Search results for: sesimic data processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27580

Search results for: sesimic data processing

26950 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 642
26949 The Patterns of Cross-Sentence: An Event-Related Potential Study of Mathematical Word Problem

Authors: Tien-Ching Yao, Ching-Ching Lu

Abstract:

Understanding human language processing is one of the main challenges of current cognitive neuroscience. The aims of the present study were to use a sentence decision task combined with event-related potentials to investigate the psychological reality of "cross-sentence patterns." Therefore, we take the math word problems the experimental materials and use the ERPs' P600 component to verify. In this study, the experimental material consisted of 200 math word problems with three different conditions were used ( multiplication word problems、division word problems type 1、division word problems type 2 ). Eighteen Mandarin native speakers participated in the ERPs study (14 of whom were female). The result of the grand average waveforms suggests a later posterior positivity at around 500ms - 900ms. These findings were tested statistically using repeated measures ANOVAs at the component caused by the stimulus type of different questions. Results suggest that three conditions present significant (P < 0.05) on the Mean Amplitude, Latency, and Peak Amplitude. The result showed the characteristic timing and posterior scalp distribution of a P600 effect. We interpreted these characteristic responses as the psychological reality of "cross-sentence patterns." These results provide insights into the sentence processing issues in linguistic theory and psycholinguistic models of language processing and advance our understanding of how people make sense of information during language comprehension.

Keywords: language processing, sentence comprehension, event-related potentials, cross-sentence patterns

Procedia PDF Downloads 150
26948 A Modified Shannon Entropy Measure for Improved Image Segmentation

Authors: Mohammad A. U. Khan, Omar A. Kittaneh, M. Akbar, Tariq M. Khan, Husam A. Bayoud

Abstract:

The Shannon Entropy measure has been widely used for measuring uncertainty. However, in partial settings, the histogram is used to estimate the underlying distribution. The histogram is dependent on the number of bins used. In this paper, a modification is proposed that makes the Shannon entropy based on histogram consistent. For providing the benefits, two application are picked in medical image processing applications. The simulations are carried out to show the superiority of this modified measure for image segmentation problem. The improvement may be contributed to robustness shown to uneven background in images.

Keywords: Shannon entropy, medical image processing, image segmentation, modification

Procedia PDF Downloads 497
26947 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria

Authors: Isaac Kayode Ogunlade

Abstract:

Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.

Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device

Procedia PDF Downloads 93
26946 A Hebbian Neural Network Model of the Stroop Effect

Authors: Vadim Kulikov

Abstract:

The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.

Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop

Procedia PDF Downloads 269
26945 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation

Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma

Abstract:

Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.

Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling

Procedia PDF Downloads 143
26944 A Simple Device for Characterizing High Power Electron Beams for Welding

Authors: Aman Kaur, Colin Ribton, Wamadeva Balachandaran

Abstract:

Electron beam welding due to its inherent advantages is being extensively used for material processing where high precision is required. Especially in aerospace or nuclear industries, there are high quality requirements and the cost of materials and processes is very high which makes it very important to ensure the beam quality is maintained and checked prior to carrying out the welds. Although the processes in these industries are highly controlled, however, even the minor changes in the operating parameters of the electron gun can make large enough variations in the beam quality that can result in poor welding. To measure the beam quality a simple device has been designed that can be used at high powers. The device consists of two slits in x and y axis which collects a small portion of the beam current when the beam is deflected over the slits. The signals received from the device are processed in data acquisition hardware and the dedicated software developed for the device. The device has been used in controlled laboratory environments to analyse the signals and the weld quality relationships by varying the focus current. The results showed matching trends in the weld dimensions and the beam characteristics. Further experimental work is being carried out to determine the ability of the device and signal processing software to detect subtle changes in the beam quality and to relate these to the physical weld quality indicators.

Keywords: electron beam welding, beam quality, high power, weld quality indicators

Procedia PDF Downloads 324
26943 Computational and Experimental Determination of Acoustic Impedance of Internal Combustion Engine Exhaust

Authors: A. O. Glazkov, A. S. Krylova, G. G. Nadareishvili, A. S. Terenchenko, S. I. Yudin

Abstract:

The topic of the presented materials concerns the design of the exhaust system for a certain internal combustion engine. The exhaust system can be divided into two parts. The first is the engine exhaust manifold, turbocharger, and catalytic converters, which are called “hot part.” The second part is the gas exhaust system, which contains elements exclusively for reducing exhaust noise (mufflers, resonators), the accepted designation of which is the "cold part." The design of the exhaust system from the point of view of acoustics, that is, reducing the exhaust noise to a predetermined level, consists of working on the second part. Modern computer technology and software make it possible to design "cold part" with high accuracy in a given frequency range but with the condition of accurately specifying the input parameters, namely, the amplitude spectrum of the input noise and the acoustic impedance of the noise source in the form of an engine with a "hot part". Getting this data is a difficult problem: high temperatures, high exhaust gas velocities (turbulent flows), and high sound pressure levels (non-linearity mode) do not allow the calculated results to be applied with sufficient accuracy. The aim of this work is to obtain the most reliable acoustic output parameters of an engine with a "hot part" based on a complex of computational and experimental studies. The presented methodology includes several parts. The first part is a finite element simulation of the "cold part" of the exhaust system (taking into account the acoustic impedance of radiation of outlet pipe into open space) with the result in the form of the input impedance of "cold part". The second part is a finite element simulation of the "hot part" of the exhaust system (taking into account acoustic characteristics of catalytic units and geometry of turbocharger) with the result in the form of the input impedance of the "hot part". The next third part of the technique consists of the mathematical processing of the results according to the proposed formula for the convergence of the mathematical series of summation of multiple reflections of the acoustic signal "cold part" - "hot part". This is followed by conducting a set of tests on an engine stand with two high-temperature pressure sensors measuring pulsations in the nozzle between "hot part" and "cold part" of the exhaust system and subsequent processing of test results according to a well-known technique in order to separate the "incident" and "reflected" waves. The final stage consists of the mathematical processing of all calculated and experimental data to obtain a result in the form of a spectrum of the amplitude of the engine noise and its acoustic impedance.

Keywords: acoustic impedance, engine exhaust system, FEM model, test stand

Procedia PDF Downloads 59
26942 Predictive Analytics in Oil and Gas Industry

Authors: Suchitra Chnadrashekhar

Abstract:

Earlier looked as a support function in an organization information technology has now become a critical utility to manage their daily operations. Organizations are processing huge amount of data which was unimaginable few decades before. This has opened the opportunity for IT sector to help industries across domains to handle the data in the most intelligent manner. Presence of IT has been a leverage for the Oil & Gas industry to store, manage and process the data in most efficient way possible thus deriving the economic value in their day-to-day operations. Proper synchronization between Operational data system and Information Technology system is the need of the hour. Predictive analytics supports oil and gas companies by addressing the challenge of critical equipment performance, life cycle, integrity, security, and increase their utilization. Predictive analytics go beyond early warning by providing insights into the roots of problems. To reach their full potential, oil and gas companies need to take a holistic or systems approach towards asset optimization and thus have the functional information at all levels of the organization in order to make the right decisions. This paper discusses how the use of predictive analysis in oil and gas industry is redefining the dynamics of this sector. Also, the paper will be supported by real time data and evaluation of the data for a given oil production asset on an application tool, SAS. The reason for using SAS as an application for our analysis is that SAS provides an analytics-based framework to improve uptimes, performance and availability of crucial assets while reducing the amount of unscheduled maintenance, thus minimizing maintenance-related costs and operation disruptions. With state-of-the-art analytics and reporting, we can predict maintenance problems before they happen and determine root causes in order to update processes for future prevention.

Keywords: hydrocarbon, information technology, SAS, predictive analytics

Procedia PDF Downloads 361
26941 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 218
26940 A Process for Prevention of Browning in Fresh Cut Tender Jackfruit

Authors: Ramachandra Pradhan, Sandeep Singh Rama, Sabyasachi Mishra

Abstract:

Jackfruit (Artocarpus heterophyllus L.) in its tender form is consumed as a vegetable and popular for its flavour, colour and meat like texture. In South Asian countries like Bangladesh, India, Pakistan and Indonesia the market value for tender jackfruit is very high. However, due to lack of technology the marketing and transportation of the fruit is a challenge. The processing activities like washing, sorting, peeling and cutting enhances oxidative stress in fresh cut jackfruit. It is also having the ill effects on quality of fresh cut tender jackfruit by an increase in microbial contaminations, excessive tissue softening, and depletion of phytochemicals and browning. Hence, this study was conducted as a solution to the above problem. Fresh cut tender Jackfruit slices were processed by using the independent parameters such as concentration of CaCl2 (2-5%), concentration of citric acid (1-2.5%) and treatment time (4-10 min.) and the depended variables were Browning index (BI), colour change (ΔE), Firmness (F) and Overall all acceptability (OAA) after the treatment. From the response variables the best combination of independent variables was resulted as 3% concentration of CaCl2 and 2% concentration of citric acid for 6 minutes. At these optimised processing treatments, the browning can be prevented for fresh cut tender jackfruit. This technology can be used by the researcher, scientists, industries, etc. for further processing of tender jackfruit.

Keywords: tender jackfruit, browning index, firmness, texture

Procedia PDF Downloads 258
26939 Digital Mapping as a Tool for Finding Cities' DNA

Authors: Sanja Peter

Abstract:

Transformation of urban environments can be compared to evolutionary processes. Systematic digital mapping of historical data can enable capturing some of these processes and their outcomes. For example, it may help reveal the structure of a city’s historical DNA. Gathering historical data for automatic processing may be giving a basis for cultural algorithms. Gothenburg City museum is trying to make city’s heritage information accessible through GIS-platforms and is now partnering with academic institutions to find appropriate methods to make accessible the knowledge on the city’s historical fabric. Hopefully, this will be carried out through a project called Digital Twin Cities. One part of this large project, concerning matters of Cultural Heritage, will be in collaboration with Chalmers University of Technology. The aim is to create a layered map showing historical developments of the city and extracting quantitative data about its built heritage, above and below the earth. It will allow interpreting the information from historic maps through, for example, names of the streets/places, geography, structural changes in urban fabric and information gathered by archaeologists’ excavations. Through the study of these geographical, historical and local metamorphoses, urban environment will reveal its metaphorical DNA or its MEM (Dawkins).

Keywords: Gothenburg, mapping, cultural heritage, city history

Procedia PDF Downloads 141
26938 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 76
26937 Clean Gold Solution from Printed Circuit Board Physical Processing Dust by Selective Complexation

Authors: Iyiola O. Otunniyi, Oluwayimika O. Oluokun

Abstract:

The two-step leaching process of PCB dust will produce a first leaching stream containing assorted metals that still requires more demanding multistage processing afterward to recover base metals and precious metals. In this work, three-step selective complexations produce a clean gold solution from printed circuit board dust. After optimizing for temperature and concentrations, the first step under oxidative ammonia leaching recovered no gold, 90 % Cu and 50 % Zn. Second step acid leaching recovered no gold, 89 % Fe, 48 % Zn, 94 % Ni. The recoveries generally increased with reducing dust particle sizes, except for zinc under oxidative ammonia, and it was noted that its various alloy forms in PCB could be responsible for this. At the third leaching step using acidified thiourea with 0.1 M H₂O₂ at 25 OC, gold recovery was 99 %. The leaching rate was shown to be chemically controlled, implying that reagent dosage control will compensate for feed assay shifts in an operation design. Copper, zinc and nickel will be easily recoverable from leach solutions of the first two steps in this leaching scheme. The third step produced a clean gold solution for easy processing downstream.

Keywords: gold thiourea complexation, printed circuit board, step leaching, selective recovery

Procedia PDF Downloads 12
26936 Interactive IoT-Blockchain System for Big Data Processing

Authors: Abdallah Al-ZoubI, Mamoun Dmour

Abstract:

The spectrum of IoT devices is becoming widely diversified, entering almost all possible fields and finding applications in industry, health, finance, logistics, education, to name a few. The IoT active endpoint sensors and devices exceeded the 12 billion mark in 2021 and are expected to reach 27 billion in 2025, with over $34 billion in total market value. This sheer rise in numbers and use of IoT devices bring with it considerable concerns regarding data storage, analysis, manipulation and protection. IoT Blockchain-based systems have recently been proposed as a decentralized solution for large-scale data storage and protection. COVID-19 has actually accelerated the desire to utilize IoT devices as it impacted both demand and supply and significantly affected several regions due to logistic reasons such as supply chain interruptions, shortage of shipping containers and port congestion. An IoT-blockchain system is proposed to handle big data generated by a distributed network of sensors and controllers in an interactive manner. The system is designed using the Ethereum platform, which utilizes smart contracts, programmed in solidity to execute and manage data generated by IoT sensors and devices. such as Raspberry Pi 4, Rasbpian, and add-on hardware security modules. The proposed system will run a number of applications hosted by a local machine used to validate transactions. It then sends data to the rest of the network through InterPlanetary File System (IPFS) and Ethereum Swarm, forming a closed IoT ecosystem run by blockchain where a number of distributed IoT devices can communicate and interact, thus forming a closed, controlled environment. A prototype has been deployed with three IoT handling units distributed over a wide geographical space in order to examine its feasibility, performance and costs. Initial results indicated that big IoT data retrieval and storage is feasible and interactivity is possible, provided that certain conditions of cost, speed and thorough put are met.

Keywords: IoT devices, blockchain, Ethereum, big data

Procedia PDF Downloads 150
26935 Keynote Talk: The Role of Internet of Things in the Smart Cities Power System

Authors: Abdul-Rahman Al-Ali

Abstract:

As the number of mobile devices is growing exponentially, it is estimated to connect about 50 million devices to the Internet by the year 2020. At the end of this decade, it is expected that an average of eight connected devices per person worldwide. The 50 billion devices are not mobile phones and data browsing gadgets only, but machine-to-machine and man-to-machine devices. With such growing numbers of devices the Internet of Things (I.o.T) concept is one of the emerging technologies as of recently. Within the smart grid technologies, smart home appliances, Intelligent Electronic Devices (IED) and Distributed Energy Resources (DER) are major I.o.T objects that can be addressable using the IPV6. These objects are called the smart grid internet of things (SG-I.o.T). The SG-I.o.T generates big data that requires high-speed computing infrastructure, widespread computer networks, big data storage, software, and platforms services. A company’s utility control and data centers cannot handle such a large number of devices, high-speed processing, and massive data storage. Building large data center’s infrastructure takes a long time, it also requires widespread communication networks and huge capital investment. To maintain and upgrade control and data centers’ infrastructure and communication networks as well as updating and renewing software licenses which collectively, requires additional cost. This can be overcome by utilizing the emerging computing paradigms such as cloud computing. This can be used as a smart grid enabler to replace the legacy of utilities data centers. The talk will highlight the role of I.o.T, cloud computing services and their development models within the smart grid technologies.

Keywords: intelligent electronic devices (IED), distributed energy resources (DER), internet, smart home appliances

Procedia PDF Downloads 325
26934 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 143
26933 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 327
26932 Role of Internal and External Factors in Preventing Risky Sexual Behavior, Drug and Alcohol Abuse

Authors: Veronika Sharok

Abstract:

Research relevance on psychological determinants of risky behaviors is caused by high prevalence of such behaviors, particularly among youth. Risky sexual behavior, including unprotected and casual sex, frequent change of sexual partners, drug and alcohol use lead to negative social consequences and contribute to the spread of HIV infection and other sexually transmitted diseases. Data were obtained from 302 respondents aged 15-35 which were divided into 3 empirical groups: persons prone to risky sexual behavior, drug users and alcohol users; and 3 control groups: the individuals who are not prone to risky sexual behavior, persons who do not use drugs and the respondents who do not use alcohol. For processing, we used the following methods: Qualitative method for nominative data (Chi-squared test) and quantitative methods for metric data (student's t-test, Fisher's F-test, Pearson's r correlation test). Statistical processing was performed using Statistica 6.0 software. The study identifies two groups of factors that prevent risky behaviors. Internal factors, which include the moral and value attitudes; significance of existential values: love, life, self-actualization and search for the meaning of life; understanding independence as a responsibility for the freedom and ability to get attached to someone or something up to a point when this relationship starts restricting the freedom and becomes vital; awareness of risky behaviors as dangerous for the person and for others; self-acknowledgement. External factors (prevent risky behaviors in case of absence of the internal ones): absence of risky behaviors among friends and relatives; socio-demographic characteristics (middle class, marital status); awareness about the negative consequences of risky behaviors; inaccessibility to psychoactive substances. These factors are common for proneness to each type of risky behavior, because it usually caused by the same reasons. It should be noted that if prevention of risky behavior is based only on elimination of external factors, it is not as effective as it may be if we pay more attention to internal factors. The results obtained in the study can be used to develop training programs and activities for prevention of risky behaviors, for using values preventing such behaviors and promoting healthy lifestyle.

Keywords: existential values, prevention, psychological features, risky behavior

Procedia PDF Downloads 256
26931 Investigation of the Litho-Structure of Ilesa Using High Resolution Aeromagnetic Data

Authors: Oladejo Olagoke Peter, Adagunodo T. A., Ogunkoya C. O.

Abstract:

The research investigated the arrangement of some geological features under Ilesa employing aeromagnetic data. The obtained data was subjected to various data filtering and processing techniques, which are Total Horizontal Derivative (THD), Depth Continuation and Analytical Signal Amplitude using Geosoft Oasis Montaj 6.4.2 software. The Reduced to the Equator –Total Magnetic Intensity (TRE-TMI) outcomes reveal significant magnetic anomalies, with high magnitude (55.1 to 155 nT) predominantly at the Northwest half of the area. Intermediate magnetic susceptibility, ranging between 6.0 to 55.1 nT, dominates the eastern part, separated by depressions and uplifts. The southern part of the area exhibits a magnetic field of low intensity, ranging from -76.6 to 6.0 nT. The lineaments exhibit varying lengths ranging from 2.5 and 16.0 km. Analyzing the Rose Diagram and the analytical signal amplitude indicates structural styles mainly of E-W and NE-SW orientations, particularly evident in the western, SW and NE regions with an amplitude of 0.0318nT/m. The identified faults in the area demonstrate orientations of NNW-SSE, NNE-SSW and WNW-ESE, situated at depths ranging from 500 to 750 m. Considering the divergence magnetic susceptibility, structural style or orientation of the lineaments, identified fault and their depth, these lithological features could serve as a valuable foundation for assessing ground motion, particularly in the presence of sufficient seismic energy.

Keywords: lineament, aeromagnetic, anomaly, fault, magnetic

Procedia PDF Downloads 77
26930 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid

Abstract:

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey

Procedia PDF Downloads 165
26929 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 169
26928 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 160
26927 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 91
26926 Arabic Light Word Analyser: Roles with Deep Learning Approach

Authors: Mohammed Abu Shquier

Abstract:

This paper introduces a word segmentation method using the novel BP-LSTM-CRF architecture for processing semantic output training. The objective of web morphological analysis tools is to link a formal morpho-syntactic description to a lemma, along with morpho-syntactic information, a vocalized form, a vocalized analysis with morpho-syntactic information, and a list of paradigms. A key objective is to continuously enhance the proposed system through an inductive learning approach that considers semantic influences. The system is currently under construction and development based on data-driven learning. To evaluate the tool, an experiment on homograph analysis was conducted. The tool also encompasses the assumption of deep binary segmentation hypotheses, the arbitrary choice of trigram or n-gram continuation probabilities, language limitations, and morphology for both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), which provide justification for updating this system. Most Arabic word analysis systems are based on the phonotactic morpho-syntactic analysis of a word transmitted using lexical rules, which are mainly used in MENA language technology tools, without taking into account contextual or semantic morphological implications. Therefore, it is necessary to have an automatic analysis tool taking into account the word sense and not only the morpho-syntactic category. Moreover, they are also based on statistical/stochastic models. These stochastic models, such as HMMs, have shown their effectiveness in different NLP applications: part-of-speech tagging, machine translation, speech recognition, etc. As an extension, we focus on language modeling using Recurrent Neural Network (RNN); given that morphological analysis coverage was very low in dialectal Arabic, it is significantly important to investigate deeply how the dialect data influence the accuracy of these approaches by developing dialectal morphological processing tools to show that dialectal variability can support to improve analysis.

Keywords: NLP, DL, ML, analyser, MSA, RNN, CNN

Procedia PDF Downloads 44
26925 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 212
26924 Effects of Climate Change and Livelihood Diversification on Gendered Productivity Gap of Farmers in Northern Regions of Ghana

Authors: William Adzawla

Abstract:

In the midst of climate variability and change, the role of gender in ensuring food production remains vital. Therefore, this study analysed the gendered productivity among maize farmers, and the effects of climate change and variability as well as livelihood diversification on gendered productivity gap. This involved a total of 619 farmers selected through a multistage sampling procedure. The data was analysed using Oaxaca Blinder decomposition model. From the result, there is a significant productivity gap of 58.8% and 44.8% between male and female heads, and between male heads and female spouses, respectively. About 87.47% and 98.08% of the variations in gendered productivity were explained by resource endowment. While livelihood diversification significantly influenced gendered productivity through endowment and coefficient effect, climate variables significantly affect productivity gap through only coefficient effects. The study concluded that there is a substantial gendered productivity gap among farmers and this is particularly due to differences in endowment. Generally, there is a high potential of reducing gendered productivity gaps through the provision of equal diversification opportunities and reducing females’ vulnerability to climate change. Among the livelihood activities, off-farm activities such as agro-processing and shea butter processing should be promoted. Similarly, the adoption of on-farm adaptation strategies should be promoted among the farmers.

Keywords: climate change and variability, gender, livelihood diversification, oaxaca-blinder decomposition, productivity gap

Procedia PDF Downloads 172
26923 Cross Analysis of Gender Discrimination in Print Media of Subcontinent via James Paul Gee Model

Authors: Luqman Shah

Abstract:

The myopic gender discrimination is now a well-documented and recognized fact. However, gender is only one facet of an individual’s multiple identities. The aim of this work is to investigate gender discrimination highlighted in print media in the subcontinent with a specific focus on Pakistan and India. In this study, an approach is adopted by using the James Paul Gee model for the identification of gender discrimination. As a matter of fact, gender discrimination is not consistent in its nature and intensity across global societies and varies as social, geographical, and cultural background change. The World has been changed enormously in every aspect of life, and there are also obvious changes towards gender discrimination, prejudices, and biases, but still, the world has a long way to go to recognize women as equal as men in every sphere of life. The history of the world is full of gender-based incidents and violence. Now the time came that this issue must be seriously addressed and to eradicate this evil, which will lead to harmonize society and consequently heading towards peace and prosperity. The study was carried out by a mixed model research method. The data was extracted from the contents of five Pakistani English newspapers out of a total of 23 daily English newspapers, and likewise, five Indian daily English newspapers out of 52 those were published 2018-2019. Two news stories from each of these newspapers, in total, twenty news stories were taken as sampling for this research. Content and semiotic analysis techniques were used to analyze through James Paul Gee's seven building tasks of language. The resources of renowned e-papers are utilized, and the highlighted cases in Pakistani newspapers of Indian gender-based stories and vice versa are scrutinized as per the requirement of this research paper. For analysis of the written stretches of discourse taken from e-papers and processing of data for the focused problem, James Paul Gee 'Seven Building Tasks of Language' is used. Tabulation of findings is carried to pinpoint the issue with certainty. Findings after processing the data showed that there is a gross human rights violation on the basis of gender discrimination. The print media needs a more realistic representation of what is what not what seems to be. The study recommends the equality and parity of genders.

Keywords: gender discrimination, print media, Paul Gee model, subcontinent

Procedia PDF Downloads 221
26922 Research and Application of Multi-Scale Three Dimensional Plant Modeling

Authors: Weiliang Wen, Xinyu Guo, Ying Zhang, Jianjun Du, Boxiang Xiao

Abstract:

Reconstructing and analyzing three-dimensional (3D) models from situ measured data is important for a number of researches and applications in plant science, including plant phenotyping, functional-structural plant modeling (FSPM), plant germplasm resources protection, agricultural technology popularization. It has many scales like cell, tissue, organ, plant and canopy from micro to macroscopic. The techniques currently used for data capture, feature analysis, and 3D reconstruction are quite different of different scales. In this context, morphological data acquisition, 3D analysis and modeling of plants on different scales are introduced systematically. The commonly used data capture equipment for these multiscale is introduced. Then hot issues and difficulties of different scales are described respectively. Some examples are also given, such as Micron-scale phenotyping quantification and 3D microstructure reconstruction of vascular bundles within maize stalks based on micro-CT scanning, 3D reconstruction of leaf surfaces and feature extraction from point cloud acquired by using 3D handheld scanner, plant modeling by combining parameter driven 3D organ templates. Several application examples by using the 3D models and analysis results of plants are also introduced. A 3D maize canopy was constructed, and light distribution was simulated within the canopy, which was used for the designation of ideal plant type. A grape tree model was constructed from 3D digital and point cloud data, which was used for the production of science content of 11th international conference on grapevine breeding and genetics. By using the tissue models of plants, a Google glass was used to look around visually inside the plant to understand the internal structure of plants. With the development of information technology, 3D data acquisition, and data processing techniques will play a greater role in plant science.

Keywords: plant, three dimensional modeling, multi-scale, plant phenotyping, three dimensional data acquisition

Procedia PDF Downloads 278
26921 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162