiche, Abdallah Imjjad, Rachid Boutiddar, Abdelouahid Sbai, Aaziz Jmiai, Souad El Issami, Al Mokhtar Lamsabhi, Hanane Zejli

Abstract:

This study presents a comprehensive analysis of six isoxazolidine and isoxazoline derivatives, leveraging a multifaceted approach that combines Density Functional Theory (DFT), AdmetSAR analysis, and molecular docking simulations to explore their electronic, pharmacokinetic, and anticancer properties. Through DFT analysis, using the B3LYP-D3BJ functional and the 6-311++G(d,p) basis set, we optimized molecular geometries, analyzed vibrational frequencies, and mapped Molecular Electrostatic Potentials (MEP), identifying key sites for electrophilic attacks and hydrogen bonding. Frontier Molecular Orbital (FMO) analysis and Density of States (DOS) plots revealed varying stability levels among the compounds, with 1b, 2b, and 3b showing slightly higher stability. Chemical potential assessments indicated differences in binding affinities, suggesting stronger potential interactions for compounds 1b and 2b. AdmetSAR analysis predicted favorable human intestinal absorption (HIA) rates for all compounds, highlighting compound 3b superior oral effectiveness. Molecular docking and molecular dynamics simulations were conducted on isoxazolidine and 4-isoxazoline derivatives targeting the EGFR receptor (PDB: 1JU6). Molecular docking simulations confirmed the high affinity of these compounds towards the target protein 1JU6, particularly compound 3b, among the isoxazolidine derivatives, compound 3b exhibited the most favorable binding energy, with a g score of -8.50 kcal/mol. Molecular dynamics simulations over 100 nanoseconds demonstrated the stability and potential of compound 3b as a superior candidate for anticancer applications, further supported by structural analyses including RMSD, RMSF, Rg, and SASA values. This study underscores the promising role of compound 3b in anticancer treatments, providing a solid foundation for future drug development and optimization efforts.

Keywords: isoxazolines, DFT, molecular docking, molecular dynamic, ADMET, drugs.

Procedia PDF Downloads 47
1324 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 380
1323 Improving Cheon-Kim-Kim-Song (CKKS) Performance with Vector Computation and GPU Acceleration

Authors: Smaran Manchala

Abstract:

Homomorphic Encryption (HE) enables computations on encrypted data without requiring decryption, mitigating data vulnerability during processing. Usable Fully Homomorphic Encryption (FHE) could revolutionize secure data operations across cloud computing, AI training, and healthcare, providing both privacy and functionality, however, the computational inefficiency of schemes like Cheon-Kim-Kim-Song (CKKS) hinders their widespread practical use. This study focuses on optimizing CKKS for faster matrix operations through the implementation of vector computation parallelization and GPU acceleration. The variable effects of vector parallelization on GPUs were explored, recognizing that while parallelization typically accelerates operations, it could introduce overhead that results in slower runtimes, especially in smaller, less computationally demanding operations. To assess performance, two neural network models, MLPN and CNN—were tested on the MNIST dataset using both ARM and x86-64 architectures, with CNN chosen for its higher computational demands. Each test was repeated 1,000 times, and outliers were removed via Z-score analysis to measure the effect of vector parallelization on CKKS performance. Model accuracy was also evaluated under CKKS encryption to ensure optimizations did not compromise results. According to the results of the trail runs, applying vector parallelization had a 2.63X efficiency increase overall with a 1.83X performance increase for x86-64 over ARM architecture. Overall, these results suggest that the application of vector parallelization in tandem with GPU acceleration significantly improves the efficiency of CKKS even while accounting for vector parallelization overhead, providing impact in future zero trust operations.

Keywords: CKKS scheme, runtime efficiency, fully homomorphic encryption (FHE), GPU acceleration, vector parallelization

Procedia PDF Downloads 24
1322 Identifying Enablers and Barriers of Healthcare Knowledge Transfer: A Systematic Review

Authors: Yousuf Nasser Al Khamisi

Abstract:

Purpose: This paper presents a Knowledge Transfer (KT) Framework in healthcare sectors by applying a systematic literature review process to the healthcare organizations domain to identify enablers and barriers of KT in Healthcare. Methods: The paper conducted a systematic literature search of peer-reviewed papers that described key elements of KT using four databases (Medline, Cinahl, Scopus, and Proquest) for a 10-year period (1/1/2008–16/10/2017). The results of the literature review were used to build a conceptual framework of KT in healthcare organizations. The author used a systematic review of the literature, as described by Barbara Kitchenham in Procedures for Performing Systematic Reviews. Findings: The paper highlighted the impacts of using Knowledge Management (KM) concept at a healthcare organization in controlling infectious diseases in hospitals, improving family medicine performance and enhancing quality improvement practices. Moreover, it found that good-coding performance is analytically linked with a knowledge sharing network structure rich in brokerage and hierarchy rather than in density. The unavailability or ignored of the latest evidence on more cost-effective or more efficient delivery approaches leads to increase the healthcare costs and may lead to unintended results. Originality: Search procedure produced 12,093 results, of which 3523 were general articles about KM and KT. The titles and abstracts of these articles had been screened to segregate what is related and what is not. 94 articles identified by the researchers for full-text assessment. The total number of eligible articles after removing un-related articles was 22 articles.

Keywords: healthcare organisation, knowledge management, knowledge transfer, KT framework

Procedia PDF Downloads 138
1321 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran

Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard

Abstract:

Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.

Keywords: data mining, ischemic stroke, decision tree, Bayesian network

Procedia PDF Downloads 176
1320 A Historical Overview and Supplementation of the Dyad Concept of Industrial Marketing

Authors: Kimmo J. Kurppa

Abstract:

This paper describes the development of the buyer-supplier dyad concept over the years and proposes improvements, clarifications and extensions to the prevailing definitions published in 1970’s and 1980’s. This paper suggests a partition of the buyer-supplier dyad to concepts of Commercial Dyad (dyadic interaction in vertical relationships) and Innovative Dyad (dyadic interaction in horizontal relationship) since dyadic interaction takes place in two major types of contexts between industrial firms. Especially the context of joint product development in a dyadic relationship has not been adequately recognized being totally different from the interaction taking place in commercial buyer-supplier interaction. This paper provides therefore a solution to the existing gap in research by clarifying the descriptions and the context where dyadic interaction takes place between industrial firms. This paper also illustrates and explains how the firm’s organization and the interaction taking place inside it, is connected to the dyadic interaction structure between the firm and its partner firm. This theme has been discussed earlier but the phenomenon has not been adequately described and has not been illustrated in earlier research. This conceptual study has been interested in how the dyad concept of Industrial Marketing has been defined in the earlier research and how the definition could be improved. This conceptual paper has been constructed by using the systematic review methodology and proposes avenues for future research. The concept and existence of relationship and interaction between firm’s internal interaction network and external interaction between firm’s dyadic counterparts, need to be verified through empirical research.

Keywords: dyadic interaction, industrial dyad, buyer-supplier relationship, strategic reciprocity, experience, socially adjusted opportunism

Procedia PDF Downloads 217
1319 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2

Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti

Abstract:

A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).

Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays

Procedia PDF Downloads 451
1318 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 182
1317 Synthesis and Two-Photon Polymerization of a Cytocompatibility Tyramine Functionalized Hyaluronic Acid Hydrogel That Mimics the Chemical, Mechanical, and Structural Characteristics of Spinal Cord Tissue

Authors: James Britton, Vijaya Krishna, Manus Biggs, Abhay Pandit

Abstract:

Regeneration of the spinal cord after injury remains a great challenge due to the complexity of this organ. Inflammation and gliosis at the injury site hinder the outgrowth of axons and hence prevent synaptic reconnection and reinnervation. Hyaluronic acid (HA) is the main component of the spinal cord extracellular matrix and plays a vital role in cell proliferation and axonal guidance. In this study, we have synthesized and characterized a photo-cross-linkable HA-tyramine (tyr) hydrogel from a chemical, mechanical, electrical, biological and structural perspective. From our experimentation, we have found that HA-tyr can be synthesized with controllable degrees of tyramine substitution using click chemistry. The complex modulus (G*) of HA-tyr can be tuned to mimic the mechanical properties of the native spinal cord via optimization of the photo-initiator concentration and UV exposure. We have examined the degree of tyramine-tyramine covalent bonding (polymerization) as a function of UV exposure and photo-initiator use via Photo and Nuclear magnetic resonance spectroscopy. Both swelling and enzymatic degradation assays were conducted to examine the resilience of our 3D printed hydrogel constructs in-vitro. Using a femtosecond 780nm laser, the two-photon polymerization of HA-tyr hydrogel in the presence of riboflavin photoinitiator was optimized. A laser power of 50mW and scan speed of 30,000 μm/s produced high-resolution spatial patterning within the hydrogel with sustained mechanical integrity. Using dorsal root ganglion explants, the cytocompatibility of photo-crosslinked HA-tyr was assessed. Using potentiometry, the electrical conductivity of photo-crosslinked HA-tyr was assessed and compared to that of native spinal cord tissue as a function of frequency. In conclusion, we have developed a biocompatible hydrogel that can be used for photolithographic 3D printing to fabricate tissue engineered constructs for neural tissue regeneration applications.

Keywords: 3D printing, hyaluronic acid, photolithography, spinal cord injury

Procedia PDF Downloads 152
1316 Development of a Systematic Approach to Assess the Applicability of Silver Coated Conductive Yarn

Authors: Y. T. Chui, W. M. Au, L. Li

Abstract:

Recently, wearable electronic textiles have been emerging in today’s market and were developed rapidly since, beside the needs for the clothing uses for leisure, fashion wear and personal protection, there also exist a high demand for the clothing to be capable for function in this electronic age, such as interactive interfaces, sensual being and tangible touch, social fabric, material witness and so on. With the requirements of wearable electronic textiles to be more comfortable, adorable, and easy caring, conductive yarn becomes one of the most important fundamental elements within the wearable electronic textile for interconnection between different functional units or creating a functional unit. The properties of conductive yarns from different companies can vary to a large extent. There are vitally important criteria for selecting the conductive yarns, which may directly affect its optimization, prospect, applicability and performance of the final garment. However, according to the literature review, few researches on conductive yarns on shelf focus on the assessment methods of conductive yarns for the scientific selection of material by a systematic way under different conditions. Therefore, in this study, direction of selecting high-quality conductive yarns is given. It is to test the stability and reliability of the conductive yarns according the problems industrialists would experience with the yarns during the every manufacturing process, in which, this assessment system can be classified into four stage. That is 1) Yarn stage, 2) Fabric stage, 3) Apparel stage and 4) End user stage. Several tests with clear experiment procedures and parameters are suggested to be carried out in each stage. This assessment method suggested that the optimal conducting yarns should be stable in property and resistant to various corrosions at every production stage or during using them. It is expected that this demonstration of assessment method can serve as a pilot study that assesses the stability of Ag/nylon yarns systematically at various conditions, i.e. during mass production with textile industry procedures, and from the consumer perspective. It aims to assist industrialists to understand the qualities and properties of conductive yarns and suggesting a few important parameters that they should be reminded of for the case of higher level of suitability, precision and controllability.

Keywords: applicability, assessment method, conductive yarn, wearable electronics

Procedia PDF Downloads 536
1315 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach

Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat

Abstract:

A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.

Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings

Procedia PDF Downloads 136
1314 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation

Procedia PDF Downloads 111
1313 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment

Authors: Maedeh Pourmajidian, Joseph R. McDermid

Abstract:

Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.

Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation

Procedia PDF Downloads 398
1312 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
1311 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 131
1310 Estimation of Twist Loss in the Weft Yarn during Air-Jet Weft Insertion

Authors: Muhammad Umair, Yasir Nawab, Khubab Shaker, Muhammad Maqsood, Adeel Zulfiqar, Danish Mahmood Baitab

Abstract:

Fabric is a flexible woven material consisting of a network of natural or artificial fibers often referred to as thread or yarn. Today fabrics are produced by weaving, braiding, knitting, tufting and non-woven. Weaving is a method of fabric production in which warp and weft yarns are interlaced perpendicular to each other. There is infinite number of ways for the interlacing of warp and weft yarn. Each way produces a different fabric structure. The yarns parallel to the machine direction are called warp yarns and the yarns perpendicular to the machine direction are called weft or filling yarns. Air jet weaving is the modern method of weft insertion and considered as high speed loom. The twist loss in air jet during weft insertion affects the strength. The aim of this study was to investigate the effect of twist change in weft yarn during air-jet weft insertion. A total number of 8 samples were produced using 1/1 plain and 3/1 twill weave design with two fabric widths having same loom settings. Two different types of yarns like cotton and PC blend were used. The effect of material type, weave design and fabric width on twist change of weft yarn was measured and discussed. Twist change in the different types of weft yarn and weave design was measured and compared the twist change in the weft yarn with the yarn before weft yarn insertion and twist loss is measured. Wider fabric leads to higher twist loss in the yarn.

Keywords: air jet loom, twist per inch, twist loss, weft yarn

Procedia PDF Downloads 403
1309 Neuroinflammation in Late-Life Depression: The Role of Glial Cells

Authors: Chaomeng Liu, Li Li, Xiao Wang, Li Ren, Qinge Zhang

Abstract:

Late-life depression (LLD) is a prevalent mental disorder among the elderly, frequently accompanied by significant cognitive decline, and has emerged as a worldwide public health concern. Microglia, astrocytes, and peripheral immune cells play pivotal roles in regulating inflammatory responses within the central nervous system (CNS) across diverse cerebral disorders. This review commences with the clinical research findings and accentuates the recent advancements pertaining to microglia and astrocytes in the neuroinflammation process of LLD. The reciprocal communication network between the CNS and immune system is of paramount importance in the pathogenesis of depression and cognitive decline. Stress-induced downregulation of tight and gap junction proteins in the brain results in increased blood-brain barrier permeability and impaired astrocyte function. Concurrently, activated microglia release inflammatory mediators, initiating the kynurenine metabolic pathway and exacerbating the quinolinic acid/kynurenic acid imbalance. Moreover, the balance between Th17 and Treg cells is implicated in the preservation of immune homeostasis within the cerebral milieu of individuals suffering from LLD. The ultimate objective of this review is to present future strategies for the management and treatment of LLD, informed by the most recent advancements in research, with the aim of averting or postponing the onset of AD.

Keywords: neuroinflammation, late-life depression, microglia, astrocytes, central nervous system, blood-brain barrier, Kynurenine pathway

Procedia PDF Downloads 47
1308 Downscaling Seasonal Sea Surface Temperature Forecasts over the Mediterranean Sea Using Deep Learning

Authors: Redouane Larbi Boufeniza, Jing-Jia Luo

Abstract:

This study assesses the suitability of deep learning (DL) for downscaling sea surface temperature (SST) over the Mediterranean Sea in the context of seasonal forecasting. We design a set of experiments that compare different DL configurations and deploy the best-performing architecture to downscale one-month lead forecasts of June–September (JJAS) SST from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for the period of 1982–2020. We have also introduced predictors over a larger area to include information about the main large-scale circulations that drive SST over the Mediterranean Sea region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results showed that the convolutional neural network (CNN)-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme SST spatial patterns. Besides, the CNN-based downscaling yields a much more accurate forecast of extreme SST and spell indicators and reduces the significant relevant biases exhibited by the raw model predictions. Moreover, our results show that the CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of the Mediterranean Sea. The results demonstrate the potential usefulness of CNN in downscaling seasonal SST predictions over the Mediterranean Sea, particularly in providing improved forecast products.

Keywords: Mediterranean Sea, sea surface temperature, seasonal forecasting, downscaling, deep learning

Procedia PDF Downloads 76