Search results for: liquid-liquid extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1984

Search results for: liquid-liquid extraction

1354 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 76
1353 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 341
1352 Edible and Ecofriendly Packaging – A Trendsetter of the Modern Era – Standardization and Properties of Films and Cutleries from Food Starch

Authors: P. Raajeswari, S. M. Devatha, R. Pragatheeswari

Abstract:

The edible packaging is a new trendsetter in the era of modern packaging. The researchers and food scientist recognise edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability. Starch was extracted from different sources that contains abundantly like potato, tapioca, rice, wheat, and corn. The starch based edible films and cutleries are developed as an alternative for conventional packages providing the nutritional benefit when consumed along with the food. The development of starch based edible films by the extraction of starch from various raw ingredients at lab scale level. The films are developed by the employment of plasticiser at different concentrations of 1.5ml and 2ml. The films developed using glycerol as a plasticiser in filmogenic solution to increase the flexibility and plasticity of film. It reduces intra and intermolecular forces in starch, and it increases the mobility of starch based edible films. The films developed are tested for its functional properties such as thickness, tensile strength, elongation at break, moisture permeability, moisture content, and puncture strength. The cutleries like spoons and cups are prepared by making dough and rolling the starch along with water. The overall results showed that starch based edible films absorbed less moisture, and they also contributed to the low moisture permeability with high tensile strength. Food colorants extracted from red onion peel, pumpkin, and red amaranth adds on the nutritive value, colour, and attraction when incorporated in edible cutleries, and it doesn’t influence the functional properties. Addition of a low quantity of glycerol in edible films and colour extraction from onion peel, pumpkin, and red amaranth enhances biodegradability and provides a good quantity of nutrients when consumed. Therefore, due to its multiple advantages, food starch can serve as the best response for eco-friendly industrial products aimed to replace single use plastics at low cost.

Keywords: edible films, edible cutleries, plasticizer, glycerol, starch, functional property

Procedia PDF Downloads 185
1351 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil

Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade

Abstract:

Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.

Keywords: algae, biomass, lipid, protein

Procedia PDF Downloads 215
1350 Musical Instruments Classification Using Machine Learning Techniques

Authors: Bhalke D. G., Bormane D. S., Kharate G. K.

Abstract:

This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.

Keywords: feature extraction, SVM, KNN, musical instruments

Procedia PDF Downloads 480
1349 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives

Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián

Abstract:

A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.

Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients

Procedia PDF Downloads 64
1348 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation

Procedia PDF Downloads 73
1347 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
1346 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 82
1345 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 91
1344 Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products

Authors: Valentine C. Eze, Adam P. Harvey

Abstract:

Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands.

Keywords: phytoremediation, Pteris cretica, hyper-accumulator, solvent extraction, molybdic acid process, arsenic nanoparticles

Procedia PDF Downloads 318
1343 Extraction and Quantification of Triclosan in Wastewater Samples Using Molecularly Imprinted Membrane Adsorbent

Authors: Siyabonga Aubrey Mhlongo, Linda Lunga Sibali, Phumlane Selby Mdluli, Peter Papoh Ndibewu, Kholofelo Clifford Malematja

Abstract:

This paper reports on the successful extraction and quantification of an antibacterial and antifungal agent present in some consumer products (Triclosan: C₁₂H₇Cl₃O₂)generally found in wastewater or effluents using molecularly imprinted membrane adsorbent (MIMs) followed by quantification and removal on a high-performance liquid chromatography (HPLC). Triclosan is an antibacterial and antifungal agent present in some consumer products like toothpaste, soaps, detergents, toys, and surgical cleaning treatments. The MIMs was fabricated usingpolyvinylidene fluoride (PVDF) polymer with selective micro composite particles known as molecularly imprinted polymers (MIPs)via a phase inversion by immersion precipitation technique. This resulted in an improved hydrophilicity and mechanical behaviour of the membranes. Wastewater samples were collected from the Umbogintwini Industrial Complex (UIC) (south coast of Durban, KwaZulu-Natal in South Africa). central UIC effluent treatment plant and pre-treated before analysis. Experimental parameters such as sample size, contact time, stirring speed were optimised. The resultant MIMs had an adsorption efficiency of 97% of TCS with reference to NIMs and bare membrane, which had 92%, 88%, respectively. The analytical method utilized in this review had limits of detection (LoD) and limits of quantification (LoQ) of 0.22, 0.71µgL-1 in wastewater effluent, respectively. The percentage recovery for the effluent samples was 68%. The detection of TCS was monitored for 10 consecutive days, where optimum TCS traces detected in the treated wastewater was 55.0μg/L inday 9 of the monitored days, while the lowest detected was 6.0μg/L. As the concentrations of analytefound in effluent water samples were not so diverse, this study suggested that MIMs could be the best potential adsorbent for the development and continuous progress in membrane technologyand environmental sciences, lending its capability to desalination.

Keywords: molecularly imprinted membrane, triclosan, phase inversion, wastewater

Procedia PDF Downloads 124
1342 Rainwater Management in Smart City: Focus in Gomti Nagar Region, Lucknow, Uttar Pradesh, India

Authors: Priyanka Yadav, Rajkumar Ghosh, Alok Saini

Abstract:

Human civilization cannot exist and thrive in the absence of adequate water. As a result, even in smart cities, water plays an important role in human existence. The key causes of this catastrophic water scarcity crisis are lifestyle changes, over-exploitation of groundwater, water over usage, rapid urbanization, and uncontrolled population growth. Furthermore, salty water seeps into deeper aquifers, causing land subsidence. The purpose of this study on artificial groundwater recharge is to address the water shortage in Gomti Nagar, Lucknow. Submersibles are the most common methods of collecting freshwater from groundwater in Gomti Nagar neighbourhood of Lucknow. Gomti Nagar area has a groundwater depletion rate of 1968 m3/day/km2 and is categorized as Zone-A (very high levels) based on the existing groundwater abstraction pattern - A to D. Harvesting rainwater using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water management system. Rainwater collecting using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water conservation system. Due to a water imbalance of 24519 ML/yr, the Gomti Nagar region is facing severe groundwater depletion. According to the Lucknow Development Authority (LDA), the impact of installed RTRWHs (plot area 300 sq. m.) is 0.04 percent of rainfall collected through RTRWHs in Gomti Nagar region of Lucknow. When RTRWHs are deployed in all buildings, their influence will be greater. Bye-laws in India have mandated the installation of RTRWHs on plots greater than 300 sq.m. A better India without any water problem is a pipe dream that may be realized by installing residential and commercial rooftop rainwater collecting systems in every structure. According to the current study, RTRWHs should be used as an alternate source of water to bridge the gap between groundwater recharge and extraction in smart city viz. Gomti Nagar, Lucknow, India.

Keywords: groundwater recharge, RTRWHs, harvested rainwater, rainfall, water extraction

Procedia PDF Downloads 109
1341 Therapeutic Drug Monitoring by Dried Blood Spot and LC-MS/MS: Novel Application to Carbamazepine and Its Metabolite in Paediatric Population

Authors: Giancarlo La Marca, Engy Shokry, Fabio Villanelli

Abstract:

Epilepsy is one of the most common neurological disorders, with an estimated prevalence of 50 million people worldwide. Twenty five percent of the epilepsy population is represented in children under the age of 15 years. For antiepileptic drugs (AED), there is a poor correlation between plasma concentration and dose especially in children. This was attributed to greater pharmacokinetic variability than adults. Hence, therapeutic drug monitoring (TDM) is recommended in controlling toxicity while drug exposure is maintained. Carbamazepine (CBZ) is a first-line AED and the drug of first choice in trigeminal neuralgia. CBZ is metabolised in the liver into carbamazepine-10,11-epoxide (CBZE), its major metabolite which is equipotent. This develops the need for an assay able to monitor the levels of both CBZ and CBZE. The aim of the present study was to develop and validate a LC-MS/MS method for simultaneous quantification of CBZ and CBZE in dried blood spots (DBS). DBS technique overcomes many logistical problems, ethical issues and technical challenges faced by classical plasma sampling. LC-MS/MS has been regarded as superior technique over immunoassays and HPLC/UV methods owing to its better specificity and sensitivity, lack of interference or matrix effects. Our method combines advantages of DBS technique and LC-MS/MS in clinical practice. The extraction process was done using methanol-water-formic acid (80:20:0.1, v/v/v). The chromatographic elution was achieved by using a linear gradient with a mobile phase consisting of acetonitrile-water-0.1% formic acid at a flow rate of 0.50 mL/min. The method was linear over the range 1-40 mg/L and 0.25-20 mg/L for CBZ and CBZE respectively. The limit of quantification was 1.00 mg/L and 0.25 mg/L for CBZ and CBZE, respectively. Intra-day and inter-day assay precisions were found to be less than 6.5% and 11.8%. An evaluation of DBS technique was performed, including effect of extraction solvent, spot homogeneity and stability in DBS. Results from a comparison with the plasma assay are also presented. The novelty of the present work lies in being the first to quantify CBZ and its metabolite from only one 3.2 mm DBS disc finger-prick sample (3.3-3.4 µl blood) by LC-MS/MS in a 10 min. chromatographic run.

Keywords: carbamazepine, carbamazepine-10, 11-epoxide, dried blood spots, LC-MS/MS, therapeutic drug monitoring

Procedia PDF Downloads 417
1340 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 164
1339 Polymer Flooding: Chemical Enhanced Oil Recovery Technique

Authors: Abhinav Bajpayee, Shubham Damke, Rupal Ranjan, Neha Bharti

Abstract:

Polymer flooding is a dramatic improvement in water flooding and quickly becoming one of the EOR technologies. Used for improving oil recovery. With the increasing energy demand and depleting oil reserves EOR techniques are becoming increasingly significant .Since most oil fields have already begun water flooding, chemical EOR technique can be implemented by using fewer resources than any other EOR technique. Polymer helps in increasing the viscosity of injected water thus reducing water mobility and hence achieves a more stable displacement .Polymer flooding helps in increasing the injection viscosity as has been revealed through field experience. While the injection of a polymer solution improves reservoir conformance the beneficial effect ceases as soon as one attempts to push the polymer solution with water. It is most commonly applied technique because of its higher success rate. In polymer flooding, a water-soluble polymer such as Polyacrylamide is added to the water in the water flood. This increases the viscosity of the water to that of a gel making the oil and water greatly improving the efficiency of the water flood. It also improves the vertical and areal sweep efficiency as a consequence of improving the water/oil mobility ratio. Polymer flooding plays an important role in oil exploitation, but around 60 million ton of wastewater is produced per day with oil extraction together. Therefore the treatment and reuse of wastewater becomes significant which can be carried out by electro dialysis technology. This treatment technology can not only decrease environmental pollution, but also achieve closed-circuit of polymer flooding wastewater during crude oil extraction. There are three potential ways in which a polymer flood can make the oil recovery process more efficient: (1) through the effects of polymers on fractional flow, (2) by decreasing the water/oil mobility ratio, and (3) by diverting injected water from zones that have been swept. It has also been suggested that the viscoelastic behavior of polymers can improve displacement efficiency Polymer flooding may also have an economic impact because less water is injected and produced compared with water flooding. In future we need to focus on developing polymers that can be used in reservoirs of high temperature and high salinity, applying polymer flooding in different reservoir conditions and also combine polymer with other processes (e.g., surfactant/ polymer flooding).

Keywords: fractional flow, polymer, viscosity, water/oil mobility ratio

Procedia PDF Downloads 401
1338 Techno-Functional Characteristics, Mineral Composition and Antioxidant Potential of Dietary Fiber Extracted by Sonication from Different Oat Cultivars (Avena sativa)

Authors: Muhammad Suhail Ibrahim, Muhammad Nadeem, Muhammad Sultan, Uzair Sajjad, Khalid Hamid, Tahir Mahmood Qureshi, Sadaf Javaria

Abstract:

Metabolic disorders, including hypertension, diabetes, cardiovascular disease etc., are major threats to public health and economy. Management and prevention of alarmingly increasing disorders have attracted researchers to explore natural barriers against these disorders. The objective of this study was to explore oats as a potential source of dietary fiber. Extraction of dietary was optimized by response surface methodology, and five indigenous oat cultivars, including SGD2011, Avon, SGD81, PD2LV65, and S2000, were also characterized for techno-functional characteristics, mineral composition and phytochemical quantification. These cultivars varied significantly (p < 0.05) for oil holding capacity, water saturation, and water holding capacity, respectively. SGD81 showed the highest oil-holding capacity, water-holding capacity, and water saturation due to the highest fraction of dietary fiber. The highest values of total phenolic contents, total flavonoid contents, total flavonol contents, 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging activity, and anthocyanin were shown by SGD81, and SGD2011, respectively. All cultivars varied significantly (P<0.05) with respect to phytochemical quantification. Oat cultivars SGD81 and SGD2011 showed the best phenolic acid profile and can be effectively used as a source of nutraceuticals. Beyond the nutritional properties of oats, these also contribute and emerged as potential sources of dietary fiber and have gained attention as nutraceutical cereal crops. This approach offers oats as a natural means of dietary fiber to protect humans from alarmingly increasing metabolic disorders, and its extraction by sonication has made it a sustainable and eco-friendly strategy.

Keywords: oat cultivars, dietary fibers, mineral profile, antioxidant activity, color properties

Procedia PDF Downloads 45
1337 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157
1336 Efficacy of Sparganium stoloniferum–Derived Compound in the Treatment of Acne Vulgaris: A Pilot Study

Authors: Wanvipa Thongborisute, Punyaphat Sirithanabadeekul, Pichit Suvanprakorn, Anan Jiraviroon

Abstract:

Background: Acne vulgaris is one of the most common dermatologic problems, and can have a significant psychological and physical effect on patients. Propionibacterium acnes' roles in acne vulgaris involve the activation of toll-like receptor 4 (TLR4), and toll-like receptor 2 (TLR2) pathways. By activating these pathways, inflammatory events of acne lesions, comedogenesis and sebaceous lipogenesis can occur. Currently, there are several topical agents commonly use in treating acne vulgaris that are known to have an effect on TLRs, such as retinoic acid and adapalene, but these drugs still have some irritating effects. At present, there is an alarming increase in rate of bacterial resistance due to irrational used of antibiotics both orally and topically. For this reason, acne treatments should contain bioactive molecules targeting at the site of action for the most effective therapeutic effect with the least side effects. Sparganium stoloniferumis a Chinese aquatic herb containing a compound called Sparstolonin B (SsnB), which has been reported to selectively blocks Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4)-mediated inflammatory signals. Therefore, this topical TLR2 and TLR4 antagonist, in a form of Sparganium stoloniferum-derived compound containing SsnB, should give a benefit in reducing inflammation of acne vulgaris lesions and providing an alternative treatments for patients with this condition. Materials and Methods: The objectives of this randomized double blinded split faced placebo controlled trial is to study the safety and efficacy of the Sparganium stoloniferum-derived compound. 32 volunteered patients with mild to moderate degree of acne vulgaris according to global acne grading system were included in the study. After being informed and consented the subjects were given 2 topical treatments for acne vulgaris, one being topical 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) and the other, placebo. The subjects were asked to apply each treatment to either half of the face daily morning and night by randomization for 8 weeks, and come in for a weekly follow up. For each visit, the patients went through a procedure of lesion counting, including comedones, papules, nodules, pustules, and cystic lesions. Results: During 8 weeks of experimentation, the result shows a reduction in total lesions number between the placebo and the treatment side show statistical significance starting at week 4, where the 95% confidence interval begin to no longer overlap, and shows a trend of continuing to be further apart. The decrease in the amount of total lesions between week 0 and week 8 of the placebo side shows no statistical significant at P value >0.05. While the decrease in the amount of total lesions of acne vulgaris of the treatment side comparing between week 0 and week 8 shows statistical significant at P value <0.001. Conclusion: The data demonstrates that 2.40% Sparganium stoloniferum extraction (containing Sparstolonin B) is more effective in treating acne vulgaris comparing to topical placebo in treating acne vulgaris, by showing significant reduction in the total numbers of acne lesions. Therefore, this topical Sparganium stoloniferum extraction could become a potential alternative treatment for acne vulgaris.

Keywords: acne vulgaris, sparganium stoloniferum, sparstolonin B, toll-like receptor 2, toll-like receptor 4

Procedia PDF Downloads 187
1335 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems

Authors: Bronwen Wade

Abstract:

Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.

Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality

Procedia PDF Downloads 54
1334 Comparison with Mechanical Behaviors of Mastication in Teeth Movement Cases

Authors: Jae-Yong Park, Yeo-Kyeong Lee, Hee-Sun Kim

Abstract:

Purpose: This study aims at investigating the mechanical behaviors of mastication, according to various teeth movement. There are three masticatory cases which are general case and 2 cases of teeth movement. General case includes the common arrange of all teeth and 2 cases of teeth movement are that one is the half movement location case of molar teeth in no. 14 tooth seat after extraction of no. 14 tooth and the other is no. 14 tooth seat location case of molar teeth after extraction in the same case before. Materials and Methods: In order to analyze these cases, 3 dimensional finite element (FE) model of the skull were generated based on computed tomography images, 964 dicom files of 38 year old male having normal occlusion status. An FE model in general occlusal case was used to develop CAE procedure. This procedure was applied to FE models in other occlusal cases. The displacement controls according to loading condition were applied effectively to simulate occlusal behaviors in all cases. From the FE analyses, von Mises stress distribution of skull and teeth was observed. The von Mises stress, effective stress, had been widely used to determine the absolute stress value, regardless of stress direction and yield characteristics of materials. Results: High stress was distributed over the periodontal area of mandible under molar teeth when the mandible was transmitted to the coronal-apical direction in the general occlusal case. According to the stress propagation from teeth to cranium, stress distribution decreased as the distribution propagated from molar teeth to infratemporal crest of the greater wing of the sphenoid bone and lateral pterygoid plate in general case. In 2 cases of teeth movement, there were observed that high stresses were distributed over the periodontal area of mandible under teeth where they are located under the moved molar teeth in cranium. Conclusion: The predictions of the mechanical behaviors of general case and 2 cases of teeth movement during the masticatory process were investigated including qualitative validation. The displacement controls as the loading condition were applied effectively to simulate occlusal behaviors in 2 cases of teeth movement of molar teeth.

Keywords: cranium, finite element analysis, mandible, masticatory action, occlusal force

Procedia PDF Downloads 392
1333 Quantitative and Fourier Transform Infrared Analysis of Saponins from Three Kenyan Ruellia Species: Ruellia prostrata, Ruellia lineari-bracteolata and Ruellia bignoniiflora

Authors: Christine O. Wangia, Jennifer A. Orwa, Francis W. Muregi, Patrick G. Kareru, Kipyegon Cheruiyot, Eric Guantai

Abstract:

Ruellia (syn. Dipteracanthus) species are wild perennial creepers belonging to the Acanthaceae family. These species are reported to possess anti-inflammatory, analgesic, antioxidant, gastroprotective, anticancer, and immuno-stimulant properties. Phytochemical screening of both aqueous and methanolic extracts of Ruellia species revealed the presence of saponins. Saponins have been reported to possess anti-inflammatory, antioxidant, immuno-stimulant, antihepatotoxic, antibacterial, anticarcinogenic, and antiulcerogenic activities. The objective of this study was to quantify and analyze the Fourier transform infrared (FTIR) spectra of saponins in crude extracts of three Kenyan Ruellia species namely Ruellia prostrata (RPM), Ruellia lineari-bracteolata (RLB) and Ruellia bignoniiflora (RBK). Sequential organic extraction of the ground whole plant material was done using petroleum ether (PE), chloroform, ethyl acetate (EtOAc), and absolute methanol by cold maceration, while aqueous extraction was by hot maceration. The plant powders and extracts were mixed with spectroscopic grade KBr and compressed into a pellet. The infrared spectra were recorded using a Shimadzu FTIR spectrophotometer of 8000 series in the range of 3500 cm-1 - 500 cm-1. Quantitative determination of the saponins was done using standard procedures. Quantitative analysis of saponins showed that RPM had the highest quantity of crude saponins (2.05% ± 0.03), followed by RLB (1.4% ± 0.15) and RBK (1.25% ± 0.11), respectively. FTIR spectra revealed the spectral peaks characteristic for saponins in RPM, RLB, and RBK plant powders, aqueous and methanol extracts; O-H absorption (3265 - 3393 cm-1), C-H absorption ranging from 2851 to 2924 cm-1, C=C absorbance (1628 - 1655 cm-1), oligosaccharide linkage (C-O-C) absorption due to sapogenins (1036 - 1042 cm-1). The crude saponins from RPM, RLB and RBK showed similar peaks to their respective extracts. The presence of the saponins in extracts of RPM, RLB and RBK may be responsible for some of the biological activities reported in the Ruellia species.1

Keywords: Ruellia bignoniiflora, Ruellia linearibracteolata, Ruellia prostrata, Saponins

Procedia PDF Downloads 181
1332 Performance Assessment of Horizontal Axis Tidal Turbine with Variable Length Blades

Authors: Farhana Arzu, Roslan Hashim

Abstract:

Renewable energy is the only alternative sources of energy to meet the current energy demand, healthy environment and future growth which is considered essential for essential sustainable development. Marine renewable energy is one of the major means to meet this demand. Turbines (both horizontal and vertical) play a vital role for extraction of tidal energy. The influence of swept area on the performance improvement of tidal turbine is a vital factor to study for the reduction of relatively high power generation cost in marine industry. This study concentrates on performance investigation of variable length blade tidal turbine concept that has already been proved as an efficient way to improve energy extraction in the wind industry. The concept of variable blade length utilizes the idea of increasing swept area through the turbine blade extension when the tidal stream velocity falls below the rated condition to maximize energy capture while blade retracts above rated condition. A three bladed horizontal axis variable length blade horizontal axis tidal turbine was modelled by modifying a standard fixed length blade turbine. Classical blade element momentum theory based numerical investigation has been carried out using QBlade software to predict performance. The results obtained from QBlade were compared with the available published results and found very good agreement. Three major performance parameters (i.e., thrust, moment, and power coefficients) and power output for different blade extensions were studied and compared with a standard fixed bladed baseline turbine at certain operational conditions. Substantial improvement in performance coefficient is observed with the increase in swept area of the turbine rotor. Power generation is found to increase in great extent when operating at below rated tidal stream velocity reducing the associated cost per unit electric power generation.

Keywords: variable length blade, performance, tidal turbine, power generation

Procedia PDF Downloads 277
1331 Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud

Authors: Harsh Agarwal, Pratikkumar Patel, Maharshi Pathak

Abstract:

Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry.

Keywords: economical feasible, ecological feasible, emulsion stability, nettle spurge oil, rheological properties, soxhlet extraction method

Procedia PDF Downloads 203
1330 A Method for Clinical Concept Extraction from Medical Text

Authors: Moshe Wasserblat, Jonathan Mamou, Oren Pereg

Abstract:

Natural Language Processing (NLP) has made a major leap in the last few years, in practical integration into medical solutions; for example, extracting clinical concepts from medical texts such as medical condition, medication, treatment, and symptoms. However, training and deploying those models in real environments still demands a large amount of annotated data and NLP/Machine Learning (ML) expertise, which makes this process costly and time-consuming. We present a practical and efficient method for clinical concept extraction that does not require costly labeled data nor ML expertise. The method includes three steps: Step 1- the user injects a large in-domain text corpus (e.g., PubMed). Then, the system builds a contextual model containing vector representations of concepts in the corpus, in an unsupervised manner (e.g., Phrase2Vec). Step 2- the user provides a seed set of terms representing a specific medical concept (e.g., for the concept of the symptoms, the user may provide: ‘dry mouth,’ ‘itchy skin,’ and ‘blurred vision’). Then, the system matches the seed set against the contextual model and extracts the most semantically similar terms (e.g., additional symptoms). The result is a complete set of terms related to the medical concept. Step 3 –in production, there is a need to extract medical concepts from the unseen medical text. The system extracts key-phrases from the new text, then matches them against the complete set of terms from step 2, and the most semantically similar will be annotated with the same medical concept category. As an example, the seed symptom concepts would result in the following annotation: “The patient complaints on fatigue [symptom], dry skin [symptom], and Weight loss [symptom], which can be an early sign for Diabetes.” Our evaluations show promising results for extracting concepts from medical corpora. The method allows medical analysts to easily and efficiently build taxonomies (in step 2) representing their domain-specific concepts, and automatically annotate a large number of texts (in step 3) for classification/summarization of medical reports.

Keywords: clinical concepts, concept expansion, medical records annotation, medical records summarization

Procedia PDF Downloads 135
1329 Exploring Polypnenolics Content and Antioxidant Activity of R. damascena Dry Extract by Spectroscopic and Chromatographic Techniques

Authors: Daniela Nedeltcheva-Antonova, Kamelia Getchovska, Vera Deneva, Stanislav Bozhanov, Liudmil Antonov

Abstract:

Rosa damascena Mill. (Damask rose) is one of the most important plants belonging to the Rosaceae family, with a long historical use in traditional medicine and as a valuable oil-bearing plant. Many pharmacological effects have been reported from this plant, including anti-inflammatory, hypnotic, analgesic, anticonvulsant, anti-depressant, antianxiety, antitussive, antidiabetic, relaxant effects on tracheal chains, laxative, prokinetic and hepatoprotective activities. Pharmacological studies have shown that the various health effects of R. damascena flowers can mainly be attributed to its large amount of polyphenolic components. Phenolics possess a wide range of pharmacological activities, such as antioxidants, free-radical scavengers, anticancer, anti-inflammatory, antimutagenic, and antidepressant, with flavonoids being the most numerous group of natural polyphenolic compounds. According to the technological process in the production of rose concrete (solvent extraction with non-polar solvents of fresh rose flowers), it can be assumed that the resulting plant residue would be as rich of polyphenolics, as the plant itself, and could be used for the development of novel products with promising health-promoting effect. Therefore, an optimisation of the extraction procedure of the by-product from the rose concrete production was carried out. An assay of the extracts in respect of their total polyphenols and total flavonoids content was performed. HPLC analysis of quercetin and kaempferol, the two main flavonoids found in R. damascena, was also carried out. The preliminary results have shown that the flavonoid content in the rose extracts is comparable to that of the green tea or Gingko biloba, and they could be used for the development of various products (food supplements, natural cosmetics and phyto-pharmaceutical formulation, etc.). The fact that they are derived from the by-product of industrial plant processing could add the marketing value of the final products in addition to the well-known reputation of the products obtained from Bulgarian roses (R. damascena Mill.).

Keywords: gas chromatography-mass-spectromrtry, dry extract, flavonoids, Rosa damascena Mill

Procedia PDF Downloads 153
1328 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
1327 Effect of Oil Contamination on the Liquefaction Behavior of Sandy Soils

Authors: Seyed Abolhasan Naeini, Mohammad Mahdi Shojaedin

Abstract:

Oil leakage from the pipelines and the tanks carrying them, or during oil extraction, could lead to the changes in the characteristics and properties of the soil. In this paper, conducting a series of experimental cyclic triaxial tests, the effects of oil contamination on the liquefaction potential of sandy soils is investigated. The studied specimens are prepared by mixing the Firoozkuh sand with crude oil in 4, 8 and 12 percent by soil dry weight. The results show that the oil contamination up to 8% causes an increase in the soil liquefaction resistance and then with increase in the contamination, the liquefaction resistance decreases.

Keywords: cyclic triaxial test, liquefaction resistance, oil contamination, sandy soil

Procedia PDF Downloads 529
1326 Extraction, Isolation and Comparative Phtochemical Study of Aegle Marmelos, Calendula Officinalis and Fenugreek

Authors: Nitin Rajan, Kashif Shakeel, Shashank Tiwari, Shachan Sagar

Abstract:

Background: - Aegle Marmelos (Bael) leaf extract is taken twice daily to treat ophthalmia, ulcers, and intestinal worms, among other ailments. Poultice made from bael leaf is used in the treatment of eye conditions. The leaf juice has a variety of therapeutic applications, with the most notable being the treatment of diabetes. Fenugreek is used to cure red spots around the eyes, as well as to soften the throat and chest and to give relief from coughing. The use of this plant in the form of infusion, powder, pomade, and decoction has been extremely popular in Iranian traditional medicine. The plant may be used to wash one's vaginal linings. This plant is used as an emollient in the lack of appetite, treatment of pellagra, and gastrointestinal problems, as well as a general tonic. Calendula officinalis leaves are used to treat varicose veins on the outside of the body by infusing them. In Europe, the leaves are diaphoretic and resolvent in nature, while the blooms are employed as an emmenagogue and antispasmodic stimulant in Canada and the United States. The flowers were decocted and served as a posset drink when smallpox and measles were common in England, and the fresh juice was used to treat jaundice. Objective: - This study is done to compare the physicochemical parameter of the alcoholic extract of the leaves of Aegle Marmelos, Calendula Officinalis, and Fenugreek. Materials and Methods: Extraction and Isolation of Aegle Marmelos, Calendula Officinalis, Fenugreek, were done. Preliminary phytochemical study for alkaloids, cardiac glycosides, flavonoids, glycosides, phenols, resins, saponins, steroids, tannins, terpenoids of the extract was done individual by using the standard procedure. Result: - The phytochemical screening of Aegle Marmelos, Calendula Officinalis, and Fenugreek shows the presence of alkaloids, carbohydrates, total phenolics, total flavonoids, tannins, saponins gum. Conclusion: - In this study, we have found that crude aqueous and organic solvent extracts of Aegle Marmelos, Calendula Officinalis, and Fenugreek leaves contain some important bioactive compounds and it justifies their use in the traditional medicines for the treatment of different diseases.

Keywords: Aegle Marmelos, Calendula Officinalis, Fenugreek, physiochemical parameter

Procedia PDF Downloads 157
1325 Enhanced Multi-Scale Feature Extraction Using a DCNN by Proposing Dynamic Soft Margin SoftMax for Face Emotion Detection

Authors: Armin Nabaei, M. Omair Ahmad, M. N. S. Swamy

Abstract:

Many facial expression and emotion recognition methods in the traditional approaches of using LDA, PCA, and EBGM have been proposed. In recent years deep learning models have provided a unique platform addressing by automatically extracting the features for the detection of facial expression and emotions. However, deep networks require large training datasets to extract automatic features effectively. In this work, we propose an efficient emotion detection algorithm using face images when only small datasets are available for training. We design a deep network whose feature extraction capability is enhanced by utilizing several parallel modules between the input and output of the network, each focusing on the extraction of different types of coarse features with fined grained details to break the symmetry of produced information. In fact, we leverage long range dependencies, which is one of the main drawback of CNNs. We develop this work by introducing a Dynamic Soft-Margin SoftMax.The conventional SoftMax suffers from reaching to gold labels very soon, which take the model to over-fitting. Because it’s not able to determine adequately discriminant feature vectors for some variant class labels. We reduced the risk of over-fitting by using a dynamic shape of input tensor instead of static in SoftMax layer with specifying a desired Soft- Margin. In fact, it acts as a controller to how hard the model should work to push dissimilar embedding vectors apart. For the proposed Categorical Loss, by the objective of compacting the same class labels and separating different class labels in the normalized log domain.We select penalty for those predictions with high divergence from ground-truth labels.So, we shorten correct feature vectors and enlarge false prediction tensors, it means we assign more weights for those classes with conjunction to each other (namely, “hard labels to learn”). By doing this work, we constrain the model to generate more discriminate feature vectors for variant class labels. Finally, for the proposed optimizer, our focus is on solving weak convergence of Adam optimizer for a non-convex problem. Our noteworthy optimizer is working by an alternative updating gradient procedure with an exponential weighted moving average function for faster convergence and exploiting a weight decay method to help drastically reducing the learning rate near optima to reach the dominant local minimum. We demonstrate the superiority of our proposed work by surpassing the first rank of three widely used Facial Expression Recognition datasets with 93.30% on FER-2013, and 16% improvement compare to the first rank after 10 years, reaching to 90.73% on RAF-DB, and 100% k-fold average accuracy for CK+ dataset, and shown to provide a top performance to that provided by other networks, which require much larger training datasets.

Keywords: computer vision, facial expression recognition, machine learning, algorithms, depp learning, neural networks

Procedia PDF Downloads 75