Search results for: integration step
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5289

Search results for: integration step

4659 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait

Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo

Abstract:

The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.

Keywords: normal gait, loaded gait, impulse, collision, gait analysis, mechanical work, backpack load

Procedia PDF Downloads 281
4658 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 161
4657 Distinguishing Borrowings from Code Mixes: An Analysis of English Lexical Items Used in the Print Media in Sri Lanka

Authors: Chamindi Dilkushi Senaratne

Abstract:

Borrowing is the morphological, syntactic and (usually) phonological integration of lexical items from one language into the structure of another language. Borrowings show complete linguistic integration and due to the frequency of use become fossilized in the recipient language differentiating them from switches and mixes. Code mixes are different to borrowings. Code mixing takes place when speakers use lexical items in casual conversation to serve a variety of functions. This study presents an analysis of lexical items used in English newspapers in Sri Lanka in 2017 which reveal characteristics of borrowing or code mixes. Both phenomena arise due to language contact. The study will also use data from social media websites that comment on newspaper articles available on the web. The study reiterates that borrowings are distinguishable from code mixes and that they are two different phenomena that occur in language contact situations. The study also shows how existing morphological processes are used to create new vocabulary in language use. The study sheds light into how existing morphological processes are used by the bilingual to be creative, innovative and convey a bilingual identity.

Keywords: borrowing, code mixing, morphological processes

Procedia PDF Downloads 211
4656 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: coupled Markov random field (MRF), environment, object-based analysis, polarimetric SAR (PolSAR) images

Procedia PDF Downloads 206
4655 A Study on Application of Elastic Theory for Computing Flexural Stresses in Preflex Beam

Authors: Nasiri Ahmadullah, Shimozato Tetsuhiro, Masayuki Tai

Abstract:

This paper presents the step-by-step procedure for using Elastic Theory to calculate the internal stresses in composite bridge girders prestressed by the Preflexing Technology, called Prebeam in Japan and Preflex beam worldwide. Elastic Theory approaches preflex beams the same way as it does the conventional composite girders. Since preflex beam undergoes different stages of construction, calculations are made using different sectional and material properties. Stresses are calculated in every stage using the properties of the specific section. Stress accumulation gives the available stress in a section of interest. Concrete presence in the section implies prestress loss due to creep and shrinkage, however; more work is required to be done in this field. In addition to the graphical presentation of this application, this paper further discusses important notes of graphical comparison between the results of an experimental-only research carried out on a preflex beam, with the results of simulation based on the elastic theory approach, for an identical beam using Finite Element Modeling (FEM) by the author.

Keywords: composite girder, Elastic Theory, preflex beam, prestressing

Procedia PDF Downloads 268
4654 Predictors of Quality of Life among Older Refugees Aging out of Place

Authors: Jonix Owino, Heather Fuller

Abstract:

Refugees flee from their home countries due to civil unrest, war, persecution and migrate to Western countries such as the United States in search of a safe haven. Transitioning into a new society and culture can be challenging, thereby affecting refugee’s quality of life and well-being in the host communities. Moreover, as individuals age, they experience physical, cognitive and socioemotional changes that may impact their quality of life. However, little is known about the predictors of quality of life among aging refugees. It is not clear how quality of life varies by age, that is, between midlife refugees in comparison to their older counterparts. In addition to age, other sociodemographic factors such as gender, socioeconomic status, or country of origin are likely to have differential associations to quality of life, yet research on such variations among older refugees is sparse. Thus the present study seeks to explore factors associated with quality of life by asking the following research questions: 1) Do sociodemographic factors (such as age and gender) predict quality of life among older refugees, 2) Is there an association between social integration and quality of life, and 3) Is there an association between migratory related experiences (such as post migratory adjustments) and quality of life. The present study recruited 90 refugees (primarily originating from Bhutan, Somalia, Burundi, and Sudan) aged 50 or older living in the US. The participants completed a structured questionnaire which assessed factors such as participant’s sociodemographic attributes (e.g., age, gender, length of residence in the US, country of origin, employment, level of education, and marital status), and validated measures of social integration, post-migration living difficulties, and quality of life. Preliminary results suggest sociodemographic variability in quality of life among these refugees. Further analyses will be conducted using hierarchical regression analyses to address the following hypotheses: first, it is hypothesized that quality of life will vary by age and gender such that younger refugees and men will report higher quality of life. Second, it is expected that refugees with greater levels of social integration will also report better quality of life. Finally, post-migration factors such as language barriers and family stress are hypothesized to predict poorer quality of life. Further results will be analyzed, including potential moderating effects of age and gender, and resulting findings will be interpreted and discussed. The findings from this study have potential implications for communities on how they can better support older refugees as well as develop social programs that can effectively cater to their well-being. Conclusions will be drawn and discussed in light of policies related to both aging and refugee migration within the context of the US.

Keywords: aging out of place, migration, older refugees, quality of life, social integration

Procedia PDF Downloads 92
4653 An Integration of Life Cycle Assessment and Techno-Economic Optimization in the Supply Chains

Authors: Yohanes Kristianto

Abstract:

The objective of this paper is to compose a sustainable supply chain that integrates product, process and networks design. An integrated life cycle assessment and techno-economic optimization is proposed that might deliver more economically feasible operations, minimizes environmental impacts and maximizes social contributions. Closed loop economy of the supply chain is achieved by reusing waste to be raw material of final products. Societal benefit is given by the supply chain by absorbing waste as source of raw material and opening new work opportunities. A case study of ethanol supply chain from rice straws is considered. The modeling results show that optimization within the scope of LCA is capable of minimizing both CO₂ emissions and energy and utility consumptions and thus enhancing raw materials utilization. Furthermore, the supply chain is capable of contributing to local economy through jobs creation. While the model is quite comprehensive, the future research recommendation on energy integration and global sustainability is proposed.

Keywords: life cycle assessment, techno-economic optimization, sustainable supply chains, closed loop economy

Procedia PDF Downloads 140
4652 Aging Time Effect of 58s Microstructure

Authors: Nattawipa Pakasri

Abstract:

58S (60SiO2-36CaO-4P2O5), three-dimensionally ordered macroporous bioactive glasses (3DOM-BGs) were synthesized by the sol-gel method using dual templating methods. non-ionic surfactant Brij56 used as templates component produced mesoporous and the spherical PMMA colloidal crystals as one template component yielded either three-dimensionally ordered microporous products or shaped bioactive glass nanoparticles. The bioactive glass with aging step for 12 h at room temperature, no structure transformation occurred and the 3DOM structure was produced (Figure a) due to no shrinkage process between the aging step. After 48 h time of o 3DOM structure remained and, nanocube with ∼120 nm edge lengths and nanosphere particle with ∼50 nm was obtained (Figure c, d). PMMA packing templates have octahedral and tetrahedral holes to make 2 final shapes of 3DOM-BGs which is rounded and cubic, respectively. The ageing time change from 12h, 24h and 48h affected to the thickness of interconnecting macropores network. The wall thickness was gradually decrease after increase aging time.

Keywords: three-dimensionally ordered macroporous bioactive glasses, sol-gel method, PMMA, bioactive glass

Procedia PDF Downloads 103
4651 Simplified Ultimate Strength Assessment of Ship Structures Based on Biro Klasifikasi Indonesia Rules for Hull

Authors: Sukron Makmun, Topan Firmandha, Siswanto

Abstract:

Ultimate Strength Assessment on ship cross section in accordance with Biro Klasifikasi Indonesia (BKI) Rules for Hull, follows step by step incremental iterative approach. In this approach, ship cross section is divided into plate-stiffener combinations and hard corners element. The average stress-strain relationship (σ-ε) for all structural elements will be defined, where the subscript k refers to the modes 0, 1, 2, 3 or 4. These results would be verified with a commercial software calculation in similar cases. The numerical calculations of buckling strength are in accordance with the commercial software (GL Rules ND). Then the comparison of failure behaviours of stiffened panels and hard corners are presented. Where failure modes 3 are likely to occur first follows the failure mode 4 and the last one is the failure mode 1.

Keywords: ultimate strength assessment, BKI rules, incremental, plate-stiffener combination and hard corner, commercial software

Procedia PDF Downloads 352
4650 Integration of Ukrainian Refugee Athletes Into the Olympic Channel of Their Neighboring Countries

Authors: Gheorghe Braniste

Abstract:

It is a matter of common knowledge the fact that the International Olympic Movement is characterized by dynamism and adaptability to the challenges of modern society. A significant proof of this is the establishment of the IOC Refugee Olympic Team in 2016, at the Olympic Games in Rio de Janeiro, a practice continued in Tokyo in 2020 and with a great chance to be successfully repeated in subsequent editions: Paris 2024 and Dakar 2026. This phenomenon is all the more welcome as, after the global refugee crisis of 2015, when the whole world has seen millions of people in the world displaced, we are now experiencing the negative effects of the war that started in February 2022 in Ukraine; which caused the exodus of the population to neighboring countries. Therefore, the international Olympic community must decide how to integrate Ukrainian athletes with refugee status into the Olympic system. Until the establishment of an internationally agreed policy, Romania and the Republic of Moldova, as countries directly involved in this process, must find urgent solutions to allow athletes to continue their Olympic careers. This article proposes a description of the strategies adopted both at the national level and at the level of sports clubs and an analysis of their impact on the performance of athletes.

Keywords: olympic movement, olympic games, refugees, performance, integration

Procedia PDF Downloads 127
4649 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 62
4648 The Biomechanical Assessment of Balance and Gait for Stroke Patients and the Implications in the Diagnosis and Rehabilitation

Authors: A. Alzahrani, G. Arnold, W. Wang

Abstract:

Background: Stroke commonly occurs in middle-aged and elderly populations, and the diagnosis of early stroke is still difficult. Patients who have suffered a stroke have different balance and gait patterns from healthy people. Advanced techniques of motion analysis have been routinely used in the clinical assessment of cerebral palsy. However, so far, little research has been done on the direct diagnosis of early stroke patients using motion analysis. Objectives: The aim of this study was to investigate whether patients with stroke have different balance and gait from healthy people and which biomechanical parameters could be used to predict and diagnose potential patients who are at a potential risk to stroke. Methods: Thirteen patients with stroke were recruited as subjects whose gait and balance was analysed. Twenty normal subjects at the matched age participated in this study as a control group. All subjects’ gait and balance were collected using Vicon Nexus® to obtain the gait parameters, kinetic, and kinematic parameters of the hip, knee, and ankle joints in three planes of both limbs. Participants stood on force platforms to perform a single leg balance test. Then, they were asked to walk along a 10 m walkway at their comfortable speed. Participants performed 6 trials of single-leg balance for each side and 10 trials of walking. From the recorded trials, three good ones were analysed using the Vicon Plug-in-Gait model to obtain gait parameters, e.g., walking speed, cadence, stride length, and joint parameters, e.g., joint angle, force, moments, etc. Result: The temporal-spatial variables of Stroke subjects were compared with the healthy subjects; it was found that there was a significant difference (p < 0.05) between the groups. The step length, speed, cadence were lower in stroke subjects as compared to the healthy groups. The stroke patients group showed significantly decreased in gait speed (mean and SD: 0.85 ± 0.33 m/s), cadence ( 96.71 ± 16.14 step/min), and step length (0.509 ± 017 m) in compared to healthy people group whereas the gait speed was 1.2 ± 0.11 m/s, cadence 112 ± 8.33 step/min, and step length 0.648 ± 0.43 m. Moreover, it was observed that patients with stroke have significant differences in the ankle, hip, and knee joints’ kinematics in the sagittal and coronal planes. Also, the result showed that there was a significant difference between groups in the single-leg balance test, e.g., maintaining single-leg stance time in the stroke patients showed shorter duration (5.97 ± 6.36 s) in compared to healthy people group (14.36 ± 10.20 s). Conclusion: Our result showed that there are significantly differences between stroke patients and healthy subjects in the various aspects of gait analysis and balance test, as a consequences of these findings some of the biomechanical parameters such as joints kinematics, gait parameters, and single-leg stance balance test could be used in clinical practice to predict and diagnose potential patients who are at a high risk of further stroke.

Keywords: gait analysis, kinetics, kinematics, single-leg stance, Stroke

Procedia PDF Downloads 132
4647 Investigation of Different Conditions to Detect Cycles in Linearly Implicit Quantized State Systems

Authors: Elmongi Elbellili, Ben Lauwens, Daan Huybrechs

Abstract:

The increasing complexity of modern engineering systems presents a challenge to the digital simulation of these systems which usually can be represented by differential equations. The Linearly Implicit Quantized State System (LIQSS) offers an alternative approach to traditional numerical integration techniques for solving Ordinary Differential Equations (ODEs). This method proved effective for handling discontinuous and large stiff systems. However, the inherent discrete nature of LIQSS may introduce oscillations that result in unnecessary computational steps. The current oscillation detection mechanism relies on a condition that checks the significance of the derivatives, but it could be further improved. This paper describes a different cycle detection mechanism and presents the outcomes using LIQSS order one in simulating the Advection Diffusion problem. The efficiency of this new cycle detection mechanism is verified by comparing the performance of the current solver against the new version as well as a reference solution using a Runge-Kutta method of order14.

Keywords: numerical integration, quantized state systems, ordinary differential equations, stiffness, cycle detection, simulation

Procedia PDF Downloads 44
4646 The Effect of Physical Biorhythm Cycle on Health-Related Fitness Factors

Authors: Leyli Khavari, Javad Yousefian

Abstract:

The aim of this study was to investigate the effect of physical biorhythm cycle on health-related fitness factors. For this purpose, 120 athlete and non-athlete male and female students were selected randomly and based on the level of physical activity divided into athletic and non-athletic groups. The exact date of birth and also when the subjects were in the positive, negative and critical physical biorhythm cycle was determined by calculation software biorhythm. The physical fitness factors tests, including Queens College Step Test, AAHPERD sit-ups; Wells stretch test and hand dynamometer. Students in three stages in positive, negative and critical physical cycle were tested. Data processing using SPSS software and statistical tests ANOVA with repeated measures and student t test was used for dependent. The results of this study showed that changes in physical fitness and physical biorhythm were not affected by changes in the 23-day physical cycle.

Keywords: AAHPERD test, biorhythm, physical cycle, Queens College Step Test

Procedia PDF Downloads 165
4645 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 40
4644 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations

Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami

Abstract:

The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.

Keywords: healthcare supply chain, performance, electronic system, ERP

Procedia PDF Downloads 127
4643 A Study of Learning to Enhance Ability Career Skills Consistent With Disruptive Innovation in Creative Strategies for Advertising Course

Authors: Kornchanok Chidchaisuwan

Abstract:

This project is a study of learning activities through experience to enhance career skills and technical abilities on the creative strategies for advertising course of undergraduate students. This instructional model consisted of study learning approaches: 1) Simulation-based learning: used to create virtual learning activities plans for work like working at advertising companies. 2) Project-based learning: Actual work based on the processed creating and focus on producing creative works to present on new media channels. The results of learning management found that there were effects on the students in various areas, including 1) The learners have experienced in the step by step of advertising work process. 2) The learner has the skills to work from the actual work (Learning by Doing), allowing the ability to create, present, and produce the campaign accomplished achievements and published on online media at a better level.

Keywords: technical, advertising, presentation, career skills, experience, simulation based learning

Procedia PDF Downloads 85
4642 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 125
4641 Deficient Multisensory Integration with Concomitant Resting-State Connectivity in Adult Attention Deficit/Hyperactivity Disorder (ADHD)

Authors: Marcel Schulze, Behrem Aslan, Silke Lux, Alexandra Philipsen

Abstract:

Objective: Patients with Attention Deficit/Hyperactivity Disorder (ADHD) often report that they are being flooded by sensory impressions. Studies investigating sensory processing show hypersensitivity for sensory inputs across the senses in children and adults with ADHD. Especially the auditory modality is affected by deficient acoustical inhibition and modulation of signals. While studying unimodal signal-processing is relevant and well-suited in a controlled laboratory environment, everyday life situations occur multimodal. A complex interplay of the senses is necessary to form a unified percept. In order to achieve this, the unimodal sensory modalities are bound together in a process called multisensory integration (MI). In the current study we investigate MI in an adult ADHD sample using the McGurk-effect – a well-known illusion where incongruent speech like phonemes lead in case of successful integration to a new perceived phoneme via late top-down attentional allocation . In ADHD neuronal dysregulation at rest e.g., aberrant within or between network functional connectivity may also account for difficulties in integrating across the senses. Therefore, the current study includes resting-state functional connectivity to investigate a possible relation of deficient network connectivity and the ability of stimulus integration. Method: Twenty-five ADHD patients (6 females, age: 30.08 (SD:9,3) years) and twenty-four healthy controls (9 females; age: 26.88 (SD: 6.3) years) were recruited. MI was examined using the McGurk effect, where - in case of successful MI - incongruent speech-like phonemes between visual and auditory modality are leading to a perception of a new phoneme. Mann-Whitney-U test was applied to assess statistical differences between groups. Echo-planar imaging-resting-state functional MRI was acquired on a 3.0 Tesla Siemens Magnetom MR scanner. A seed-to-voxel analysis was realized using the CONN toolbox. Results: Susceptibility to McGurk was significantly lowered for ADHD patients (ADHDMdn:5.83%, ControlsMdn:44.2%, U= 160.5, p=0.022, r=-0.34). When ADHD patients integrated phonemes, reaction times were significantly longer (ADHDMdn:1260ms, ControlsMdn:582ms, U=41.0, p<.000, r= -0.56). In functional connectivity medio temporal gyrus (seed) was negatively associated with primary auditory cortex, inferior frontal gyrus, precentral gyrus, and fusiform gyrus. Conclusion: MI seems to be deficient for ADHD patients for stimuli that need top-down attentional allocation. This finding is supported by stronger functional connectivity from unimodal sensory areas to polymodal, MI convergence zones for complex stimuli in ADHD patients.

Keywords: attention-deficit hyperactivity disorder, audiovisual integration, McGurk-effect, resting-state functional connectivity

Procedia PDF Downloads 118
4640 A Review of Critical Thinking Formative Assessment Framework: Coping with Teachers Resistance to Critical Pedagogy

Authors: Chenhui Wang, Chwee Beng Lee

Abstract:

The practice of critical pedagogy is challenged by resistance from teachers. This study presents a discussion on teachers' resistance to critical pedagogy and previous practical frameworks for assessing critical thinking in formative assessment in the classroom through a critical review of the related literature. The authors found out that the main issue of teachers' resistance is not whether teachers should possess theoretical knowledge of critical thinking but how they apply that knowledge in their classroom teaching. In addition, critical thinking in formative assessment may provide teachers with a comprehensive understanding of critical pedagogical planning, implementing, and reflecting. Therefore, this paper intends to discuss a practical step-by-step framework for critical thinking formative assessment to address this resistance. Such discussion is based on a thorough examination of the related theories and frameworks. This review paper will benefit teachers in understanding and reducing their resistance to critical pedagogy as well as in implementing critical pedagogy.

Keywords: critical thinking, critical pedagogy, critical thinking formative assessment framework, teachers resistance

Procedia PDF Downloads 99
4639 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 190
4638 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 135
4637 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites

Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga

Abstract:

The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.

Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering

Procedia PDF Downloads 310
4636 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 312
4635 Model of Transhipment and Routing Applied to the Cargo Sector in Small and Medium Enterprises of Bogotá, Colombia

Authors: Oscar Javier Herrera Ochoa, Ivan Dario Romero Fonseca

Abstract:

This paper presents a design of a model for planning the distribution logistics operation. The significance of this work relies on the applicability of this fact to the analysis of small and medium enterprises (SMEs) of dry freight in Bogotá. Two stages constitute this implementation: the first one is the place where optimal planning is achieved through a hybrid model developed with mixed integer programming, which considers the transhipment operation based on a combined load allocation model as a classic transshipment model; the second one is the specific routing of that operation through the heuristics of Clark and Wright. As a result, an integral model is obtained to carry out the step by step planning of the distribution of dry freight for SMEs in Bogotá. In this manner, optimum assignments are established by utilizing transshipment centers with that purpose of determining the specific routing based on the shortest distance traveled.

Keywords: transshipment model, mixed integer programming, saving algorithm, dry freight transportation

Procedia PDF Downloads 212
4634 Verification of Space System Dynamics Using the MATLAB Identification Toolbox in Space Qualification Test

Authors: Yuri V. Kim

Abstract:

This article presents a new approach to the Functional Testing of Space Systems (SS). It can be considered as a generic test and used for a wide class of SS that from the point of view of System Dynamics and Control may be described by the ordinary differential equations. Suggested methodology is based on using semi-natural experiment- laboratory stand that doesn’t require complicated, precise and expensive technological control-verification equipment. However, it allows for testing system as a whole totally assembled unit during Assembling, Integration and Testing (AIT) activities, involving system hardware (HW) and software (SW). The test physically activates system input (sensors) and output (actuators) and requires recording their outputs in real time. The data is then inserted in laboratory PC where it is post-experiment processed by Matlab/Simulink Identification Toolbox. It allows for estimating system dynamics in form of estimation of system differential equations by the experimental way and comparing them with expected mathematical model prematurely verified by mathematical simulation during the design process.

Keywords: system dynamics, space system ground tests and space qualification, system dynamics identification, satellite attitude control, assembling, integration and testing

Procedia PDF Downloads 151
4633 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming

Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar

Abstract:

H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.

Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production

Procedia PDF Downloads 83
4632 Extension of the Simplified Theory of Plastic Zones for Analyzing Elastic Shakedown in a Multi-Dimensional Load Domain

Authors: Bastian Vollrath, Hartwig Hubel

Abstract:

In case of over-elastic and cyclic loading, strain may accumulate due to a ratcheting mechanism until the state of shakedown is possibly achieved. Load history dependent numerical investigations by a step-by-step analysis are rather costly in terms of engineering time and numerical effort. In the case of multi-parameter loading, where various independent loadings affect the final state of shakedown, the computational effort becomes an additional challenge. Therefore, direct methods like the Simplified Theory of Plastic Zones (STPZ) are developed to solve the problem with a few linear elastic analyses. Post-shakedown quantities such as strain ranges and cyclic accumulated strains are calculated approximately by disregarding the load history. The STPZ is based on estimates of a transformed internal variable, which can be used to perform modified elastic analyses, where the elastic material parameters are modified, and initial strains are applied as modified loading, resulting in residual stresses and strains. The STPZ already turned out to work well with respect to cyclic loading between two states of loading. Usually, few linear elastic analyses are sufficient to obtain a good approximation to the post-shakedown quantities. In a multi-dimensional load domain, the approximation of the transformed internal variable transforms from a plane problem into a hyperspace problem, where time-consuming approximation methods need to be applied. Therefore, a solution restricted to structures with four stress components was developed to estimate the transformed internal variable by means of three-dimensional vector algebra. This paper presents the extension to cyclic multi-parameter loading so that an unlimited number of load cases can be taken into account. The theoretical basis and basic presumptions of the Simplified Theory of Plastic Zones are outlined for the case of elastic shakedown. The extension of the method to many load cases is explained, and a workflow of the procedure is illustrated. An example, adopting the FE-implementation of the method into ANSYS and considering multilinear hardening is given which highlights the advantages of the method compared to incremental, step-by-step analysis.

Keywords: cyclic loading, direct method, elastic shakedown, multi-parameter loading, STPZ

Procedia PDF Downloads 152
4631 Optimal Sizes of Battery Energy Storage Systems for Economic Operation in Microgrid

Authors: Sirus Mohammadi, Sara Ansari, Darush dehghan, Habib Hoshyari

Abstract:

Batteries for storage of electricity from solar and wind generation farms are a key element in the success of sustainability. In recent years, due to large integration of Renewable Energy Sources (RESs) like wind turbine and photovoltaic unit into the Micro-Grid (MG), the necessity of Battery Energy Storage (BES) has increased dramatically. The BES has several benefits and advantages in the MG-based applications such as short term power supply, power quality improvement, facilitating integration of RES, ancillary service and arbitrage. This paper presents the cost-based formulation to determine the optimal size of the BES in the operation management of MG. Also, some restrictions, i.e. power capacity of Distributed Generators (DGs), power and energy capacity of BES, charge/discharge efficiency of BES, operating reserve and load demand satisfaction should be considered as well. In this paper, a methodology is proposed for the optimal allocation and economic analysis of ESS in MGs on the basis of net present value (NPV). As the optimal operation of an MG strongly depends on the arrangement and allocation of its ESS, economic operation strategies and optimal allocation methods of the ESS devices are required for the MG.

Keywords: microgrid, energy storage system, optimal sizing, net present value

Procedia PDF Downloads 484
4630 Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System

Authors: Mengmeng Du, Noboru Noguchi, Hiroshi Okamoto, Noriko Kobayashi

Abstract:

This paper introduced a topographic mapping system with time-saving and simplicity advantages based on integration of Light Detection and Ranging (LiDAR) data and Post Processing Kinematic Global Positioning System (PPK GPS) data. This topographic mapping system used a low-altitude Unmanned Aerial Vehicle (UAV) as a platform to conduct land survey in a low-cost, efficient, and totally autonomous manner. An experiment in a small-scale sugarcane farmland was conducted in Queensland, Australia. Subsequently, we synchronized LiDAR distance measurements that were corrected by using attitude information from gyroscope with PPK GPS coordinates for generation of precision topographic maps, which could be further utilized for such applications like precise land leveling and drainage management. The results indicated that LiDAR distance measurements and PPK GPS altitude reached good accuracy of less than 0.015 m.

Keywords: land survey, light detection and ranging, post processing kinematic global positioning system, precision agriculture, topographic map, unmanned aerial vehicle

Procedia PDF Downloads 221