Search results for: surface mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7524

Search results for: surface mining

6894 Quantitative Analysis of Carcinoembryonic Antigen (CEA) Using Micromechanical Piezoresistive Cantilever

Authors: Meisam Omidi, M. Mirijalili, Mohammadmehdi Choolaei, Z. Sharifi, F. Haghiralsadat, F. Yazdian

Abstract:

In this work, we have used arrays of micromechanical piezoresistive cantilever with different geometries to detect carcinoembryonic antigen (CEA), which is known as an important biomarker associated with various cancers such as the colorectal, lung, breast, pancreatic, and bladder cancer. The sensing principle is based on the surface stress changes induced by antigen–antibody interaction on the microcantilevers surfaces. Different concentrations of CEA in a human serum albumin (HSA) solution were detected as a function of the deflection of the beams. According to the experiments, it was revealed that microcantilevers have surface stress sensitivities in the order of 8 (mJ/m). This matter allows them to detect CEA concentrations as low as 3 ng/mL or 18 pM. This indicates the fact that the self-sensing microcantilever approach is beneficial for pathological tests.

Keywords: micromechanical biosensors, carcinoembryonic antigen (CEA), surface stress

Procedia PDF Downloads 465
6893 Effect of Acid and Alkali Treatment on Physical and Surface Charge Properties of Clayey Soils

Authors: Nikhil John Kollannur, Dali Naidu Arnepalli

Abstract:

Most of the surface related phenomena in the case of fine-grained soil are attributed to their unique surface charge properties and specific surface area. The temporal variations in soil behavior, to some extent, can be credited to the changes in these properties. Among the multitude of factors that affect the charge and surface area of clay minerals, the inherent system chemistry occupies the cardinal position. The impact is more profound when the chemistry change is manifested in terms of the system pH. pH plays a significant role by modifying the edge charges of clay minerals and facilitating mineral dissolution. Hence there is a need to address the variations in physical and charge properties of fine-grained soils treated over a range of acidic as well as alkaline conditions. In the present study, three soils (two soils commercially procured and one natural soil) exhibiting distinct mineralogical compositions are subjected to different pH environment over a range of 2 to 13. The soil-solutions prepared at a definite liquid to solid ratio are adjusted to the required pH value by adding measured quantities of 0.1M HCl/0.1M NaOH. The studies are conducted over a range of interaction time, varying from 1 to 96 hours. The treated soils are then analyzed for their physical properties in terms of specific surface area and particle size characteristics. Further, modifications in surface morphology are evaluated from scanning electron microscope (SEM) imaging. Changes in the surface charge properties are assessed in terms of zeta potential measurements. Studies show significant variations in total surface area, probably because of the dissolution of clay minerals. This observation is further substantiated by the morphological analysis with SEM imaging. The zeta potential measurements on soils indicate noticeable variation upon pH treatment, which is partially ascribed to the modifications in the pH-dependant edge charges and partially due to the clay mineral dissolution. The results provide valuable insight into the role of pH in a clay-electrolyte system upon surface related phenomena such as species adsorption, fabric modification etc.

Keywords: acid and alkali treatment, mineral dissolution , specific surface area, zeta potential

Procedia PDF Downloads 179
6892 Leveraging Power BI for Advanced Geotechnical Data Analysis and Visualization in Mining Projects

Authors: Elaheh Talebi, Fariba Yavari, Lucy Philip, Lesley Town

Abstract:

The mining industry generates vast amounts of data, necessitating robust data management systems and advanced analytics tools to achieve better decision-making processes in the development of mining production and maintaining safety. This paper highlights the advantages of Power BI, a powerful intelligence tool, over traditional Excel-based approaches for effectively managing and harnessing mining data. Power BI enables professionals to connect and integrate multiple data sources, ensuring real-time access to up-to-date information. Its interactive visualizations and dashboards offer an intuitive interface for exploring and analyzing geotechnical data. Advanced analytics is a collection of data analysis techniques to improve decision-making. Leveraging some of the most complex techniques in data science, advanced analytics is used to do everything from detecting data errors and ensuring data accuracy to directing the development of future project phases. However, while Power BI is a robust tool, specific visualizations required by geotechnical engineers may have limitations. This paper studies the capability to use Python or R programming within the Power BI dashboard to enable advanced analytics, additional functionalities, and customized visualizations. This dashboard provides comprehensive tools for analyzing and visualizing key geotechnical data metrics, including spatial representation on maps, field and lab test results, and subsurface rock and soil characteristics. Advanced visualizations like borehole logs and Stereonet were implemented using Python programming within the Power BI dashboard, enhancing the understanding and communication of geotechnical information. Moreover, the dashboard's flexibility allows for the incorporation of additional data and visualizations based on the project scope and available data, such as pit design, rock fall analyses, rock mass characterization, and drone data. This further enhances the dashboard's usefulness in future projects, including operation, development, closure, and rehabilitation phases. Additionally, this helps in minimizing the necessity of utilizing multiple software programs in projects. This geotechnical dashboard in Power BI serves as a user-friendly solution for analyzing, visualizing, and communicating both new and historical geotechnical data, aiding in informed decision-making and efficient project management throughout various project stages. Its ability to generate dynamic reports and share them with clients in a collaborative manner further enhances decision-making processes and facilitates effective communication within geotechnical projects in the mining industry.

Keywords: geotechnical data analysis, power BI, visualization, decision-making, mining industry

Procedia PDF Downloads 85
6891 Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier

Authors: Dasom Kim, William Xiu Shun Wong, Yoonjin Hyun, Donghoon Lee, Minji Paek, Sungho Byun, Namgyu Kim

Abstract:

There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers.

Keywords: data mining, document classifier, text mining, topic modeling

Procedia PDF Downloads 395
6890 Searching Linguistic Synonyms through Parts of Speech Tagging

Authors: Faiza Hussain, Usman Qamar

Abstract:

Synonym-based searching is recognized to be a complicated problem as text mining from unstructured data of web is challenging. Finding useful information which matches user need from bulk of web pages is a cumbersome task. In this paper, a novel and practical synonym retrieval technique is proposed for addressing this problem. For replacement of semantics, user intent is taken into consideration to realize the technique. Parts-of-Speech tagging is applied for pattern generation of the query and a thesaurus for this experiment was formed and used. Comparison with Non-Context Based Searching, Context Based searching proved to be a more efficient approach while dealing with linguistic semantics. This approach is very beneficial in doing intent based searching. Finally, results and future dimensions are presented.

Keywords: natural language processing, text mining, information retrieval, parts-of-speech tagging, grammar, semantics

Procedia PDF Downloads 302
6889 Improving Lubrication Efficiency at High Sliding Speeds by Plasma Surface Texturing

Authors: Wei Zha, Jingzeng Zhang, Chen Zhao, Ran Cai, Xueyuan Nie

Abstract:

Cathodic plasma electrolysis (CPE) is used to create surface textures on cast iron samples for improving the tribological properties. Micro craters with confined size distribution were successfully formed by CPE process. These craters can generate extra hydrodynamic pressure that separates two sliding surfaces, increase the oil film thickness and accelerate the transition from boundary to mixed lubrication. It was found that the optimal crater size was 1.7 μm, at which the maximum lubrication efficiency was achieved. The Taguchi method was used to optimize the process parameters (voltage and roughness) for CPE surface texturing. The orthogonal array and the signal-to-noise ratio were employed to study the effect of each process parameter on the coefficient of friction. The results showed that with higher voltage and lower roughness, the lower friction coefficient can be obtained, and thus the lubrication can be more efficiently used for friction reduction.

Keywords: cathodic plasma electrolysis, friction, lubrication, plasma surface texturing

Procedia PDF Downloads 131
6888 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 470
6887 Integrating Data Mining within a Strategic Knowledge Management Framework: A Platform for Sustainable Competitive Advantage within the Australian Minerals and Metals Mining Sector

Authors: Sanaz Moayer, Fang Huang, Scott Gardner

Abstract:

In the highly leveraged business world of today, an organisation’s success depends on how it can manage and organize its traditional and intangible assets. In the knowledge-based economy, knowledge as a valuable asset gives enduring capability to firms competing in rapidly shifting global markets. It can be argued that ability to create unique knowledge assets by configuring ICT and human capabilities, will be a defining factor for international competitive advantage in the mid-21st century. The concept of KM is recognized in the strategy literature, and increasingly by senior decision-makers (particularly in large firms which can achieve scalable benefits), as an important vehicle for stimulating innovation and organisational performance in the knowledge economy. This thinking has been evident in professional services and other knowledge intensive industries for over a decade. It highlights the importance of social capital and the value of the intellectual capital embedded in social and professional networks, complementing the traditional focus on creation of intellectual property assets. Despite the growing interest in KM within professional services there has been limited discussion in relation to multinational resource based industries such as mining and petroleum where the focus has been principally on global portfolio optimization with economies of scale, process efficiencies and cost reduction. The Australian minerals and metals mining industry, although traditionally viewed as capital intensive, employs a significant number of knowledge workers notably- engineers, geologists, highly skilled technicians, legal, finance, accounting, ICT and contracts specialists working in projects or functions, representing potential knowledge silos within the organisation. This silo effect arguably inhibits knowledge sharing and retention by disaggregating corporate memory, with increased operational and project continuity risk. It also may limit the potential for process, product, and service innovation. In this paper the strategic application of knowledge management incorporating contemporary ICT platforms and data mining practices is explored as an important enabler for knowledge discovery, reduction of risk, and retention of corporate knowledge in resource based industries. With reference to the relevant strategy, management, and information systems literature, this paper highlights possible connections (currently undergoing empirical testing), between an Strategic Knowledge Management (SKM) framework incorporating supportive Data Mining (DM) practices and competitive advantage for multinational firms operating within the Australian resource sector. We also propose based on a review of the relevant literature that more effective management of soft and hard systems knowledge is crucial for major Australian firms in all sectors seeking to improve organisational performance through the human and technological capability captured in organisational networks.

Keywords: competitive advantage, data mining, mining organisation, strategic knowledge management

Procedia PDF Downloads 409
6886 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 424
6885 Scale Up-Mechanochemical Synthesis of High Surface Area Alpha-Alumina

Authors: Sarah Triller, Ferdi Schüth

Abstract:

The challenges encountered in upscaling the mechanochemical synthesis of high surface area α-alumina are investigated in this study. After lab-scale experiments in shaker mills and planetary ball mills, the optimization of reaction parameters of the conversion in the smallest vessel of a scalable mill, named Simoloyer, was developed. Furthermore, the future perspectives by scaling up the conversion in several steps are described. Since abrasion from the steel equipment can be problematic, the process was transferred to a ceramically lined mill, which solved the contamination problem. The recovered alpha-alumina shows a high specific surface area in all investigated scales.

Keywords: mechanochemistry, scale-up, ball milling, ceramic lining

Procedia PDF Downloads 58
6884 Use of Quasi-3D Inversion of VES Data Based on Lateral Constraints to Characterize the Aquifer and Mining Sites of an Area Located in the North-East of Figuil, North Cameroon

Authors: Fofie Kokea Ariane Darolle, Gouet Daniel Hervé, Koumetio Fidèle, Yemele David

Abstract:

The electrical resistivity method is successfully used in this paper in order to have a clearer picture of the subsurface of the North-East ofFiguil in northern Cameroon. It is worth noting that this method is most often used when the objective of the study is to image the shallow subsoils by considering them as a set of stratified ground layers. The problem to be solved is very often environmental, and in this case, it is necessary to perform an inversion of the data in order to have a complete and accurate picture of the parameters of the said layers. In the case of this work, thirty-three (33) Schlumberger VES have been carried out on an irregular grid to investigate the subsurface of the study area. The 1D inversion applied as a preliminary modeling tool and in correlation with the mechanical drillings results indicates a complex subsurface lithology distribution mainly consisting of marbles and schists. Moreover, the quasi-3D inversion with lateral constraint shows that the misfit between the observed field data and the model response is quite good and acceptable with a value low than 10%. The method also reveals existence of two water bearing in the considered area. The first is the schist or weathering aquifer (unsuitable), and the other is the marble or the fracturing aquifer (suitable). The final quasi 3D inversion results and geological models indicate proper sites for groundwaters prospecting and for mining exploitation, thus allowing the economic development of the study area.

Keywords: electrical resistivity method, 1D inversion, quasi 3D inversion, groundwaters, mining

Procedia PDF Downloads 149
6883 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy

Procedia PDF Downloads 208
6882 Nanostructured Multi-Responsive Coatings for Tuning Surface Properties

Authors: Suzanne Giasson, Alberto Guerron

Abstract:

Stimuli-responsive polymer coatings can be used as functional elements in nanotechnologies, such as valves in microfluidic devices, as membranes in biomedical engineering, as substrates for the culture of biological tissues or in developing nanomaterials for targeted therapies in different diseases. However, such coatings usually suffer from major shortcomings, such as a lack of selectivity and poor environmental stability. The study will present multi-responsive hierarchical and hybrid polymer-based coatings aiming to overcome some of these limitations. Hierarchical polymer coatings, consisting of two-dimensional arrays of thermo-responsive cationic PNIPAM-based microgels and surface-functionalized with non-responsive or pH-responsive polymers, were covalently grafted to substrates to tune the surface chemistry and the elasticity of the surface independently using different stimuli. The characteristic dimensions (i.e., layer thickness) and surface properties (i.e., adhesion, friction) of the microgel coatings were assessed using the Surface Forces Apparatus. The ability to independently control the swelling and surface properties using temperature and pH as triggers were investigated for microgels in aqueous suspension and microgels immobilized on substrates. Polymer chain grafting did not impede the ability of cationic PNIPAM microgels to undergo a volume phase transition above the VPTT, either in suspension or immobilized on a substrate. Due to the presence of amino groups throughout the entirety of the microgel polymer network, the swelling behavior was also pH dependent. However, the thermo-responsive swelling was more significant than the pH-triggered one. The microgels functionalized with PEG exhibited the most promising behavior. Indeed, the thermo-triggered swelling of microgel-co-PEG did not give rise to changes in the microgel surface properties (i.e., surface potential and adhesion) within a wide range of pH values. It was possible for the immobilized microgel-co-PEG to undergo a volume transition (swelling/shrinking) with no change in adhesion, suggesting that the surface of the thermal-responsive microgels remains rather hydrophilic above the VPTT. This work confirms the possibility of tuning the swelling behavior of microgels without changing the adhesive properties. Responsive surfaces whose swelling properties can be reversibly and externally altered over space and time regardless of the surface chemistry are very innovative and will enable revolutionary advances in technologies, particularly in biomedical surface engineering and microfluidics, where advanced assembly of functional components is increasingly required.

Keywords: responsive materials, polymers, surfaces, cell culture

Procedia PDF Downloads 71
6881 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman

Abstract:

This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.

Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters

Procedia PDF Downloads 425
6880 FTIR Characterization of EPS Ligands from Mercury Resistant Bacterial Isolate, Paenibacillus jamilae PKR1

Authors: Debajit Kalita, Macmillan Nongkhlaw, S. R. Joshi

Abstract:

Mercury (Hg) is a highly toxic heavy metal released both from naturally occurring volcanoes and anthropogenic activities like alkali and mining industries as well as biomedical wastes. Exposure to mercury is known to affect the nervous, gastrointestinal and renal systems. In the present study, a bacterial isolate identified using 16S rRNA marker as Paenibacillus jamilae PKR1 isolated from India’s largest sandstone-type uranium deposits, containing an average of 0.1% U3O8, was found to be resistance to Hg contamination under culture conditions. It showed strong hydrophobicity as revealed by SAT, MATH, PAT, SAA adherence assays. The Fourier Transform Infrared (FTIR) spectra showed the presence of hydroxyl, amino and carboxylic functional groups on the cell surface EPS which are known to contribute in the binding of metals. It is proposed that the characterized isolate tolerating up to 4.0mM of mercury provides scope for its application in bioremediation of mercury from contaminated sites.

Keywords: mercury, Domiasiat, uranium, paenibacillus jamilae, hydrophobicity, FTIR

Procedia PDF Downloads 404
6879 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism

Authors: Reyhane Hamed Kamran

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 91
6878 Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics

Authors: Narin Salehiyan

Abstract:

Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure.

Keywords: cell, tissue damage, morphogenesis, cell conduct

Procedia PDF Downloads 75
6877 Identifying Concerned Citizen Communication Style During the State Parliamentary Elections in Bavaria

Authors: Volker Mittendorf, Andre Schmale

Abstract:

In this case study, we want to explore the Twitter-use of candidates during the state parliamentary elections-year 2018 in Bavaria, Germany. This paper focusses on the seven parties that probably entered the parliament. Against this background, the paper classifies the use of language as populism which itself is considered as a political communication style. First, we determine the election campaigns which started in the years 2017 on Twitter, after that we categorize the posting times of the different direct candidates in order to derive ideal types from our empirical data. Second, we have done the exploration based on the dictionary of concerned citizens which contains German political language of the right and the far right. According to that, we are analyzing the corpus with methods of text mining and social network analysis, and afterwards we display the results in a network of words of concerned citizen communication style (CCCS).

Keywords: populism, communication style, election, text mining, social media

Procedia PDF Downloads 146
6876 Optimization of Wear during Dry Sliding Wear of AISI 1042 Steel Using Response Surface Methodology

Authors: Sukant Mehra, Parth Gupta, Varun Arora, Sarvoday Singh, Amit Kohli

Abstract:

The study was emphasised on dry sliding wear behavior of AISI 1042 steel. Dry sliding wear tests were performed using pin-on-disk apparatus under normal loads of 5, 7.5 and 10 kgf and at speeds 600, 750 and 900 rpm. Response surface methodology (RSM) was utilized for finding optimal values of process parameter and experiment was based on rotatable, central composite design (CCD). It was found that the wear followed linear pattern with the load and rpm. The obtained optimal process parameters have been predicted and verified by confirmation experiments.

Keywords: central composite design (CCD), optimization, response surface methodology (RSM), wear

Procedia PDF Downloads 568
6875 Sexting Phenomenon in Educational Settings: A Data Mining Approach

Authors: Koutsopoulou Ioanna, Gkintoni Evgenia, Halkiopoulos Constantinos, Antonopoulou Hera

Abstract:

Recent advances in Internet Computer Technology (ICT) and the ever-increasing use of technological equipment amongst adolescents and young adults along with unattended access to the internet and social media and uncontrolled use of smart phones and PCs have caused social problems like sexting to emerge. The main purpose of the present article is first to present an analytic theoretical framework of sexting as a recent social phenomenon based on studies that have been conducted the last decade or so; and second to investigate Greek students’ and also social network users, sexting perceptions and to record how often social media users exchange sexual messages and to retrace demographic variables predictors. Data from 1,000 students were collected and analyzed and all statistical analysis was done by the software package WEKA. The results indicate among others, that the use of data mining methods is an important tool to draw conclusions that could affect decision and policy making especially in the field and related social topics of educational psychology. To sum up, sexting lurks many risks for adolescents and young adults students in Greece and needs to be better addressed in relevance to the stakeholders as well as society in general. Furthermore, policy makers, legislation makers and authorities will have to take action to protect minors. Prevention strategies based on Greek cultural specificities are being proposed. This social problem has raised concerns in recent years and will most likely escalate concerns in global communities in the future.

Keywords: educational ethics, sexting, Greek sexters, sex education, data mining

Procedia PDF Downloads 180
6874 Performance of Air Cured Concrete Treated with Waterproofing Admixtures or Surface Treatments

Authors: Sirwan Kamal, Hsein Kew, Hamid Jahromi

Abstract:

This paper reports results of a study conducted to investigate strength, sorptivity, and permeability under pressure of concrete specimens, cured using a water-based curing compound. The specimens are treated with waterproofing admixtures or surface treatments to enhance performance while exposed to water. Four types of concrete specimens were prepared in the laboratory, Portland cement (CEM I), Portland-fly ash (CEM II/A-V), Blast-furnace cement (CEM III) and Portland-silica fume (CEM II/A-D). Concrete cubes were de-molded three hours after casting, and sprayed with a curing compound. Admixtures were added to the mix during batching, whereas surface treatments were applied on concrete after 28 days. Compressive strength test was carried out to assess the efficiency of curing compound to develop required strength. In addition, sorptivity and permeability tests were conducted to evaluate the performance of treated specimens with respect to water ingress. Results show that strength development in specimens cured with curing compound achieved up to 96% and 90% at 7 and 28 days respectively, compared to cubes cured in water. Moreover, specimens treated with waterproofing admixtures or surface treatments materials characterized by hydrophobic impregnation considerably reduced water penetration compared to untreated control cubes. On the other hand, cubes treated with admixtures or surface treatments materials characterized by crystalline effect were ineffective in reducing water penetration.

Keywords: admixtures, concrete, curing compound, surface treatments

Procedia PDF Downloads 126
6873 Heart Failure Identification and Progression by Classifying Cardiac Patients

Authors: Muhammad Saqlain, Nazar Abbas Saqib, Muazzam A. Khan

Abstract:

Heart Failure (HF) has become the major health problem in our society. The prevalence of HF has increased as the patient’s ages and it is the major cause of the high mortality rate in adults. A successful identification and progression of HF can be helpful to reduce the individual and social burden from this syndrome. In this study, we use a real data set of cardiac patients to propose a classification model for the identification and progression of HF. The data set has divided into three age groups, namely young, adult, and old and then each age group have further classified into four classes according to patient’s current physical condition. Contemporary Data Mining classification algorithms have been applied to each individual class of every age group to identify the HF. Decision Tree (DT) gives the highest accuracy of 90% and outperform all other algorithms. Our model accurately diagnoses different stages of HF for each age group and it can be very useful for the early prediction of HF.

Keywords: decision tree, heart failure, data mining, classification model

Procedia PDF Downloads 398
6872 Research of Intrinsic Emittance of Thermal Cathode with Emission Nonuniformity

Authors: Yufei Peng, Zhen Qin, Jianbe Li, Jidong Long

Abstract:

The thermal cathode is widely used in accelerators, FELs and kinds of vacuum electronics. However, emission nonuniformity exists due to surface profile, material distribution, temperature variation, crystal orientation, etc., which will cause intrinsic emittance growth, brightness decline, envelope size augment, device performance deterioration or even failure. To understand how emittance is manipulated by emission nonuniformity, an intrinsic emittance model consisting of contributions from macro and micro surface nonuniformity is developed analytically based on general thermal emission model at temperature limited regime according to a real 3mm cathode. The model shows relative emittance increased about 50% due to temperature variation, and less than 5% from several kinds of micro surface nonuniformity which is much smaller than other research. Otherwise, we also calculated emittance growth combining with Monte Carlo method and PIC simulation, experiments of emission uniformity and emittance measurement are going to be carried out separately.

Keywords: thermal cathode, electron emission fluctuation, intrinsic emittance, surface nonuniformity, cathode lifetime

Procedia PDF Downloads 290
6871 Experimental and Theoretical Investigation of Slow Reversible Deformation of Concrete in Surface-Active Media

Authors: Nika Botchorishvili, Olgha Giorgishvili

Abstract:

Many-year investigations of the nature of damping creep of rigid bodies and materials led to the discovery of the fundamental character of this phenomenon. It occurs only when a rigid body comes in contact with a surface-active medium (liquid or gaseous), which brings about a decrease of the free surface energy of a rigid body as a result of adsorption, chemo-sorption or wetting. The reversibility of the process consists of a gradual disappearance of creep deformation when the action of a surface-active medium stops. To clarify the essence of processes, a physical model is constructed by using Griffith’s scheme and the well-known representation formulas of deformation origination and failure processes. The total creep deformation is caused by the formation and opening of microcracks throughout the material volume under the action of load. This supposedly happens in macroscopically homogeneous silicate and organic glasses, while in polycrystals (tuff, gypsum, steel) contacting with a surface-active medium micro crack are formed mainly on the grain boundaries. The creep of rubber is due to its swelling activated by stress. Acknowledgment: All experiments are financially supported by Shota Rustaveli National Science Foundation of Georgia. Study of Properties of Concretes (Both Ordinary and Compacted) Made of Local Building Materials and Containing Admixtures, and Their Further Introduction in Construction Operations and Road Building. DP2016_26. 22.12.2016.

Keywords: process reversibility, surface-active medium, Rebinder’s effect, micro crack, creep

Procedia PDF Downloads 128
6870 Efficiency Enhancement of Blue OLED by Incorporating Ag Nanoplate Layers

Authors: So-Jeong Kim, Nak-Kwan Chung, Jintae Kim, Juyoung Yun

Abstract:

The metal nanoplates are potentially used for electroluminescence enhancement of OLEDs owing to the localized surface plasmon resonance. In our study, enhanced electroluminescence in blue organic light-emitting diodes is demonstrated by incorporating silver nanoplates into poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. To have surface plasmon resonance absorption peak matching with photoluminescent (PL) peak of blue, Ag nanoplates with triangular shape are used in this study. Finally, about 30 % enhancement in electroluminescence intensity and current efficiency for blue emission devices is obtained via Ag nanoplates.

Keywords: efficiency enhancement, nanoplate, OLED, surface plasmon resonance

Procedia PDF Downloads 337
6869 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075

Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.

Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains

Procedia PDF Downloads 439
6868 Bowen Ratio in Western São Paulo State, Brazil

Authors: Elaine Cristina Barboza, Antonio Jaschke Machado

Abstract:

This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis, and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.

Keywords: Bowen ratio, medium-sized cities, surface energy balance, urban climate

Procedia PDF Downloads 595
6867 Surface Active Phthalic Acid Ester Produced by a Rhizobacterial Strain

Authors: M. L. Ibrahim, A. Abdulhamid

Abstract:

A surface active molecule synthesized by a rhizobacterial strain Bacillus lentus isolated from Cajanus cajan was investigated. The bioemulsifier was extracted, purified and partially characterized using standard methods. Surface properties of the bioemulsifier were determined by studying the emulsification index, solubility test and stability studies. Partial purification of the bioemulsifier was carried out using FT-IR analysis, Silica-gel column chromatography and thin layer chromatography. GC-MS analysis was carried out to detect the composition and mass of the lipids and esters. The isolate showed an emulsifying activity of 57% and surface activity of 36mm. The stability studies revealed that the bioemulsifier had better stability at temperature of 70oC, 8% pH and 8% NaCl concentration. FT-IR indicated the bioemulsifier to contain peptide and aliphatic chain, TLC revealed the compound to be ninhydrin positive and Column chromatography showed the presence of three amino acids namely; glutamine, valine and cysteine. GC-MS indicated the lipid moiety to contain aliphatic chain ranging from C9-C16 and two major peaks of 1,2-benzenedicarboxylic acid diethyl octyl ester. Therefore, surface active agent from Bacillus lentus can be used effectively in a wide range of applications such as in MEOR and in the biosynthesis of plasticizers for industrial uses.

Keywords: Bacillus lentus, bioemulsifiers, phthalic acid ester, Rhizosphere

Procedia PDF Downloads 410
6866 Design of Low-Cost Water Purification System Using Activated Carbon

Authors: Nayan Kishore Giri, Ramakar Jha

Abstract:

Water is a major element for the life of all the mankind in the earth. India’s surface water flows through fourteen major streams. Indian rivers are the main source of potable water in India. In the eastern part of India many toxic hazardous metals discharged into the river from mining industries, which leads many deadly diseases to human being. So the potable water quality is very significant and vital concern at present as it is related with the present and future health perspective of the human race. Consciousness of health risks linked with unsafe water is still very low among the many rural and urban areas in India. Only about 7% of total Indian people using water purifier. This unhealthy situation of water is not only present in India but also present in many underdeveloped countries. The major reason behind this is the high cost of water purifier. This current study geared towards development of economical and efficient technology for the removal of maximum possible toxic metals and pathogen bacteria. The work involves the design of portable purification system and purifying material. In this design Coconut shell granular activated carbon(GAC) and polypropylene filter cloths were used in this system. The activated carbon is impregnated with Iron(Fe). Iron is used because it enhances the adsorption capacity of activated carbon. The thorough analysis of iron impregnated activated carbon(Fe-AC) is done by Scanning Electron Microscope (SEM), X-ray diffraction (XRD) , BET surface area test were done. Then 10 ppm of each toxic metal were infiltrated through the designed purification system and they were analysed in Atomic absorption spectrum (AAS). The results are very promising and it is low cost. This work will help many people who are in need of potable water. They can be benefited for its affordability. It could be helpful in industries and other domestic usage.

Keywords: potable water, coconut shell GAC, polypropylene filter cloths, SEM, XRD, BET, AAS

Procedia PDF Downloads 376
6865 Closed Form Solution for 4-D Potential Integrals for Arbitrary Coplanar Polygonal Surfaces

Authors: Damir Latypov

Abstract:

A closed-form solution for 4-D double surface integrals arising in boundary integrals equations of a potential theory is obtained for arbitrary coplanar polygonal surfaces. The solution method is based on the construction of exact differential forms followed by the application of Stokes' theorem for each surface integral. As a result, the 4-D double surface integral is reduced to a 2-D double line integral. By an appropriate change of variables, the integrand is transformed into a separable function of integration variables. The closed-form solutions to the corresponding 1-D integrals are readily available in the integration tables. Previously closed-form solutions were known only for the case of coincident triangle surfaces and coplanar rectangles. Solutions for these cases were obtained by surface-specific ad-hoc methods, while the present method is general. The method also works for non-polygonal surfaces. As an example, we compute in closed form the 4-D integral for the case of coincident surfaces in the shape of a circular disk. For an arbitrarily shaped surface, the proposed method provides an efficient quadrature rule. Extensions of the method for non-coplanar surfaces and other than 1/R integral kernels are also discussed.

Keywords: boundary integral equations, differential forms, integration, stokes' theorem

Procedia PDF Downloads 304