Search results for: medical dressing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3545

Search results for: medical dressing

2915 Development of a Novel Ankle-Foot Orthotic Using a User Centered Approach for Improved Satisfaction

Authors: Ahlad Neti, Elisa Arch, Martha Hall

Abstract:

Studies have shown that individuals who use Ankle-Foot-Orthoses (AFOs) have a high level of dissatisfaction regarding their current AFOs. Studies point to the focus on technical design with little attention given to the user perspective as a source of AFO designs that leave users dissatisfied. To design a new AFO that satisfies users and thereby improves their quality of life, the reasons for their dissatisfaction and their wants and needs for an improved AFO design must be identified. There has been little research into the user perspective on AFO use and desired improvements, so the relationship between AFO design and satisfaction in daily use must be assessed to develop appropriate metrics and constraints prior to designing a novel AFO. To assess the user perspective on AFO design, structured interviews were conducted with 7 individuals (average age of 64.29±8.81 years) who use AFOs. All interviews were transcribed and coded to identify common themes using Grounded Theory Method in NVivo 12. Qualitative analysis of these results identified sources of user dissatisfaction such as heaviness, bulk, and uncomfortable material and overall needs and wants for an AFO. Beyond the user perspective, certain objective factors must be considered in the construction of metrics and constraints to ensure that the AFO fulfills its medical purpose. These more objective metrics are rooted in a common medical device market and technical standards. Given the large body of research concerning these standards, these objective metrics and constraints were derived through a literature review. Through these two methods, a comprehensive list of metrics and constraints accounting for both the user perspective on AFO design and the AFO’s medical purpose was compiled. These metrics and constraints will establish the framework for designing a new AFO that carries out its medical purpose while also improving the user experience. The metrics can be categorized into several overarching areas for AFO improvement. Categories of user perspective related metrics include comfort, discreteness, aesthetics, ease of use, and compatibility with clothing. Categories of medical purpose related metrics include biomechanical functionality, durability, and affordability. These metrics were used to guide an iterative prototyping process. Six concepts were ideated and compared using system-level analysis. From these six concepts, two concepts – the piano wire model and the segmented model – were selected to move forward into prototyping. Evaluation of non-functional prototypes of the piano wire and segmented models determined that the piano wire model better fulfilled the metrics by offering increased stability, longer durability, fewer points for failure, and a strong enough core component to allow a sock to cover over the AFO while maintaining the overall structure. As such, the piano wire AFO has moved forward into the functional prototyping phase, and healthy subject testing is being designed and recruited to conduct design validation and verification.

Keywords: ankle-foot orthotic, assistive technology, human centered design, medical devices

Procedia PDF Downloads 156
2914 Empowering Transformers for Evidence-Based Medicine

Authors: Jinan Fiaidhi, Hashmath Shaik

Abstract:

Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.

Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers

Procedia PDF Downloads 45
2913 Companies and Transplant Tourists to China

Authors: Pavel Porubiak, Lukas Kudlacek

Abstract:

Introduction Transplant tourism is a controversial method of obtaining an organ, and that goes all the more for a country such as China, where sources of evidence point out to the possibility of organs being harvested illegally. This research aimed at listing the individual countries these tourists come from, or which medical companies sell transplant related products in there, with China being used as an example. Materials and methods The methodology of scoping study was used for both parts of the research. The countries from which transplant tourists come to China were identified by a search through existing medical studies in the NCBI PubMed database, listed under the keyword ‘transplantation in China’. The search was not limited by any other criteria, but only the studies available for free – directly on PubMed or a linked source – were used. Other research studies on this topic were considered as well. The companies were identified through multiple methods. The first was an online search focused on medical companies and their products. The Bloomberg Service, used by stock brokers worldwide, was then used to identify the revenue of these companies in individual countries – if data were available – as well as their business presence in China. A search through the U.S. Securities and Exchange Commission was done in the same way. Also a search on the Chinese internet was done, and to obtain more results, a second online search was done as well. The results and discussion The extensive search has identified 14 countries with transplant tourists to China. The search for a similar studies or reports resulted in finding additional six countries. The companies identified by our research also amounted to 20. Eight of them are sourcing China with organ preservation products – of which one is just trying to enter the Chinese market, six with immunosuppressive drugs, four with transplant diagnostics, one with medical robots which Chinese doctors use for transplantation as well, and another one trying to enter the Chinese market with a consumable-type product also related to transplantation. The conclusion The question of the ethicality of transplant tourism may be very pressing, since as the research shows, just the sheer amount of participating countries, sourcing transplant tourists to another one, amounts to 20. The identified companies are facing risks due to the nature of transplantation business in China, as officially executed prisoners are used as sources, and widely cited pieces of evidence point out to illegal organ harvesting. Similar risks and ethical questions are also relevant to the countries sourcing the transplant tourists to China.

Keywords: China, illegal organ harvesting, transplant tourism, organ harvesting technology

Procedia PDF Downloads 134
2912 Perception of Pre-Clinical Students towards Doctors Lifestyle

Authors: Shalinawati Ramli, Khairani Omar, Nurul Azmawati Mohamed, Zarini Ismail, Nur Syahrina Rahim, Nurul Hayati Chamhuri

Abstract:

Medical doctors’ work to prevent, diagnose, treat diseases, disorders, and injuries as well as prescribing medication. Many people are attracted to this profession because it gives them the opportunity to help others. Doctors’ improve quality of life by providing advice, healing physical ailments and performing complex surgeries. Medicine is a profession in which dedication to the wellbeing of others is of paramount importance. Balancing the requirements of work and personal life can be a struggle as the demand of work as a doctors’ is great. Perception and expectation of medical students regarding the lifestyle of doctors’ is important to ensure that they had made the right career choice. Thus, the aim of this study is to assess the perception of pre-clinical students regarding doctors’ lifestyle. This study is a cross-sectional study involving all third-year pre-clinical medical students at University Sains Islam Malaysia. A total of 81 students participated in this study. Participants were given a set of questionnaire consisting of demographic data, open-ended questions on their perception on doctors’ lifestyle of working environment, salary expectation and family life. Thematic analysis were used to analyse the data. The participants comprised 69% female and their age range was between 20-21 years old. Majority of them were from middle-income families. Majority of the students perceived that the doctors’ lifestyle would be busy (72%). Approximately 30% of them expected that the time schedule will be unpredictable, 21% mentioned that sacrifice is required and 16% perceived it as a tiring job. Other themes emerged were ‘requiring high commitment’ (6%), challenging (7%) and risky (4%). With regards to salary expectation, 48% expected reasonable salary, 33% high salary and 12% described it as 'not worth compared to the workload'. Majority of them perceived that their family life will be restricted (62%) and time management is important (33%). Only 15% mentioned that family members have to sacrifice and spousal understanding is important (7%). About 10% of them perceived that their family will not be affected by their profession. Majority of the medical students perceived a busy doctors’ lifestyle, reasonable salary and restricted family life. However, there was a significant proportion of them who required counselling for better preparation of their future lifestyle.

Keywords: doctors lifestyle, pre-clinical students, perception, understanding

Procedia PDF Downloads 308
2911 Evaluating Accuracy of Foetal Weight Estimation by Clinicians in Christian Medical College Hospital, India and Its Correlation to Actual Birth Weight: A Clinical Audit

Authors: Aarati Susan Mathew, Radhika Narendra Patel, Jiji Mathew

Abstract:

A retrospective study conducted at Christian Medical College (CMC) Teaching Hospital, Vellore, India on 14th August 2014 to assess the accuracy of clinically estimated foetal weight upon labour admission. Estimating foetal weight is a crucial factor in assessing maternal and foetal complications during and after labour. Medical notes of ninety-eight postnatal women who fulfilled the inclusion criteria were studied to evaluate the correlation between their recorded Estimated Foetal Weight (EFW) on admission and actual birth weight (ABW) of the newborn after delivery. Data concerning maternal and foetal demographics was also noted. Accuracy was determined by absolute percentage error and proportion of estimates within 10% of ABW. Actual birth weights ranged from 950-4080g. A strong positive correlation between EFW and ABW (r=0.904) was noted. Term deliveries (≥40 weeks) in the normal weight range (2500-4000g) had a 59.5% estimation accuracy (n=74) compared to pre-term (<40 weeks) with an estimation accuracy of 0% (n=2). Out of the term deliveries, macrosomic babies (>4000g) were underestimated by 25% (n=3) and low birthweight (LBW) babies were overestimated by 12.7% (n=9). Registrars who estimated foetal weight were accurate in babies within normal weight ranges. However, there needs to be an improvement in predicting weight of macrosomic and LBW foetuses. We have suggested the use of an amended version of the Johnson’s formula for the Indian population for improvement and a need to re-audit once implemented.

Keywords: clinical palpation, estimated foetal weight, pregnancy, India, Johnson’s formula

Procedia PDF Downloads 363
2910 Integrating Optuna And Synthetic Data Generation For Optimized Medical Transcript Classification Using BioBERT

Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma

Abstract:

The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves a performance that is equally good as AdamW's. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets.

Keywords: BioBERT, clinical data, healthcare AI, transformer models

Procedia PDF Downloads 2
2909 Content-Aware Image Augmentation for Medical Imaging Applications

Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang

Abstract:

Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.

Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving

Procedia PDF Downloads 223
2908 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm

Procedia PDF Downloads 564
2907 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks

Procedia PDF Downloads 68
2906 Innovations in Healthy and Active Aging: A Case Study of "Aging in Place" in Northern California

Authors: Lisa Handwerker

Abstract:

Using a Medical Anthropological lens, the paper will explore ideas elated to "aging in place" among Northern Californian older adults. Older adults seek independence, autonomy, flexibility, engagement, fulfillment and community in their pursuit of the highest quality of life. These values are at the heart of healthy and active "aging in place'. Drawing on a case study, the paper will examine one membership based non-profit organization for older adults united by the members' desire to be healthy and active while remaining in their homes for as long as possible. Relying on both volunteer and paid work, the paper explores the use of volunteer peer-to peer support, community building and advanced technologies toward this goal.

Keywords: aging in place, healthy and active aging, northern california, medical anthropologist, engagement, autonomy, flexibility, community, volunteers, quality of life

Procedia PDF Downloads 101
2905 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education

Authors: Lauren G. Coggins

Abstract:

Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.

Keywords: education, healthcare-associated infections, infection, nursing, prevention

Procedia PDF Downloads 116
2904 Knowledge State of Medical Students in Morocco Regarding Metabolic Dysfunction Associated with Non-alcoholic Fatty Liver Disease (MASLD)

Authors: Elidrissi Laila, El Rhaoussi Fatima-Zahra, Haddad Fouad, Tahiri Mohamed, Hliwa Wafaa, Bellabah Ahmed, Badre Wafaa

Abstract:

Introduction: Metabolic Dysfunction Associated with Non-Alcoholic Fatty Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD), is the leading cause of chronic liver disease. The cardiometabolic risk factors associated with MASLD represent common health issues and significant public health challenges. Medical students, being active participants in the healthcare system and a young demographic, are particularly relevant for understanding this entity to prevent its occurrence on a personal and collective level. The objective of our study is to assess the level of knowledge among medical students regarding MASLD, its risk factors, and its long-term consequences. Materials and Methods: We conducted a descriptive cross-sectional study using an anonymous questionnaire distributed through social media over a period of 2 weeks. Medical students from various faculties in Morocco answered 22 questions about MASLD, its etiological factors, diagnosis, complications, and principles of treatment. All responses were analyzed using the Jamovi software. Results: A total of 124 students voluntarily provided complete responses. 59% of our participants were in their 3rd year, with a median age of 21 years. Among the respondents, 27% were overweight, obese, or diabetic. 83% correctly answered more than half of the questions, and 77% believed they knew about MASLD. However, 84% of students were unaware that MASLD is the leading cause of chronic liver disease, and 12% even considered it a rare condition. Regarding etiological factors, overweight and obesity were mentioned in 93% of responses, and type 2 diabetes in 84%. 62% of participants believed that type 1 diabetes could not be implicated in MASLD. For 83 students, MASLD was considered a diagnosis of exclusion, while 41 students believed that a biopsy was mandatory for diagnosis. 12% believed that MASLD did not lead to long-term complications, and 44% were unaware that MASLD could progress to hepatocellular carcinoma. Regarding treatment, 85% included weight loss, and 19% did not consider diabetes management as a therapeutic approach for MASLD. At the end of the questionnaire, 89% of the students expressed a desire to learn more about MASLD and were invited to access an informative sheet through a hyperlink. Conclusion: MASLD represents a significant public health concern due to the prevalence of its risk factors, notably the obesity pandemic, which is widespread among the young population. There is a need for awareness about the seriousness of this emerging and long-underestimated condition among young future physicians.

Keywords: MASLD, medical students, obesity, diabetes

Procedia PDF Downloads 74
2903 ChatGPT 4.0 Demonstrates Strong Performance in Standardised Medical Licensing Examinations: Insights and Implications for Medical Educators

Authors: K. O'Malley

Abstract:

Background: The emergence and rapid evolution of large language models (LLMs) (i.e., models of generative artificial intelligence, or AI) has been unprecedented. ChatGPT is one of the most widely used LLM platforms. Using natural language processing technology, it generates customized responses to user prompts, enabling it to mimic human conversation. Responses are generated using predictive modeling of vast internet text and data swathes and are further refined and reinforced through user feedback. The popularity of LLMs is increasing, with a growing number of students utilizing these platforms for study and revision purposes. Notwithstanding its many novel applications, LLM technology is inherently susceptible to bias and error. This poses a significant challenge in the educational setting, where academic integrity may be undermined. This study aims to evaluate the performance of the latest iteration of ChatGPT (ChatGPT4.0) in standardized state medical licensing examinations. Methods: A considered search strategy was used to interrogate the PubMed electronic database. The keywords ‘ChatGPT’ AND ‘medical education’ OR ‘medical school’ OR ‘medical licensing exam’ were used to identify relevant literature. The search included all peer-reviewed literature published in the past five years. The search was limited to publications in the English language only. Eligibility was ascertained based on the study title and abstract and confirmed by consulting the full-text document. Data was extracted into a Microsoft Excel document for analysis. Results: The search yielded 345 publications that were screened. 225 original articles were identified, of which 11 met the pre-determined criteria for inclusion in a narrative synthesis. These studies included performance assessments in national medical licensing examinations from the United States, United Kingdom, Saudi Arabia, Poland, Taiwan, Japan and Germany. ChatGPT 4.0 achieved scores ranging from 67.1 to 88.6 percent. The mean score across all studies was 82.49 percent (SD= 5.95). In all studies, ChatGPT exceeded the threshold for a passing grade in the corresponding exam. Conclusion: The capabilities of ChatGPT in standardized academic assessment in medicine are robust. While this technology can potentially revolutionize higher education, it also presents several challenges with which educators have not had to contend before. The overall strong performance of ChatGPT, as outlined above, may lend itself to unfair use (such as the plagiarism of deliverable coursework) and pose unforeseen ethical challenges (arising from algorithmic bias). Conversely, it highlights potential pitfalls if users assume LLM-generated content to be entirely accurate. In the aforementioned studies, ChatGPT exhibits a margin of error between 11.4 and 32.9 percent, which resonates strongly with concerns regarding the quality and veracity of LLM-generated content. It is imperative to highlight these limitations, particularly to students in the early stages of their education who are less likely to possess the requisite insight or knowledge to recognize errors, inaccuracies or false information. Educators must inform themselves of these emerging challenges to effectively address them and mitigate potential disruption in academic fora.

Keywords: artificial intelligence, ChatGPT, generative ai, large language models, licensing exam, medical education, medicine, university

Procedia PDF Downloads 32
2902 Global Healthcare Village Based on Mobile Cloud Computing

Authors: Laleh Boroumand, Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar

Abstract:

Cloud computing being the use of hardware and software that are delivered as a service over a network has its application in the area of health care. Due to the emergency cases reported in most of the medical centers, prompt for an efficient scheme to make health data available with less response time. To this end, we propose a mobile global healthcare village (MGHV) model that combines the components of three deployment model which include country, continent and global health cloud to help in solving the problem mentioned above. In the creation of continent model, two (2) data centers are created of which one is local and the other is global. The local replay the request of residence within the continent, whereas the global replay the requirements of others. With the methods adopted, there is an assurance of the availability of relevant medical data to patients, specialists, and emergency staffs regardless of locations and time. From our intensive experiment using the simulation approach, it was observed that, broker policy scheme with respect to optimized response time, yields a very good performance in terms of reduction in response time. Though, our results are comparable to others when there is an increase in the number of virtual machines (80-640 virtual machines). The proportionality in increase of response time is within 9%. The results gotten from our simulation experiments shows that utilizing MGHV leads to the reduction of health care expenditures and helps in solving the problems of unqualified medical staffs faced by both developed and developing countries.

Keywords: cloud computing (MCC), e-healthcare, availability, response time, service broker policy

Procedia PDF Downloads 377
2901 Interdisciplinary Teaching for Nursing Students: A Key to Understanding Teamwork

Authors: Ilana Margalith, Yaron Niv

Abstract:

One of the most important factors of professional health treatment is teamwork, in which each discipline contributes its expert knowledge, thus ensuring quality and a high standard of care as well as efficient communication (one of the International Patient Safety Goals). However, in most countries, students are educated separately by each health discipline. They are exposed to teamwork only during their clinical experience, which in some cases is short and skill-oriented. In addition, health organizations in most countries are hierarchical and although changes have occurred in the hierarchy of the medical system, there are still disciplines that underrate the unique contributions of other health professionals, thus, young graduates of health professions develop and base their perception of their peers from other disciplines on insufficient knowledge. In order to establish a wide-ranging perception among nursing students as to the contribution of different health professionals to the health of their patients, students at the Clalit Nursing Academy, Rabin Campus (Dina), Israel, participated in an interdisciplinary clinical discussion with students from several different professions, other than nursing, who were completing their clinical experience at Rabin Medical Center in medicine, health psychology, social work, audiology, physiotherapy and occupational therapy. The discussion was led by a medical-surgical nursing instructor. Their tutors received in advance, a case report enabling them to prepare the students as to how to present their professional theories and interventions regarding the case. Mutual stimulation and acknowledgment of the unique contribution of each part of the team enriched the nursing students' understanding as to how their own nursing interventions could be integrated into the entire process towards a safe and speedy recovery of the patient.

Keywords: health professions' students, interdisciplinary clinical discussion, nursing education, patient safety

Procedia PDF Downloads 172
2900 Starting the Hospitalization Procedure with a Medicine Combination in the Cardiovascular Department of the Imam Reza (AS) Mashhad Hospital

Authors: Maryamsadat Habibi

Abstract:

Objective: pharmaceutical errors are avoidable occurrences that can result in inappropriate pharmaceutical use, patient harm, treatment failure, increased hospital costs and length of stay, and other outcomes that affect both the individual receiving treatment and the healthcare provider. This study aimed to perform a reconciliation of medications in the cardiovascular ward of Imam Reza Hospital in Mashhad, Iran, and evaluate the prevalence of medication discrepancies between the best medication list created for the patient by the pharmacist and the medication order of the treating physician there. Materials & Methods: The 97 patients in the cardiovascular ward of the Imam Reza Hospital in Mashhad were the subject of a cross-sectional study from June to September of 2021. After giving their informed consent and being admitted to the ward, all patients with at least one underlying condition and at least two medications being taken at home were included in the study. A medical reconciliation form was used to record patient demographics and medical histories during the first 24 hours of admission, and the information was contrasted with the doctors' orders. The doctor then discovered medication inconsistencies between the two lists and double-checked them to separate the intentional from the accidental anomalies. Finally, using SPSS software version 22, it was determined how common medical discrepancies are and how different sorts of discrepancies relate to various variables. Results: The average age of the participants in this study was 57.6915.84 years, with 57.7% of men and 42.3% of women. 95.9% of the patients among these people encountered at least one medication discrepancy, and 58.9% of them suffered at least one unintentional drug cessation. Out of the 659 medications registered in the study, 399 cases (60.54%) had inconsistencies, of which 161 cases (40.35%) involved the intentional stopping of a medication, 123 cases (30.82%) involved the stopping of a medication unintentionally, and 115 cases (28.82%) involved the continued use of a medication by adjusting the dose. Additionally, the category of cardiovascular pharmaceuticals and the category of gastrointestinal medications were found to have the highest medical inconsistencies in the current study. Furthermore, there was no correlation between the frequency of medical discrepancies and the following variables: age, ward, date of visit, type, and number of underlying diseases (P=0.13), P=0.61, P=0.72, P=0.82, P=0.44, and so forth. On the other hand, there was a statistically significant correlation between the number of medications taken at home (P=0.037) and the prevalence of medical discrepancies with gender (P=0.029). The results of this study revealed that 96% of patients admitted to the cardiovascular unit at Imam Reza Hospital had at least one medication error, which was typically an intentional drug discontinuance. According to the study's findings, patients admitted to Imam Reza Hospital's cardiovascular ward have a great potential for identifying and correcting various medication discrepancies as well as for avoiding prescription errors when the medication reconciliation method is used. As a result, it is essential to carry out a precise assessment to achieve the best treatment outcomes and avoid unintended medication discontinuation, unwanted drug-related events, and drug interactions between the patient's home medications and those prescribed in the hospital.

Keywords: drug combination, drug side effects, drug incompatibility, cardiovascular department

Procedia PDF Downloads 90
2899 Predicting Subsurface Abnormalities Growth Using Physics-Informed Neural Networks

Authors: Mehrdad Shafiei Dizaji, Hoda Azari

Abstract:

The research explores the pioneering integration of Physics-Informed Neural Networks (PINNs) into the domain of Ground-Penetrating Radar (GPR) data prediction, akin to advancements in medical imaging for tracking tumor progression in the human body. This research presents a detailed development framework for a specialized PINN model proficient at interpreting and forecasting GPR data, much like how medical imaging models predict tumor behavior. By harnessing the synergy between deep learning algorithms and the physical laws governing subsurface structures—or, in medical terms, human tissues—the model effectively embeds the physics of electromagnetic wave propagation into its architecture. This ensures that predictions not only align with fundamental physical principles but also mirror the precision needed in medical diagnostics for detecting and monitoring tumors. The suggested deep learning structure comprises three components: a CNN, a spatial feature channel attention (SFCA) mechanism, and ConvLSTM, along with temporal feature frame attention (TFFA) modules. The attention mechanism computes channel attention and temporal attention weights using self-adaptation, thereby fine-tuning the visual and temporal feature responses to extract the most pertinent and significant visual and temporal features. By integrating physics directly into the neural network, our model has shown enhanced accuracy in forecasting GPR data. This improvement is vital for conducting effective assessments of bridge deck conditions and other evaluations related to civil infrastructure. The use of Physics-Informed Neural Networks (PINNs) has demonstrated the potential to transform the field of Non-Destructive Evaluation (NDE) by enhancing the precision of infrastructure deterioration predictions. Moreover, it offers a deeper insight into the fundamental mechanisms of deterioration, viewed through the prism of physics-based models.

Keywords: physics-informed neural networks, deep learning, ground-penetrating radar (GPR), NDE, ConvLSTM, physics, data driven

Procedia PDF Downloads 41
2898 The Doctor-Patient Interaction Experience Hierarchy Using Rasch Measurement Model Analysis

Authors: Wan Nur'ashiqin Wan Mohamad, Zarina Othman, Mohd Azman Abas, Azizah Ya'acob, Rozmel Abdul Latiff

Abstract:

Effective doctor-patient interaction is vital to both doctor and patient relationship. It is the cornerstone of good practice and an integral quality of a healthcare institution. This paper presented the hierarchy of the communication elements in doctor-patient interaction during medical consultations in a medical centre in Malaysia. This study adapted The Picker Patient Experience Questionnaire (2002) to obtain the information from patients. The questionnaire survey was responded by 100 patients between the ages of 20 and 50. Data collected were analysed using Rasch Measurement Model to yield the hierarchy of the communication elements in doctor-patient interaction. The findings showed that the three highest ranking on the doctor-patient interaction were doctor’s treatment, important information delivery and patient satisfaction of doctor’s responses. The results are valuable in developing the framework for communication ethics of doctors.

Keywords: communication elements, doctor-patient interaction, hierarchy, Rasch measurement model

Procedia PDF Downloads 163
2897 Emergency Management of Poisoning Tracery Care Hospital in India

Authors: Rajiv Ratan Singh, Sachin Kumar Tripathi, Pradeep Kumar Yadav

Abstract:

The timely evaluation, diagnosis, and treatment of people who have been exposed to toxic chemicals is a crucial component of emergency poison management in the medical field. The various substances that can poison include chemicals, medications, and naturally occurring poisons. The toxicology of the particular drug involved, as well as the symptoms and indicators of poisoning, must be thoroughly understood to handle poisoning emergencies effectively. One of the most important aspects of emergency poison management in medicine is the prompt examination, diagnosis, and treatment of persons who have been exposed to dangerous substances. To properly manage poisoning crises, one must have a good understanding of the toxicology of the particular medication concerned, as well as the signs and indicators of poisoning. Emergency management of poisoning includes not only prompt medical attention but also patient education, follow-up care, and monitoring for any long-term consequences. To achieve the greatest results for patients, the management of poisoning is a complicated and dynamic process that calls for collaboration between medical professionals, first responders, and toxicologists. All poisoned patients who present to the emergency room are assessed and diagnosed based on a collection of symptoms and a biochemical diagnosis, and they are then provided targeted, specialized treatment for the toxin identified. This article focuses on the loxodromic strategy as the primary method of treatment for poisoned patients. The authors of this article conclude that mortality and morbidity can be reduced if patients visit the emergency room promptly and receive targeted treatment.

Keywords: antidotes, blood poisoning, emergency medicine, gastric lavage, medico-legal aspects, patient care

Procedia PDF Downloads 102
2896 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 156
2895 The Effectiveness of an Educational Program on Awareness of Cancer Signs, Symptoms, and Risk Factors among School Students in Oman

Authors: Khadija Al-Hosni, Moon Fai Chan, Mohammed Al-Azri

Abstract:

Background: Several studies suggest that most school-age adolescents are poorly informed on cancer warning signs and risk factors. Providing adolescents with sufficient knowledge would increase their awareness in adulthood and improve seeking behaviors later. Significant: The results will provide a clear vision in assisting key decision-makers in formulating policies on the students' awareness programs towards cancer. So, the likelihood of avoiding cancer in the future will be increased or even promote early diagnosis. Objectives: to evaluate the effectiveness of an education program designed to increase awareness of cancer signs and symptoms risk factors, improve the behavior of seeking help among school students in Oman, and address the barriers to obtaining medical help. Methods: A randomized controlled trial with two groups was conducted in Oman. A total of 1716 students (n=886/control, n= 830/education), aged 15-17 years, at 10th and 11th grade from 12 governmental schools 3 in governorates from 20-February-2022 to 12-May-2022. Basic demographic data were collected, and the Cancer Awareness Measure (CAM) was used as the primary outcome. Data were collected at baseline (T0) and 4 weeks after (T1). The intervention group received an education program about cancer's cause and its signs and symptoms. In contrast, the control group did not receive any education related to this issue during the study period. Non-parametric tests were used to compare the outcomes between groups. Results: At T0, the lamp was the most recognized cancer warning sign in control (55.0%) and intervention (55.2%) groups. However, there were no significant changes at T1 for all signs in the control group. In contrast, all sign outcomes were improved significantly (p<0.001) in the intervention group, the highest response was unexplained pain (93.3%). Smoking was the most recognized risk factor in both groups: (82.8% for control; 84.1% for intervention) at T0. However, there was no significant change in T1 for the control group, but there was for the intervention group (p<0.001), the highest identification was smoking cigarettes (96.5%). Too scared was the largest barrier to seeking medical help by students in the control group at T0 (63.0%) and T1 (62.8%). However, there were no significant changes in all barriers in this group. Otherwise, being too embarrassed (60.2%) was the largest barrier to seeking medical help for students in the intervention group at T0 and too scared (58.6%) at T1. Although there were reductions in all barriers, significant differences were found in six of ten only (p<0.001). Conclusion: The intervention was effective in improving students' awareness of cancer symptoms, warning signs (p<0.001), and risk factors (p<0.001 reduced the most addressed barriers to seeking medical help (p<0.001) in comparison to the control group. The Ministry of Education in Oman could integrate awareness of cancer within the curriculum, and more interventions are needed on the sociological part to overcome the barriers that interfere with seeking medical help.

Keywords: adolescents, awareness, cancer, education, intervention, student

Procedia PDF Downloads 86
2894 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters

Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki

Abstract:

In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.

Keywords: crisis management, disaster mitigation, messing, MGRS, military grid reference system, satellite communication system

Procedia PDF Downloads 236
2893 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease

Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani

Abstract:

Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.

Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence

Procedia PDF Downloads 20
2892 Application of Observational Medical Outcomes Partnership-Common Data Model (OMOP-CDM) Database in Nursing Health Problems with Prostate Cancer-a Pilot Study

Authors: Hung Lin-Zin, Lai Mei-Yen

Abstract:

Prostate cancer is the most commonly diagnosed male cancer in the U.S. The prevalence is around 1 in 8. The etiology of prostate cancer is still unknown, but some predisposing factors, such as age, black race, family history, and obesity, may increase the risk of the disease. In 2020, a total of 7,178 Taiwanese people were nearly diagnosed with prostate cancer, accounting for 5.88% of all cancer cases, and the incidence rate ranked fifth among men. In that year, the total number of deaths from prostate cancer was 1,730, accounting for 3.45% of all cancer deaths, and the death rate ranked 6th among men, accounting for 94.34% of the cases of male reproductive organs. Looking for domestic and foreign literature on the use of OMOP (Observational Medical Outcomes Partnership, hereinafter referred to as OMOP) database analysis, there are currently nearly a hundred literature published related to nursing-related health problems and nursing measures built in the OMOP general data model database of medical institutions are extremely rare. The OMOP common data model construction analysis platform is a system developed by the FDA in 2007, using a common data model (common data model, CDM) to analyze and monitor healthcare data. It is important to build up relevant nursing information from the OMOP- CDM database to assist our daily practice. Therefore, we choose prostate cancer patients who are our popular care objects and use the OMOP- CDM database to explore the common associated health problems. With the assistance of OMOP-CDM database analysis, we can expect early diagnosis and prevention of prostate cancer patients' comorbidities to improve patient care.

Keywords: OMOP, nursing diagnosis, health problem, prostate cancer

Procedia PDF Downloads 69
2891 The Moderating Impacts of Government Support on the Relationship Between Patient Acceptance and Telemedicine Adoption in Malaysia

Authors: Anyia Nduka, Aslan Bin Amad Senin, Ayu Azrin Binti Abdul Aziz

Abstract:

Telemedicine is a rapidly developing discipline with enormous promise for better healthcare results for patients. To meet the demands of patients and the healthcare sector, medical providers must be proficient in telemedicine and also need government funding for infrastructure and core competencies. In this study, we surveyed general hospitals in Kuala Lumpur and Selangor to investigate patient’s impressions of both the positive and negative aspects of government funding for telemedicine and its level of acceptance. This survey was conducted in accordance with the Diffusion of Innovations (DOI) hypothesis; the survey instruments were designed through a Google Form and distributed to patients and every member of the medical team. The findings suggested a framework for categorizing patients' levels of technology use and acceptability, which provided practical consequences for healthcare. We therefore recommend the increase in technical assistance and government-backed funding of telemedicine by bolstering the entire system.

Keywords: technology acceptance, quality assurance, digital transformation, cost management.

Procedia PDF Downloads 77
2890 Polymerization of Epsilon-Caprolactone Using Lipase Enzyme for Medical Applications

Authors: Sukanya Devi Ramachandran, Vaishnavi Muralidharan, Kavya Chandrasekaran

Abstract:

Polycaprolactone is polymer belonging to the polyester family that has noticeable characteristics of biodegradability and biocompatibility which is essential for medical applications. Polycaprolactone is produced by the ring opening polymerization of the monomer epsilon-Caprolactone (ε-CL) which is a closed ester, comprising of seven-membered ring. This process is normally catalysed by metallic components such as stannous octoate. It is difficult to remove the catalysts after the reaction, and they are also toxic to the human body. An alternate route of using enzymes as catalysts is being employed to reduce the toxicity. Lipase enzyme is a subclass of esterase that can easily attack the ester bonds of ε-CL. This research paper throws light on the extraction of lipase from germinating sunflower seeds and the activity of the biocatalyst in the polymerization of ε-CL. Germinating Sunflower seeds were crushed with fine sand in phosphate buffer of pH 6.5 into a fine paste which was centrifuged at 5000rpm for 10 minutes. The clear solution of the enzyme was tested for activity at various pH ranging from 5 to 7 and temperature ranging from 40oC to 70oC. The enzyme was active at pH6.0 and at 600C temperature. Polymerization of ε-CL was done using toluene as solvent with the catalysis of lipase enzyme, after which chloroform was added to terminate the reaction and was washed in cold methanol to obtain the polymer. The polymerization was done by varying the time from 72 hours to 6 days and tested for the molecular weight and the conversion of the monomer. The molecular weight obtained at 6 days is comparably higher. This method will be very effective, economical and eco-friendly to produce as the enzyme used can be regenerated as such at the end of the reaction and can be reused. The obtained polymers can be used for drug delivery and other medical applications.

Keywords: lipase, monomer, polycaprolactone, polymerization

Procedia PDF Downloads 296
2889 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine

Procedia PDF Downloads 204
2888 The Influence of Social Media on the Body Image of First Year Female Medical Students of University of Khartoum, 2022

Authors: Razan Farah, Siham Ballah

Abstract:

Facebook, Instagram, TikTok and other social media applications have become an integral component of everyone’s social life, particularly among younger generations and adolescences. These social apps have been changing a lot of conceptions and believes in the population by representing public figures and celebrities as role models. The social comparison theory, which says that people self-evaluate based on comparisons with similar others, is commonly used to explore the impact of social media on body image. There is a need to study the influence of those social platforms on the body image as there have been an increase in body dissatisfaction in the recent years. This cross sectional study used a self administered questionnaire on a simple random sample of 133 female medical students of the first year. Finding shows that the response rate was 75%. There was an association between social media usage and noticing how the person look(p value = .022), but no significant association between social media use and body image influence or dissatisfaction was found. This study implies more research under this topic in Sudan as the literature are scarce.

Keywords: body image, body dissatisfaction, social media, adolescences

Procedia PDF Downloads 71
2887 Highly-Sensitive Nanopore-Based Sensors for Point-Of-Care Medical Diagnostics

Authors: Leyla Esfandiari

Abstract:

Rapid, sensitive detection of nucleic acid (NA) molecules of specific sequence is of interest for a range of diverse health-related applications such as screening for genetic diseases, detecting pathogenic microbes in food and water, and identifying biological warfare agents in homeland security. Sequence-specific nucleic acid detection platforms rely on base pairing interaction between two complementary single stranded NAs, which can be detected by the optical, mechanical, or electrochemical readout. However, many of the existing platforms require amplification by polymerase chain reaction (PCR), fluorescent or enzymatic labels, and expensive or bulky instrumentation. In an effort to address these shortcomings, our research is focused on utilizing the cutting edge nanotechnology and microfluidics along with resistive pulse electrical measurements to design and develop a cost-effective, handheld and highly-sensitive nanopore-based sensor for point-of-care medical diagnostics.

Keywords: diagnostics, nanopore, nucleic acids, sensor

Procedia PDF Downloads 465
2886 Influence of Well-Being and Quality of Work-Life on Quality of Care among Health Professionals in Southwest Nigeria

Authors: Adesola C. Odole, Michael O. Ogunlana, Nse A. Odunaiya, Olufemi O. Oyewole, Chidozie E. Mbada, Ogochukwu K. Onyeso, Ayomikun F. Ayodeji, Opeyemi M. Adegoke, Iyanuoluwa Odole, Comfort T. Sanuade, Moyosooreoluwa E. Odole, Oluwagbohunmi A. Awosoga

Abstract:

Purpose: The Nigerian healthcare industry is bedeviled with infrastructural decay, inadequate funding and staffing, and a dysfunctional healthcare system. This study investigated the influence of health professionals’ well-being and quality of work-life (QoWL) on the quality of care (QoC) of patients in Nigeria. Methods: The study was a multicentre cross-sectional survey conducted at four tertiary health institutions in southwest Nigeria. Participants’ demographic information, well-being, quality of work-life, and quality of care were obtained using four standardized questionnaires. Data were summarized using descriptive statistics of frequency (percentage) and mean (standard deviation). Inferential statistics included Chi-square, Pearson’s correlation, and independent samples t-test analyses. Results: Medical practitioners (n=609) and nurses (n=570) constituted 74.6% of all the health professionals, with physiotherapists, pharmacists, and medical laboratory scientists constituting 25.4%. The mean (SD) participants’ well-being = 71.65% (14.65), quality of life = 61.8% (21.31), quality of work-life = 65.73% (10.52) and quality of care = 70.14% (12.77). Participants’ quality of life had a significant negative correlation with the quality of care, while well-being and quality of work-life had a significant positive correlation with the quality of care. Conclusion: We concluded that health professionals’ well-being and quality of work-life are important factors that influence their productivity and, ultimately, the quality of care rendered to patients. The hospital management and policymakers should ensure improved work-related factors to improve the well-being of health professionals. This will enhance the quality of care given to patients and ultimately reduce brain drain and medical tourism.

Keywords: health professionals, quality of care, quality of life, quality of work-life, well-being

Procedia PDF Downloads 83