Search results for: soil correction factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8274

Search results for: soil correction factor

7644 Influence of Nonlinearity of Concrete and Reinforcement Using Micropiles on the Seismic Interaction of Soil-Piles-Bridge

Authors: Mohanad Alfach, Amjad Al Helwani

Abstract:

Post-seismic observations of recent devastating earthquakes have shown that the behavior of the soil-pile-structure shows strong nonlinearity of soil and concrete under intensive seismic loading. Many of pile ruptures recently observed after the strong earthquake due to structural reasons (development of plastic hinges in the piles). The most likely reason for this rupture is the exceeding of maximum bending moment supported by the pile at several points. An analysis of these problems is necessary to take into account the nonlinearity of concrete, the strategy of strengthening the damaged piles and the interaction of these piles with the proposed strengthening by using micropiles. This study aims to investigate the interaction aspects for soil-piles- micropiles-structure using a global approach with a three dimensional finite difference code Flac 3D (Fast lagrangian analysis of continua in 3 dimensions).

Keywords: interaction, piles, micropiles, concrete, seismic, nonlinear, three-dimensional

Procedia PDF Downloads 250
7643 Improvement of Bearing Capacity of Soft Clay Using Geo-Cells

Authors: Siddhartha Paul, Aman Harlalka, Ashim K. Dey

Abstract:

Soft clayey soil possesses poor bearing capacity and high compressibility because of which foundations cannot be directly placed over soft clay. Normally pile foundations are constructed to carry the load through the soft soil up to the hard stratum below. Pile construction is costly and time consuming. In order to increase the properties of soft clay, many ground improvement techniques like stone column, preloading with and without sand drains/band drains, etc. are in vogue. Time is a constraint for successful application of these improvement techniques. Another way to improve the bearing capacity of soft clay and to reduce the settlement possibility is to apply geocells below the foundation. The geocells impart rigidity to the foundation soil, reduce the net load intensity on soil and thus reduce the compressibility. A well designed geocell reinforced soil may replace the pile foundation. The present paper deals with the applicability of geocells on improvement of the bearing capacity. It is observed that a properly designed geocell may increase the bearing capacity of soft clay up to two and a half times.

Keywords: bearing capacity, geo-cell, ground improvement, soft clay

Procedia PDF Downloads 309
7642 Adaptation of Hough Transform Algorithm for Text Document Skew Angle Detection

Authors: Kayode A. Olaniyi, Olabanji F. Omotoye, Adeola A. Ogunleye

Abstract:

The skew detection and correction form an important part of digital document analysis. This is because uncompensated skew can deteriorate document features and can complicate further document image processing steps. Efficient text document analysis and digitization can rarely be achieved when a document is skewed even at a small angle. Once the documents have been digitized through the scanning system and binarization also achieved, document skew correction is required before further image analysis. Research efforts have been put in this area with algorithms developed to eliminate document skew. Skew angle correction algorithms can be compared based on performance criteria. Most important performance criteria are accuracy of skew angle detection, range of skew angle for detection, speed of processing the image, computational complexity and consequently memory space used. The standard Hough Transform has successfully been implemented for text documentation skew angle estimation application. However, the standard Hough Transform algorithm level of accuracy depends largely on how much fine the step size for the angle used. This consequently consumes more time and memory space for increase accuracy and, especially where number of pixels is considerable large. Whenever the Hough transform is used, there is always a tradeoff between accuracy and speed. So a more efficient solution is needed that optimizes space as well as time. In this paper, an improved Hough transform (HT) technique that optimizes space as well as time to robustly detect document skew is presented. The modified algorithm of Hough Transform presents solution to the contradiction between the memory space, running time and accuracy. Our algorithm starts with the first step of angle estimation accurate up to zero decimal place using the standard Hough Transform algorithm achieving minimal running time and space but lacks relative accuracy. Then to increase accuracy, suppose estimated angle found using the basic Hough algorithm is x degree, we then run again basic algorithm from range between ±x degrees with accuracy of one decimal place. Same process is iterated till level of desired accuracy is achieved. The procedure of our skew estimation and correction algorithm of text images is implemented using MATLAB. The memory space estimation and process time are also tabulated with skew angle assumption of within 00 and 450. The simulation results which is demonstrated in Matlab show the high performance of our algorithms with less computational time and memory space used in detecting document skew for a variety of documents with different levels of complexity.

Keywords: hough-transform, skew-detection, skew-angle, skew-correction, text-document

Procedia PDF Downloads 146
7641 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network

Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem

Abstract:

This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.

Keywords: electricity price, k-factor GARMA, LLWNN, G-GARCH, forecasting

Procedia PDF Downloads 220
7640 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 36
7639 Geotechnical and Mineralogical Properties of Clay Soils in the Second Organized Industrial Region, Konya, Turkey

Authors: Mustafa Yıldız, Ali Ulvi Uzer, Murat Olgun

Abstract:

In this study, geotechnical and mineralogical properties of gypsum containing clay basis which form the ground of Second Organized Industrial Zone in Konya province have been researched through comprehensive field and laboratory experiments. Although sufficient geotechnical research has not been performed yet, an intensive structuring in the region continues at present. The study area consists of mid-lake sediments formed by gypsum containing soft silt-clay basis which evolves to a large area. To determine the soil profile and geotechnical specifications; 18 drilling holes were opened and disturbed / undisturbed soil samples have been taken through shelby tubes within 1.5m intervals. Tests have been performed on these samples to designate the index and strength properties of soil. Besides, at all drilling holes Standart Penetration Tests have been done within 1.5m intervals. For the purpose of determining the mineralogical characteristics of the soil; all rock and X-RD analysis have been carried out on 6 samples which were taken from various depths through the soil profile. Strength and compressibility characteristics of the soil were defined with correlations using laboratory and field test results. Unconfined compressive strength, undrained cohesion, compression index varies between 16 kN/m2 and 405.4 kN/m2, 6.5 kN/m2 and 72 kN/m2, 0.066 and 0.864, respectively.

Keywords: Konya second organized industrial region, strength, compressibility, soft clay

Procedia PDF Downloads 296
7638 Mind Your Product-Market Strategy on Selecting Marketing Inputs: An Uncertainty Approach in Indian Context

Authors: Susmita Ghosh, Bhaskar Bhowmick

Abstract:

Market is an important factor for start-ups to look into during decision-making in product development and related areas. Emerging country markets are more uncertain in terms of information availability and institutional supports. The literature review of market uncertainty reveals the need for identifying factors representing the market uncertainty. This paper identifies factors for market uncertainty using Exploratory Factor Analysis (EFA) and confirms the number of factor retention using an alternative factor retention criterion, ‘Parallel Analysis’. 500 entrepreneurs, engaged in start-ups from all over India participated in the study. This paper concludes with the factor structure of ‘market uncertainty’ having dimensions of uncertainty in industry orientation, uncertainty in customer orientation and uncertainty in marketing orientation.

Keywords: uncertainty, market, orientation, competitor, demand

Procedia PDF Downloads 573
7637 Immobilization of Lead in Contaminated Soil Using Enzyme Induced Calcite Precipitation (EİCP) Along with Coconut Fiber Biochar (CFB)

Authors: Kaniz Roksana, Aluthgun Hewage Shaini, Cheng Zhu

Abstract:

Lead is environmentally hazardous because it may persist for a long time in soil, water, and air, and it can travel large distances when carried by wind or water. Lead is toxic to many different species of organisms and has the potential to disrupt ecosystem stability. Moreover, lead can contaminate crops and livestock, which can then have an adverse effect on human health. This study was conducted to use the enzyme-induced calcium carbonate precipitation (EICP) technique from soybean crude extract urease along coconut fiber derived biochar’s (CFB) to bioremediate lead. To study the desorption rates of heavy metals from the soil, lead (Pb) was added to the soil at load ratios of 50 and 100 mg/kg. There were five separate treatment soil columns created: control sample, only CFB, only EICP, EICP with 2% (w/w) CFB, and EICP with 4% (w/w) CFB. Laboratory scale experiment demonstrates significant lead removal from soil. The amount of CaCO₃ precipitated in the soil was measured using a gravimetric acid digestion test, which related heavy metal desorption to the amount of precipitated calcium carbonate. These findings were validated using a scanning electron microscope (SEM), which revealed calcium carbonate and lead coprecipitation. As a result, the study reveals that the EICP technique, in conjunction with coconut fiber biochar, could be an efficient alternative in the remediation of heavy metal ion-contaminated soils.

Keywords: enzyme induced calcium carbonate precipitation (EICP), coconut fiber derived biochar’s (CFB), bioremediation, heavy metal

Procedia PDF Downloads 63
7636 Factor Structure of the University of California, Los Angeles (UCLA) Loneliness Scale: Gender, Age, and Marital Status Differences

Authors: Hamzeh Dodeen

Abstract:

This study aims at examining the effects of item wording effects on the factor structure of the University of California, Los Angeles (UCLA) Loneliness Scale: gender, age, and marital status differences. A total of 2374 persons from the UAE participated, representing six different populations (teenagers/elderly, males/females, and married/unmarried). The results of the exploratory factor analysis using principal axis factoring with (oblique) rotation revealed that two factors were extracted from the 20 items of the scale. The nine positively worded items were highly loaded on the first factor, while 10 out of the 11 negatively worded items were highly loaded on the second factor. The two-factor solution was confirmed on the six different populations based on age, gender, and marital status. It has been concluded that the rating of the UCLA scale is affected by a response style related to the item wording.

Keywords: UCLA Loneliness Scale, loneliness, positively worded items, factor structure, negatively worded items

Procedia PDF Downloads 343
7635 Compression Index Estimation by Water Content and Liquid Limit and Void Ratio Using Statistics Method

Authors: Lizhou Chen, Abdelhamid Belgaid, Assem Elsayed, Xiaoming Yang

Abstract:

Compression index is essential in foundation settlement calculation. The traditional method for determining compression index is consolidation test which is expensive and time consuming. Many researchers have used regression methods to develop empirical equations for predicting compression index from soil properties. Based on a large number of compression index data collected from consolidation tests, the accuracy of some popularly empirical equations were assessed. It was found that primary compression index is significantly overestimated in some equations while it is underestimated in others. The sensitivity analyses of soil parameters including water content, liquid limit and void ratio were performed. The results indicate that the compression index obtained from void ratio is most accurate. The ANOVA (analysis of variance) demonstrates that the equations with multiple soil parameters cannot provide better predictions than the equations with single soil parameter. In other words, it is not necessary to develop the relationships between compression index and multiple soil parameters. Meanwhile, it was noted that secondary compression index is approximately 0.7-5.0% of primary compression index with an average of 2.0%. In the end, the proposed prediction equations using power regression technique were provided that can provide more accurate predictions than those from existing equations.

Keywords: compression index, clay, settlement, consolidation, secondary compression index, soil parameter

Procedia PDF Downloads 153
7634 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, laboratory test data, numerical back-analysis

Procedia PDF Downloads 354
7633 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 55
7632 A Simple Computational Method for the Gravitational and Seismic Soil-Structure-Interaction between New and Existent Buildings Sites

Authors: Nicolae Daniel Stoica, Ion Mierlus Mazilu

Abstract:

This work is one of numerical research and aims to address the issue of the design of new buildings in a 3D location of existing buildings. In today's continuous development and congestion of urban centers is a big question about the influence of the new buildings on an already existent vicinity site. Thus, in this study, we tried to focus on how existent buildings may be affected by any newly constructed buildings and in how far this influence is really decreased. The problem of modeling the influence of interaction between buildings is not simple in any area in the world, and neither in Romania. Unfortunately, most often the designers not done calculations that can determine how close to reality these 3D influences nor the simplified method and the more superior methods. In the most literature making a "shield" (the pilots or molded walls) is absolutely sufficient to stop the influence between the buildings, and so often the soil under the structure is ignored in the calculation models. The main causes for which the soil is neglected in the analysis are related to the complexity modeling of interaction between soil and structure. In this paper, based on a new simple but efficient methodology we tried to determine for a lot of study cases the influence, in terms of assessing the interaction land structure on the behavior of structures that influence a new building on an existing one. The study covers additional subsidence that may occur during the execution of new works and after its completion. It also highlighted the efforts diagrams and deflections in the soil for both the original case and the final stage. This is necessary to see to what extent the expected impact of the new building on existing areas.

Keywords: soil, structure, interaction, piles, earthquakes

Procedia PDF Downloads 285
7631 The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications

Authors: Abdulrahman M. Hamid

Abstract:

Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript.

Keywords: dynamic cone penetration test, falling weight deflectometer, nuclear gauge, soil stiffens gauge, plate load test, automated dynamic cone penetration

Procedia PDF Downloads 415
7630 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 72
7629 Disaster Mitigation from an Analysis of a Condemned Building Erected over Collapsible Clay Soil in Brazil

Authors: Marcelo Jesus Kato Avila, Joao Da Costa Pantoja

Abstract:

Differential settlement of foundations is a serious pathology in buildings that put at risk lives and property. A common reason for the occurrence of this specific pathology in central Brazil is the presence of collapsible clay, a typical soil in the region. In this study, the foundation of a condemned building erected above this soil is analyzed. The aim is to prevent problems in new constructions, to predict which buildings may be subjected to damages, and to make possible a more precise treatment in less advanced differential settlements observed in the buildings of the vicinity, which includes a hospital, a Military School, an indoor sporting arena, the Police Academy, and the Military Police Headquarters. The methodology consists of visual inspection, photographic report of the main pathologies, analysis of the existing foundations, determination of the soil properties, the study of the cracking level and assessment of structural failure risk of the building. The findings show that the presence of water weaken the soil structure on which the foundation rest, being the main cause of the pathologic settlement, indicating that even in a one store building it was necessary to consider deeper digging, other categories of foundations, and more elaborated and detailed foundation plans when the soil presents this behavior.

Keywords: building cracks, collapsible clay, differential settlement, structural failure risk

Procedia PDF Downloads 246
7628 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio

Authors: Habib Alehossein, M. S. K. Fernando

Abstract:

Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.

Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content

Procedia PDF Downloads 72
7627 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 126
7626 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 56
7625 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality

Procedia PDF Downloads 273
7624 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem

Abstract:

Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.

Keywords: uranium diNitride, UN2, DFT+U, elastic properties

Procedia PDF Downloads 434
7623 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 213
7622 Mechanical Soil: Effects of the Passage of Tractors on Agricultural Land

Authors: Anis Eloud, Ben Salah Nahla, Sayed Chehaibi

Abstract:

In order to improve and develop the Tunisian agriculture, the government has encouraged the introduction of modern technologies and has also promoted the adoption of innovative practices cultures. Indeed, the extensive use of mechanization can increase crop productivity but its inadequate application also has a negative impact on the ground caused by the phenomenon of compaction. Which will cause the loss of soil fertility and increased production costs. This problem is accentuated with increase the stress on contact wheel / ground. For this reason, the objective of this study is to simulate the footprint of the ground contact / tire two types of tractor after their passage. The method of this work is based on a simulation including passages from two different tractors on soil with similar characteristics. Simulation parameters were based on the choice of two tractors masses of 6500 kg and 4400 kg of soil and sandy loam in nature. The analysis was performed using specific software. The main results showed that the heaviest tractor caused a constraint wheel / rear floor exceeding 100 kPa. For cons, the second tractor has caused stress wheel / rear floor of 50 kPa. The comparison of the two results showed that 6500 kg tractor made a serious and excessive compaction which generated a negative impact on soil quality and crop yields.

Keywords: compaction, soil, resistance to penetration, crop yields

Procedia PDF Downloads 425
7621 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 83
7620 Remote Observation of Environmental Parameters on the Surface of the Maricunga Salt Flat, Atacama Region, Chile

Authors: Lican Guzmán, José Manuel Lattus, Mariana Cervetto, Mauricio Calderón

Abstract:

Today the estimation of effects produced by climate change in high Andean wetland environments is confronted by big challenges. This study provides a way to an analysis by remote sensing how some Ambiental aspects have evolved on the Maricunga salt flat in the last 30 years, divided into the summer and winter seasons, and if global warming is conditioning these changes. The first step to achieve this goal was the recompilation of geological, hydrological, and morphometric antecedents to ensure an adequate contextualization of its environmental parameters. After this, software processing and analysis of Landsat 5,7 and 8 satellite imagery was required to get the vegetation, water, surface temperature, and soil moisture indexes (NDVI, NDWI, LST, and SMI) in order to see how their spatial-temporal conditions have evolved in the area of study during recent decades. Results show a tendency of regular increase in surface temperature and disponibility of water during both seasons but with slight drought periods during summer. Soil moisture factor behaves as a constant during the dry season and with a tendency to increase during wintertime. Vegetation analysis shows an areal and quality increase of its surface sustained through time that is consistent with the increase of water supply and temperature in the basin mentioned before. Roughly, the effects of climate change can be described as positive for the Maricunga salt flat; however, the lack of exact correlation in dates of the imagery available to remote sensing analysis could be a factor for misleading in the interpretation of results.

Keywords: global warming, geology, SIG, Atacama Desert, Salar de Maricunga, environmental geology, NDVI, SMI, LST, NDWI, Landsat

Procedia PDF Downloads 69
7619 A Soft Computing Approach Monitoring of Heavy Metals in Soil and Vegetables in the Republic of Macedonia

Authors: Vesna Karapetkovska Hristova, M. Ayaz Ahmad, Julijana Tomovska, Biljana Bogdanova Popov, Blagojce Najdovski

Abstract:

The average total concentrations of heavy metals; (cadmium [Cd], copper [Cu], nickel [Ni], lead [Pb], and zinc [Zn]) were analyzed in soil and vegetables samples collected from the different region of Macedonia during the years 2010-2012. Basic soil properties such as pH, organic matter and clay content were also included in the study. The average concentrations of Cd, Cu, Ni, Pb, Zn in the A horizon (0-30 cm) of agricultural soils were as follows, respectively: 0.25, 5.3, 6.9, 15.2, 26.3 mg kg-1 of soil. We have found that neural networking model can be considered as a tool for prediction and spatial analysis of the processes controlling the metal transfer within the soil-and vegetables. The predictive ability of such models is well over 80% as compared to 20% for typical regression models. A radial basic function network reflects good predicting accuracy and correlation coefficients between soil properties and metal content in vegetables much better than the back-propagation method. Neural Networking / soft computing can support the decision-making processes at different levels, including agro ecology, to improve crop management based on monitoring data and risk assessment of metal transfer from soils to vegetables.

Keywords: soft computing approach, total concentrations, heavy metals, agricultural soils

Procedia PDF Downloads 358
7618 Application of Neutron Stimulated Gamma Spectroscopy for Soil Elemental Analysis and Mapping

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

Determining soil elemental content and distribution (mapping) within a field are key features of modern agricultural practice. While traditional chemical analysis is a time consuming and labor-intensive multi-step process (e.g., sample collections, transport to laboratory, physical preparations, and chemical analysis), neutron-gamma soil analysis can be performed in-situ. This analysis is based on the registration of gamma rays issued from nuclei upon interaction with neutrons. Soil elements such as Si, C, Fe, O, Al, K, and H (moisture) can be assessed with this method. Data received from analysis can be directly used for creating soil elemental distribution maps (based on ArcGIS software) suitable for agricultural purposes. The neutron-gamma analysis system developed for field application consisted of an MP320 Neutron Generator (Thermo Fisher Scientific, Inc.), 3 sodium iodide gamma detectors (SCIONIX, Inc.) with a total volume of 7 liters, 'split electronics' (XIA, LLC), a power system, and an operational computer. Paired with GPS, this system can be used in the scanning mode to acquire gamma spectra while traversing a field. Using acquired spectra, soil elemental content can be calculated. These data can be combined with geographical coordinates in a geographical information system (i.e., ArcGIS) to produce elemental distribution maps suitable for agricultural purposes. Special software has been developed that will acquire gamma spectra, process and sort data, calculate soil elemental content, and combine these data with measured geographic coordinates to create soil elemental distribution maps. For example, 5.5 hours was needed to acquire necessary data for creating a carbon distribution map of an 8.5 ha field. This paper will briefly describe the physics behind the neutron gamma analysis method, physical construction the measurement system, and main characteristics and modes of work when conducting field surveys. Soil elemental distribution maps resulting from field surveys will be presented. and discussed. Comparison of these maps with maps created on the bases of chemical analysis and soil moisture measurements determined by soil electrical conductivity was similar. The maps created by neutron-gamma analysis were reproducible, as well. Based on these facts, it can be asserted that neutron stimulated soil gamma spectroscopy paired with GPS system is fully applicable for soil elemental agricultural field mapping.

Keywords: ArcGIS mapping, neutron gamma analysis, soil elemental content, soil gamma spectroscopy

Procedia PDF Downloads 126
7617 Effect of Tissue Preservation Chemicals on Decomposition in Different Soil Types

Authors: Onyekachi Ogbonnaya Iroanya, Taiye Abdullahi Gegele, Frank Tochukwu Egwuatu

Abstract:

Introduction: Forensic taphonomy is a multifaceted area that incorporates decomposition, chemical and biological cadaver exposure in post-mortem event chronology and reconstruction to predict the Post Mortem Interval (PMI). The aim of this study was to evaluate the integrity of DNA extracted from the remains of embalmed decomposed Sus domesticus tissues buried in different soil types. Method: A total of 12 limbs of Sus domesticus weighing between 0.7-1.4 kg were used. Each of the samples across the groups was treated with 10% formaldehyde, absolute methanol and 50% Pine oil for 24 hours before burial except the control samples, which were buried immediately. All samples were buried in shallow simulated Clay, Sandy and Loamy soil graves for 12 months. The DNA for each sample was extracted and quantified with Nanodrop Spectrophotometer (6305 JENWAY spectrometers). The rate of decomposition was examined through the modified qualitative decomposition analysis. Extracted DNA was amplified through PCR and bands visualized via gel electrophoresis. A biochemical enzyme assay was done for each burial grave soil. Result: The limbs in all burial groups had lost weight over the burial period. There was a significant increase in the soil urease level in the samples preserved in formaldehyde across the 3 soil type groups (p≤0.01). Also, the control grave soils recorded significantly higher alkaline phosphatase, dehydrogenase and calcium carbonate values compared to experimental grave soils (p≤0.01). The experimental samples showed a significant decrease in DNA concentration and purity when compared to the control groups (p≤0.01). Obtained findings of the soil biochemical analysis showed the embalming treatment altered the relationship between organic matter decomposition and soil biochemical properties as observed in the fluctuations that were recorded in the soil biochemical parameters. The PCR amplified DNA showed no bands on the gel electrophoresis plates. Conclusion: In criminal investigations, factors such as burial grave soil, grave soil biochemical properties, antemortem exposure to embalming chemicals should be considered in post-mortem interval (PMI) determination.

Keywords: forensic taphonomy, post-mortem interval (PMI), embalmment, decomposition, grave soil

Procedia PDF Downloads 151
7616 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geosynthetic – Reinforced Earth Bed under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill - poor soil system overlying soft soil strata under moving the load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at the interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedel iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil – foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include the magnitude of applied load, the velocity of the load, damping, the ultimate resistance of the poor soil and granular fill layer. The range of values of parameters has been considered as per Indian Railways conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil – foundation system. However, for the considered range of velocity, the response has been found to be insensitive towards velocity. The ultimate resistance of granular fill layer has also been found to have no significant influence on the response of the system.

Keywords: infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load and nonlinear behavior of poor soil

Procedia PDF Downloads 423
7615 Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak

Authors: Habila Nuhu

Abstract:

Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken.

Keywords: activity concentration, hazard index, soil samples, tin mining

Procedia PDF Downloads 98