Search results for: tensile failure load
4986 Evaluation of Reinforced Concrete Beam-Column Knee Joints Performance: Numerical and Experimental Comparison
Authors: B. S. Abdelwahed, B. B. Belkassem
Abstract:
Beam-column joints are a critical part in reinforced concrete RC frames designed for inelastic response to several external loads. Investigating the behaviour of the exterior RC beam-column joints has attracted many researchers in the past decades due to its critical influence on the overall behaviour of RC moment-resisting frames subjected to lateral loads. One of the most critical zones in moment-resistant frames is the knee joints because of restraints associated with providing limited anchorage length to the beam and column longitudinal reinforcement in it and consequentially causes a lot of damage in such building frames. Previous numerical simulations focussed mainly on the exterior and interior joints, for knee joint further work is still needed to investigate its behaviour and discuss its affecting parameters. Structural response for an RC knee beam-column joint is performed in this study using LS-DYNA. Three-dimensional finite element (FE) models of an RC knee beam-column joint are described and verified with experimental results available in literature; this is followed by a parametric study to investigate the influence of the concrete compressive strength, the presence of lateral beams and increasing beam reinforcement ratio. It is shown that the concrete compressive strength has a significant effect on shear capacity, load-deflection characteristics and failure modes of an RC knee beam-column joints but to a certain limit, the presence of lateral beams increased the joint confinement and reduced the rate of concrete degradation in the joint after reaching ultimate joint capacity, added to that an increase in the maximum load resistance. Increasing beam reinforcement ratio is found to improve the flexural resistance of the anchored beam bars and increase the joint maximum load resistance.Keywords: beam reinforcement ratio, joint confinement, numerical simulation, reinforced concrete beam-column joints, structural performance
Procedia PDF Downloads 4634985 Composite Base Natural Fiber
Authors: Noureddine Mahmoudi
Abstract:
The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP / date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight.Keywords: plant fiber, palm, SEM, compatibilizer
Procedia PDF Downloads 4584984 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 44983 The Mechanical Response of a Composite Propellant under Harsh Conditions
Authors: Xin Tong, Jin-sheng Xu, Xiong Chen, Ya Zheng
Abstract:
The aim of this paper is to study the mechanical properties of HTPB (Hydroxyl-terminated polybutadiene) composite propellant under harsh conditions. It describes two tests involving uniaxial tensile tests of various strain rates (ranging from 0.0005 s-1 to 1.5 s-1), temperatures (ranging from 223 K to 343 K) and high-cycle fatigue tests under low-temperature (223 K, frequencies were set at 50, 100, 150 Hz) using DMA (Dynamic Mechanical Analyzer). To highlight the effect of small pre-strain on fatigue properties of HTPB propellant, quasi-static stretching was carried out before fatigue loading, and uniaxial tensile tests at constant strain rates were successively applied. The results reveal that flow stress of propellant increases with reduction in temperature and rise in strain rate, and the strain rate-temperature equivalence relationship could be described by TTSP (time-temperature superposition principle) incorporating a modified WLF equation. Moreover, the rate of performance degradations and damage accumulation of propellant during fatigue tests increased with increasing strain amplitude and loading frequencies, while initial quasi-static loading has a negative effect on fatigue properties by comparing stress-strain relations after fatigue tests.Keywords: fatigue, HTPB propellant, tensile properties, time-temperature superposition principle
Procedia PDF Downloads 2934982 Characterization of Shrinkage-Induced Cracking of Clay Soils
Authors: Ahmad El Hajjar, Joanna Eid, Salima Bouchemella, Tariq Ouahbi, Benoit Duchemin, Said Taibi
Abstract:
In our present society, raw earth presents an alternative as an energy-saving building material for dealing with climate and environmental issues. Nevertheless, it has a sensitivity to water, due to the presence of fines, which has a direct effect on its consistency. This can be expressed during desiccation, by shrinkage deformations resulting in cracking that begins once the internal tensile stresses developed, due to suction, exceed the tensile strength of the material. This work deals with the evolution of the strain of clay samples, from the beginning of shrinkage until the initiation of crack, using the DIC (Digital Image Correlation) technique. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and depending on the intrinsic characteristics of the material. On the other hand, a study of restrained shrinkage is carried out on the ring test to investigate the ultimate tensile strength from which the crack begins in the dough of clay. The purpose of this test is to find the type of reinforcement adapted to thwart in the cracking of the material. A microscopic analysis of the damaged area is necessary to link the macroscopic mechanisms of cracking to the various physicochemical phenomena at the microscopic scale in order to understand the different microstructural mechanisms and their impact on the macroscopic shrinkage.Keywords: clayey soil, shrinkage, strain, cracking, digital image correlation
Procedia PDF Downloads 1614981 Acute Renal Failure Associated Tetanus Infection: A Case Report from Afghanistan
Authors: Shohra Qaderi
Abstract:
Introduction: Tetanus is a severe infection characterized by the spasm of skeletal muscles that often progresses toward respiratory failure. Acute Renal failure (ARF) is an important complication associated Tetanus infection, occurring in 15%-39% of cases. Presentation of cases: A previous healthy 14-year-old boy was admitted to the Tetanus ward of a hospital in Kabul, presenting with severe muscle spasms. On day four of admission, he started having cola-colored urine with decreased urine output. Due to lack of peritoneal dialysis, he went under hemodialysis in view of rapidly raising in blood urea (from baseline 32 mg/dl to 150 mg/dl) and creatinine from (baseline 0.9 mg/dl to 6.2g/dl). Despite all efforts, he had a sudden cardiac arrest and passed away on day 6 of admission. Discussion: ARF is a complication of tetanus, reported to be mild and non-oliguric. Suggested pathological mechanisms include autonomic dysfunction and rhabdomyolysis, owing to uncontrolled muscle spasms. Autonomic dysfunction, most evident in the first two weeks of infection. Conclusion: The prevalence and mortality of tetanus is high in Afghanistan. Physicians and pediatricians need to be aware of this complication of tetanus so as to take appropriate preventive measures and recognize and manage it early.Keywords: afghanistan, acute renal failure, child, mortality
Procedia PDF Downloads 1884980 Optimization of Human Hair Concentration for a Natural Rubber Based Composite
Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob
Abstract:
Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.Keywords: human hair, natural rubber, composite, vulcanization, fiber loading
Procedia PDF Downloads 3824979 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations
Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau
Abstract:
The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device
Procedia PDF Downloads 3454978 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading
Authors: Eda Gök
Abstract:
Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading
Procedia PDF Downloads 1214977 Hierarchical Optimization of Composite Deployable Bridge Treadway Using Particle Swarm Optimization
Authors: Ashraf Osman
Abstract:
Effective deployable bridges that are characterized by an increased capacity to weight ratio are recently needed for post-disaster rapid mobility and military operations. In deployable bridging, replacing metals as the fabricating material with advanced composite laminates as lighter alternatives with higher strength is highly advantageous. This article presents a hierarchical optimization strategy of a composite bridge treadway considering maximum strength design and bridge weight minimization. Shape optimization of a generic deployable bridge beam cross-section is performed to achieve better stress distribution over the bridge treadway hull. The developed cross-section weight is minimized up to reserving the margins of safety of the deployable bridging code provisions. Hence, the strength of composite bridge plates is maximized through varying the plies orientation. Different loading cases are considered of a tracked vehicle patch load. The orthotropic plate properties of a composite sandwich core are used to simulate the bridge deck structural behavior. Whereas, the failure analysis is conducted using Tsai-Wu failure criterion. The naturally inspired particle swarm optimization technique is used in this study. The proposed technique efficiently reduced the weight to capacity ratio of the developed bridge beam.Keywords: CFRP deployable bridges, disaster relief, military bridging, optimization of composites, particle swarm optimization
Procedia PDF Downloads 1404976 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine
Authors: Dodi Ikhsanshaleh
Abstract:
When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plantKeywords: block foundation, dynamic load, lumped mass parameter
Procedia PDF Downloads 4904975 Experimental and Analytical Studies for the Effect of Thickness and Axial Load on Load-Bearing Capacity of Fire-Damaged Concrete Walls
Authors: Yeo Kyeong Lee, Ji Yeon Kang, Eun Mi Ryu, Hee Sun Kim, Yeong Soo Shin
Abstract:
The objective of this paper is an investigation of the effects of the thickness and axial loading during a fire test on the load-bearing capacity of a fire-damaged normal-strength concrete wall. Two factors are attributed to the temperature distributions in the concrete members and are mainly obtained through numerous experiments. Toward this goal, three wall specimens of different thicknesses are heated for 2 h according to the ISO-standard heating curve, and the temperature distributions through the thicknesses are measured using thermocouples. In addition, two wall specimens are heated for 2 h while simultaneously being subjected to a constant axial loading at their top sections. The test results show that the temperature distribution during the fire test depends on wall thickness and axial load during the fire test. After the fire tests, the specimens are cured for one month, followed by the loading testing. The heated specimens are compared with three unheated specimens to investigate the residual load-bearing capacities. The fire-damaged walls show a minor difference of the load-bearing capacity regarding the axial loading, whereas a significant difference became evident regarding the wall thickness. To validate the experiment results, finite element models are generated for which the material properties that are obtained for the experiment are subject to elevated temperatures, and the analytical results show sound agreements with the experiment results. The analytical method based on validated thought experimental results is applied to generate the fire-damaged walls with 2,800 mm high considering the buckling effect: typical story height of residual buildings in Korea. The models for structural analyses generated to deformation shape after thermal analysis. The load-bearing capacity of the fire-damaged walls with pin supports at both ends does not significantly depend on the wall thickness, the reason for it is restraint of pinned ends. The difference of the load-bearing capacity of fire-damaged walls as axial load during the fire is within approximately 5 %.Keywords: normal-strength concrete wall, wall thickness, axial-load ratio, slenderness ratio, fire test, residual strength, finite element analysis
Procedia PDF Downloads 2154974 A Study on the Method of Accelerated Life Test to Electric Rotating System
Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim
Abstract:
This paper introduces the study on the method of accelerated life test to electrical rotating system. In recent years, as well as efficiency for motors and generators, there is a growing need for research on the life expectancy. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. In this paper, the accelerated life test methods of the electrical rotating system are classified according to the application. This paper describes the development of the test procedure for the highly accelerated life test (HALT) of the 100kW permanent magnet synchronous motor (PMSM) of electric vehicle. Finally, it explains how to select acceleration load for vibration, temperature, bearing load, etc. for accelerated life test.Keywords: acceleration coefficient, electric vehicle motor, HALT, life expectancy, vibration
Procedia PDF Downloads 3264973 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia
Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez
Abstract:
This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models
Procedia PDF Downloads 1894972 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel
Authors: Karthik K. R, Viswanath V, Asraff A. K
Abstract:
The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.Keywords: FAD, j-integral, fracture, surface crack
Procedia PDF Downloads 1874971 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 3444970 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 3074969 Effect of Different FRP Wrapping and Thickness of Concrete Cover on Fatigue Bond Strength of Spliced Concrete Beam
Authors: Rayed Alyousef, Tim Topper, Adil Al-Mayah
Abstract:
This paper presents results of an ongoing research program at University of Waterloo to study the effect of external FRP sheet wrap confinement along a lap splice of reinforced concrete (RC) beams on their fatigue bond strength. Fatigue loading of RC beams containing a lap splice resulted in an increase in the number and width of cracks, an increase in deflection and a decrease of the bond strength between the steel rebar and the surrounding concrete. The phase of the research described here consists of monotonic and fatigue tests of thirty two reinforced concrete beam with dimensions 2200⨉350⨉250 mm. Each beam was reinforced with two 20M bars lap spliced in the constant moment region of the tension zone and two 10M bars in the compression zone outside the constant moment region. The test variables were the presence or absence of a FRP wrapping, the type of the FRP wrapping (GFRP or CFRP), the type of loading and the fatigue load range. The test results for monotonic loading showed that the stiffness of all beams was almost same, but that the FRP sheet wrapping increased the bond strength and the deflection at ultimate load. All beams tested under fatigue loading failed by a bond failure except one CFRP wrapped beam that failed by fatigue of the main reinforcement. The FRP sheet increased the bond strength for all specimens under fatigue loading.Keywords: lap splice, bond strength, fatigue loading, FRP
Procedia PDF Downloads 2934968 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.Keywords: renewable energies, hybrid systems, optimization, operation control
Procedia PDF Downloads 3794967 Modeling of Historical Lime Masonry Structure in Abaqus
Authors: Ram Narayan Khare, Adhyatma Khare, Aradhna Shrivastava
Abstract:
In this study, numerical modeling of ‘Lime Surkhi’ masonry building has been carried out for a prototype ancient building situated at seismic zone III using the Finite Element Method by Abaqus software. The model is designed in order to get the failure envelope and then decide the best method of retrofitting the structure so that the structure is made to withstand more decades, given its historical background. Previously, due to a lack of technologies, it was difficult to determine the mode of failure. Present technological development can predict the mode of failure, and subsequently, the structure can be refabricated accordingly. The study makes an important addition to the understanding of retrofitting ancient and old buildings based on the results of FEM modeling.Keywords: seismic retrofitting, Abaqus, FEM, historic building, Lime Surkhi masonry
Procedia PDF Downloads 314966 Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron
Authors: Mehmet Ekici
Abstract:
In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron.Keywords: vermicular cast iron, fading time, hardness, tensile test and impact test
Procedia PDF Downloads 3484965 Determination of Parasitic Load in Different Tissues of Murine Toxoplasmosis after Immunization by Excretory-Secretory Antigens using Real Time QPCR
Authors: Ahmad Daryani, Yousef Dadimoghaddam, Mehdi Sharif, Ehsan Ahmadpour, Shahabeddin Sarvi, Baghar Hashemi
Abstract:
Background: Excretory-secretory antigens (ESAs) of Toxoplasma gondii are one of the candidates for immunization against toxoplasmosis. For evaluation of immunization, we determined the kinetics of the distribution of Toxoplasma and parasite load in different tissues of mice immunized by ESAs. Methods: In this experimental study, 36 mice in case (n= 18) and control (n= 18) groups were immunized with ESAs and PBS, respectively. After 2 weeks, mice were challenged intraperitoneally with Toxoplasma virulent RH strain. Blood and different tissues (brain, spleen, liver, heart, kidney, and muscle) were collected daily after challenge (1, 2, 3 and last day before death). Parasite load was calculated using Real time QPCR targeted at the B1 gene. Results: ESAs as vaccine in different tissues showed various effects. However, infected mice which received the vaccine in comparison with control group, displayed a drastically decreasing in parasite burden, in their blood and tissues (P= 0.000). Conclusion: These results indicated that ESAs with reduction of parasite load in different tissues of host could be evaluable candidate for the development of immunization strategies against toxoplasmosis.Keywords: parasitic load, murine toxoplasmosis, immunization, excretory-secretory antigens, real time QPCR
Procedia PDF Downloads 4444964 An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks
Authors: Cathy SW. Chow, Kristina Shin, Faming Wang, B. C. L. So
Abstract:
During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body’s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants’ muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM 5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively.Keywords: exoskeleton, giant puppet performers, load carriage system, surface electromyography
Procedia PDF Downloads 1074963 Numerical Buckling of Composite Cylindrical Shells under Axial Compression Using Asymmetric Meshing Technique (AMT)
Authors: Zia R. Tahir, P. Mandal
Abstract:
This paper presents the details of a numerical study of buckling and post buckling behaviour of laminated carbon fiber reinforced plastic (CFRP) thin-walled cylindrical shell under axial compression using asymmetric meshing technique (AMT) by ABAQUS. AMT is considered to be a new perturbation method to introduce disturbance without changing geometry, boundary conditions or loading conditions. Asymmetric meshing affects both predicted buckling load and buckling mode shapes. Cylindrical shell having lay-up orientation [0°/+45°/-45°/0°] with radius to thickness ratio (R/t) equal to 265 and length to radius ratio (L/R) equal to 1.5 is analysed numerically. A series of numerical simulations (experiments) are carried out with symmetric and asymmetric meshing to study the effect of asymmetric meshing on predicted buckling behaviour. Asymmetric meshing technique is employed in both axial direction and circumferential direction separately using two different methods, first by changing the shell element size and varying the total number elements, and second by varying the shell element size and keeping total number of elements constant. The results of linear analysis (Eigenvalue analysis) and non-linear analysis (Riks analysis) using symmetric meshing agree well with analytical results. The results of numerical analysis are presented in form of non-dimensional load factor, which is the ratio of buckling load using asymmetric meshing technique to buckling load using symmetric meshing technique. Using AMT, load factor has about 2% variation for linear eigenvalue analysis and about 2% variation for non-linear Riks analysis. The behaviour of load end-shortening curve for pre-buckling is same for both symmetric and asymmetric meshing but for asymmetric meshing curve behaviour in post-buckling becomes extraordinarily complex. The major conclusions are: different methods of AMT have small influence on predicted buckling load and significant influence on load displacement curve behaviour in post buckling; AMT in axial direction and AMT in circumferential direction have different influence on buckling load and load displacement curve in post-buckling.Keywords: CFRP composite cylindrical shell, asymmetric meshing technique, primary buckling, secondary buckling, linear eigenvalue analysis, non-linear riks analysis
Procedia PDF Downloads 3534962 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis
Authors: Sipu Guo, Silin Huang
Abstract:
Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.Keywords: allostatic load, executive function, network analysis, rural adolescent
Procedia PDF Downloads 524961 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses
Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer
Abstract:
The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation
Procedia PDF Downloads 1714960 Preparation and Properties of NR Based Ebonite Rubber Suitable for Use as Engineering Material
Authors: Dosu Malomo, O. E. Edeh, P. O. Okolo, F. C. Ibeh
Abstract:
The preparation of various samples of ebonite vulcanizates and their physico-mechanical properties have been investigated using standard methods. This work explores the production of ebonite dust, production of ebonite vulcanizates and investigation of the characterisation of the ebonite. Five different ebonite materials – labelled A, B, C, D, and E with sulphur content in parts per hundred grams of rubber (Phr) of 32, 34, 36, 38 and 40 respectively were produced. The physico-mechanical properties carried out were tensile strength, hardness and abrasion resistance. The tensile strength (MPa) for sample A, B, C, D and E were 5.6, 3.5, 4.7, 1.7 and 2.0 respectively while the abrasion(%mass loss) were 8.49, 4.24, 2.59, 1.08 and 1.05 respectively and the hardness (IRHD) being 63, 64, 65, 70 and 82. The results show that the preparation of ebonite from natural rubber as a base polymer is feasible considering the results of characterisation obtained.Keywords: compounding, ebonite dust, natural rubber, vulcanization
Procedia PDF Downloads 1624959 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 3384958 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 6284957 Effect of Printing Process on Mechanical Properties and Porosity of 3D Printed Concrete Strips
Authors: Wei Chen
Abstract:
3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations.Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.This paper aims to improve the tensile strength, tensile ductility, and bending toughness of a recently developed ‘one-part’ geopolymer for 3D concrete printing (3DCP) applications, in order to address the insufficient tensile strength and brittle fracture characteristics of geopolymer materials in 3D printing scenarios where materials are subjected to tensile stress. The effects of steel fiber content, and aspect ratio, on mechanical properties, were systematically discussed, including compressive strength, flexure strength, splitting tensile strength, uniaxial tensile strength, bending toughness, and the anisotropy of 3DP-OPGFRC, respectively. The fiber distribution in the printed samples was obtained through x-ray computed tomography (X-CT) testing. In addition, the underlying mechanisms were discussed to provide a deep understanding of the role steel fiber played in the reinforcement. The experimental results showed that the flexural strength increased by 282% to 26.1MP, and the compressive strength also reached 104.5Mpa. A high tensile ductility, appreciable bending toughness, and strain-hardening behavior can be achieved with steel fiber incorporation. In addition, it has an advantage over the OPC-based steel fiber-reinforced 3D printing materials given in the existing literature (flexural strength 15 Mpa); It is also superior to the tensile strength (<6Mpa) of current geopolymer fiber reinforcements used for 3D printing. It is anticipated that the development of this 3D printable steel fiber reinforced ‘one-part’ geopolymer will be used to meet high tensile strength requirements for printing scenarios.Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology
Procedia PDF Downloads 78