Search results for: inference fuzzy system
17465 Using the Bootstrap for Problems Statistics
Authors: Brahim Boukabcha, Amar Rebbouh
Abstract:
The bootstrap method based on the idea of exploiting all the information provided by the initial sample, allows us to study the properties of estimators. In this article we will present a theoretical study on the different methods of bootstrapping and using the technique of re-sampling in statistics inference to calculate the standard error of means of an estimator and determining a confidence interval for an estimated parameter. We apply these methods tested in the regression models and Pareto model, giving the best approximations.Keywords: bootstrap, error standard, bias, jackknife, mean, median, variance, confidence interval, regression models
Procedia PDF Downloads 38017464 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering
Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher
Abstract:
Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing
Procedia PDF Downloads 16917463 The Development of Leisure and Endowment Characteristic Villages in the Perspective of Balancing the Dwellers and Aged Visitors:A Case Study of Villages in Hangzhou Metropolitan Area
Authors: Zijiao Chai, Wangming Li
Abstract:
Under the background of increasing aging population, the situation of city endowment resources shortage gradually revealed. And many villages in the metropolitan area with the good natural ecological environment and leisure tourism base, have become one of the main destinations of urban old people for the off-site pension. This paper is based on a survey of more than ten villages which are characterized by leisure and endowment in Hangzhou metropolitan area, China. The satisfaction degree of the two main groups in the villages, dwellers, and aged visitors, is researched using the method of fuzzy comprehensive evaluation. The statistics are obtained from 535 questionnaires and qualitative interview. According to the satisfaction scores, it could be determined whether the dwellers and aged visitors have reached the equilibrium state. The equilibrium state is the development target of the villages, and it`s defined by environmentally friendly, proper for employment and pension, facilities sharing and harmonious life for each other. Furthermore, this paper comes up with some planning countermeasures in order to avoid "imbalance between dwellers and aged visitors" and obtain sustainable development while maintaining the economic benefit.Keywords: aged visitors, balance between dwellers and aged visitors, dwellers, fuzzy comprehensive evaluation, Hangzhou metropolitan area, leisure and endowment characteristic villages
Procedia PDF Downloads 28917462 Research on the Ecological Impact Evaluation Index System of Transportation Construction Projects
Authors: Yu Chen, Xiaoguang Yang, Lin Lin
Abstract:
Traffic engineering construction is an important infrastructure for economic and social development. In the process of construction and operation, the ability to make a correct evaluation of the project's environmental impact appears to be crucial to the rational operation of existing transportation projects, the correct development of transportation engineering construction and the adoption of corresponding measures to scientifically carry out environmental protection work. Most of the existing research work on ecological and environmental impact assessment is limited to individual aspects of the environment and less to the overall evaluation of the environmental system; in terms of research conclusions, there are more qualitative analyses from the technical and policy levels, and there is a lack of quantitative research results and quantitative and operable evaluation models. In this paper, a comprehensive analysis of the ecological and environmental impacts of transportation construction projects is conducted, and factors such as the accessibility of data and the reliability of calculation results are comprehensively considered to extract indicators that can reflect the essence and characteristics. The qualitative evaluation indicators were screened using the expert review method, the qualitative indicators were measured using the fuzzy statistics method, the quantitative indicators were screened using the principal component analysis method, and the quantitative indicators were measured by both literature search and calculation. An environmental impact evaluation index system with the general objective layer, sub-objective layer and indicator layer was established, dividing the environmental impact of the transportation construction project into two periods: the construction period and the operation period. On the basis of the evaluation index system, the index weights are determined using the hierarchical analysis method, and the individual indicators to be evaluated are dimensionless, eliminating the influence of the original background and meaning of the indicators. Finally, the thesis uses the above research results, combined with the actual engineering practice, to verify the correctness and operability of the evaluation method.Keywords: transportation construction projects, ecological and environmental impact, analysis and evaluation, indicator evaluation system
Procedia PDF Downloads 10517461 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates
Authors: Serge B. Provost
Abstract:
Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.Keywords: density estimation, log-density, polynomial adjustments, sample moments
Procedia PDF Downloads 16517460 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System
Authors: Shiyun Liu
Abstract:
Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.Keywords: radiant floor, all-air system, thermal comfort, simulation, heating system
Procedia PDF Downloads 16517459 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening
Authors: Partha Saha, Uttam Kumar Banerjee
Abstract:
Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries
Procedia PDF Downloads 25817458 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 5717457 A Comparison of South East Asian Face Emotion Classification based on Optimized Ellipse Data Using Clustering Technique
Authors: M. Karthigayan, M. Rizon, Sazali Yaacob, R. Nagarajan, M. Muthukumaran, Thinaharan Ramachandran, Sargunam Thirugnanam
Abstract:
In this paper, using a set of irregular and regular ellipse fitting equations using Genetic algorithm (GA) are applied to the lip and eye features to classify the human emotions. Two South East Asian (SEA) faces are considered in this work for the emotion classification. There are six emotions and one neutral are considered as the output. Each subject shows unique characteristic of the lip and eye features for various emotions. GA is adopted to optimize irregular ellipse characteristics of the lip and eye features in each emotion. That is, the top portion of lip configuration is a part of one ellipse and the bottom of different ellipse. Two ellipse based fitness equations are proposed for the lip configuration and relevant parameters that define the emotions are listed. The GA method has achieved reasonably successful classification of emotion. In some emotions classification, optimized data values of one emotion are messed or overlapped to other emotion ranges. In order to overcome the overlapping problem between the emotion optimized values and at the same time to improve the classification, a fuzzy clustering method (FCM) of approach has been implemented to offer better classification. The GA-FCM approach offers a reasonably good classification within the ranges of clusters and it had been proven by applying to two SEA subjects and have improved the classification rate.Keywords: ellipse fitness function, genetic algorithm, emotion recognition, fuzzy clustering
Procedia PDF Downloads 54617456 Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect
Authors: Ahmad Abdul-Razzak Aboudi Al-Issa
Abstract:
Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design.Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system
Procedia PDF Downloads 44517455 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 5917454 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features
Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari
Abstract:
An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)
Procedia PDF Downloads 44617453 Parametric Inference of Elliptical and Archimedean Family of Copulas
Authors: Alam Ali, Ashok Kumar Pathak
Abstract:
Nowadays, copulas have attracted significant attention for modeling multivariate observations, and the foremost feature of copula functions is that they give us the liberty to study the univariate marginal distributions and their joint behavior separately. The copula parameter apprehends the intrinsic dependence among the marginal variables, and it can be estimated using parametric, semiparametric, or nonparametric techniques. This work aims to compare the coverage rates between an Elliptical and an Archimedean family of copulas via a fully parametric estimation technique.Keywords: elliptical copula, archimedean copula, estimation, coverage rate
Procedia PDF Downloads 6417452 Cognitive Footprints: Analytical and Predictive Paradigm for Digital Learning
Authors: Marina Vicario, Amadeo Argüelles, Pilar Gómez, Carlos Hernández
Abstract:
In this paper, the Computer Research Network of the National Polytechnic Institute of Mexico proposes a paradigmatic model for the inference of cognitive patterns in digital learning systems. This model leads to metadata architecture useful for analysis and prediction in online learning systems; especially on MOOc's architectures. The model is in the design phase and expects to be tested through an institutional of courses project which is going to develop for the MOOc.Keywords: cognitive footprints, learning analytics, predictive learning, digital learning, educational computing, educational informatics
Procedia PDF Downloads 47717451 Ischemic Stroke Detection in Computed Tomography Examinations
Authors: Allan F. F. Alves, Fernando A. Bacchim Neto, Guilherme Giacomini, Marcela de Oliveira, Ana L. M. Pavan, Maria E. D. Rosa, Diana R. Pina
Abstract:
Stroke is a worldwide concern, only in Brazil it accounts for 10% of all registered deaths. There are 2 stroke types, ischemic (87%) and hemorrhagic (13%). Early diagnosis is essential to avoid irreversible cerebral damage. Non-enhanced computed tomography (NECT) is one of the main diagnostic techniques used due to its wide availability and rapid diagnosis. Detection depends on the size and severity of lesions and the time spent between the first symptoms and examination. The Alberta Stroke Program Early CT Score (ASPECTS) is a subjective method that increases the detection rate. The aim of this work was to implement an image segmentation system to enhance ischemic stroke and to quantify the area of ischemic and hemorrhagic stroke lesions in CT scans. We evaluated 10 patients with NECT examinations diagnosed with ischemic stroke. Analyzes were performed in two axial slices, one at the level of the thalamus and basal ganglion and one adjacent to the top edge of the ganglionic structures with window width between 80 and 100 Hounsfield Units. We used different image processing techniques such as morphological filters, discrete wavelet transform and Fuzzy C-means clustering. Subjective analyzes were performed by a neuroradiologist according to the ASPECTS scale to quantify ischemic areas in the middle cerebral artery region. These subjective analysis results were compared with objective analyzes performed by the computational algorithm. Preliminary results indicate that the morphological filters actually improve the ischemic areas for subjective evaluations. The comparison in area of the ischemic region contoured by the neuroradiologist and the defined area by computational algorithm showed no deviations greater than 12% in any of the 10 examination tests. Although there is a tendency that the areas contoured by the neuroradiologist are smaller than those obtained by the algorithm. These results show the importance of a computer aided diagnosis software to assist neuroradiology decisions, especially in critical situations as the choice of treatment for ischemic stroke.Keywords: ischemic stroke, image processing, CT scans, Fuzzy C-means
Procedia PDF Downloads 36617450 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: system set-up, near field communication, smartphone, android
Procedia PDF Downloads 33617449 Corrosion Interaction Between Steel and Acid Mine Drainage: Use of AI Based on Fuzzy Logic
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured, and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics.Keywords: acid mine drainage, artificial intelligence, carbon steel, corrosion, fuzzy logic
Procedia PDF Downloads 717448 Remote Assessment and Change Detection of GreenLAI of Cotton Crop Using Different Vegetation Indices
Authors: Ganesh B. Shinde, Vijaya B. Musande
Abstract:
Cotton crop identification based on the timely information has significant advantage to the different implications of food, economic and environment. Due to the significant advantages, the accurate detection of cotton crop regions using supervised learning procedure is challenging problem in remote sensing. Here, classifiers on the direct image are played a major role but the results are not much satisfactorily. In order to further improve the effectiveness, variety of vegetation indices are proposed in the literature. But, recently, the major challenge is to find the better vegetation indices for the cotton crop identification through the proposed methodology. Accordingly, fuzzy c-means clustering is combined with neural network algorithm, trained by Levenberg-Marquardt for cotton crop classification. To experiment the proposed method, five LISS-III satellite images was taken and the experimentation was done with six vegetation indices such as Simple Ratio, Normalized Difference Vegetation Index, Enhanced Vegetation Index, Green Atmospherically Resistant Vegetation Index, Wide-Dynamic Range Vegetation Index, Green Chlorophyll Index. Along with these indices, Green Leaf Area Index is also considered for investigation. From the research outcome, Green Atmospherically Resistant Vegetation Index outperformed with all other indices by reaching the average accuracy value of 95.21%.Keywords: Fuzzy C-Means clustering (FCM), neural network, Levenberg-Marquardt (LM) algorithm, vegetation indices
Procedia PDF Downloads 31817447 A Framework for the Evaluation of Infrastructures’ Serviceability
Authors: Kyonghoon Kim, Wonyoung Park, Taeil Park
Abstract:
In 1994, Korea experienced a national tragedy of Seongsu Bridge collapse. The accident was severe enough to alert governmental officers to the problem of existing management policy for national infrastructures. As a result, government legislated the ‘Guidelines for the safety inspection and test of infrastructure’ which have been utilized as the primary tool to make decision for the maintenance and rehabilitation of infrastructure for last twenty years. Although it is clear that the guideline established a basics how to evaluate and manage the condition of infrastructures in systematic manner, it is equally clear that the guideline needs improvements in order to obtain reasonable investment decisions for budget allocation. Because its inspection and evaluation procedures mainly focused on the structural condition of infrastructures, it was hard to make decision when the infrastructures were in same level of structural condition. In addition, it did not properly reflect various aspects of infrastructures such as performance, public demand, capacity, etc., which were more valuable to public. Regardless of the importance, these factors were commonly neglected in governmental decision-making process, because there factors were somewhat subjective and difficult to quantify in rational manner. Thus, this study proposes a framework to properly evaluate the serviceability indicators using AHP and Fuzzy approach. The framework is expected to assist governmental agency in establishing effective investment strategies for budget planning.Keywords: infrastructure, evaluation, serviceability, fuzzy
Procedia PDF Downloads 28617446 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory
Authors: Chiung-Hui Chen
Abstract:
The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object
Procedia PDF Downloads 23317445 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference
Authors: Hussein Alahmer, Amr Ahmed
Abstract:
Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation
Procedia PDF Downloads 32517444 The Problem of Now in Special Relativity Theory
Authors: Mogens Frank Mikkelsen
Abstract:
Special Relativity Theory (SRT) includes only one characteristic of light, the speed is equal to all observers, and by excluding other relevant characteristics of light, the common interpretation of SRT should be regarded as merely an approximative theory. By rethinking the iconic double light cones, a revised version of SRT can be developed. The revised concept of light cones acknowledges an asymmetry of past and future light cones and introduced a concept of the extended past to explain the predictions as something other than the future. Combining this with the concept of photon-paired events, led to the inference that Special Relativity theory can support the existence of Now.Keywords: relativity, light cone, Minkowski, time
Procedia PDF Downloads 8417443 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.Keywords: distributed generation, distribution network, radial network, wind turbine generating system
Procedia PDF Downloads 40517442 A New Optimization Algorithm for Operation of a Microgrid
Authors: Sirus Mohammadi, Rohala Moghimi
Abstract:
The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)
Procedia PDF Downloads 34117441 Criticality Assessment Model for Water Pipelines Using Fuzzy Analytical Network Process
Abstract:
Water networks (WNs) are responsible of providing adequate amounts of safe, high quality, water to the public. As other critical infrastructure systems, WNs are subjected to deterioration which increases the number of breaks and leaks and lower water quality. In Canada, 35% of water assets require critical attention and there is a significant gap between the needed and the implemented investments. Thus, the need for efficient rehabilitation programs is becoming more urgent given the paradigm of aging infrastructure and tight budget. The first step towards developing such programs is to formulate a Performance Index that reflects the current condition of water assets along with its criticality. While numerous studies in the literature have focused on various aspects of condition assessment and reliability, limited efforts have investigated the criticality of such components. Critical water mains are those whose failure cause significant economic, environmental or social impacts on a community. Inclusion of criticality in computing the performance index will serve as a prioritizing tool for the optimum allocating of the available resources and budget. In this study, several social, economic, and environmental factors that dictate the criticality of a water pipelines have been elicited from analyzing the literature. Expert opinions were sought to provide pairwise comparisons of the importance of such factors. Subsequently, Fuzzy Logic along with Analytical Network Process (ANP) was utilized to calculate the weights of several criteria factors. Multi Attribute Utility Theories (MAUT) was then employed to integrate the aforementioned weights with the attribute values of several pipelines in Montreal WN. The result is a criticality index, 0-1, that quantifies the severity of the consequence of failure of each pipeline. A novel contribution of this approach is that it accounts for both the interdependency between criteria factors as well as the inherited uncertainties in calculating the criticality. The practical value of the current study is represented by the automated tool, Excel-MATLAB, which can be used by the utility managers and decision makers in planning for future maintenance and rehabilitation activities where high-level efficiency in use of materials and time resources is required.Keywords: water networks, criticality assessment, asset management, fuzzy analytical network process
Procedia PDF Downloads 14717440 On Coverage Probability of Confidence Intervals for the Normal Mean with Known Coefficient of Variation
Authors: Suparat Niwitpong, Sa-aat Niwitpong
Abstract:
Statistical inference of normal mean with known coefficient of variation has been investigated recently. This phenomenon occurs normally in environment and agriculture experiments when the scientist knows the coefficient of variation of their experiments. In this paper, we constructed new confidence intervals for the normal population mean with known coefficient of variation. We also derived analytic expressions for the coverage probability of each confidence interval. To confirm our theoretical results, Monte Carlo simulation will be used to assess the performance of these intervals based on their coverage probabilities.Keywords: confidence interval, coverage probability, expected length, known coefficient of variation
Procedia PDF Downloads 39217439 Way to Successful Enterprise Resource Planning System Implementation in Developing Countries: Case of Public Sector Unit
Authors: Suraj Kumar Mukti
Abstract:
Enterprise Resource Planning (ERP) system is a management tool to integrate all departments in an organization. It integrates business processes, manages resources efficiently and provides an appropriate decision support system to management. ERP system implementation is a typical and time taking process as well as money consuming process. Articles related to key success factors of ERP system implementation are available in the literature, but rare authors have focused on roadmap of successful ERP system implementation. Postponement is better if the organization is not ready to implement ERP system in better way; hence checking of organization’s preparation to adopt new system is an important prerequisite to ensure the success of ERP system implementation in an organization. Then comes what will be called as success of ERP system implementation. Benefits achieved by ERP system may be categorized into two categories; viz. tangible and intangible benefits. This research article presents a roadmap to ensure the success of ERP system implementation and benefits achieved through the new system as in success indicator. A case study is presented to evaluate the success and benefit achieved through the new system. The article gives a comprehensive approach to academicians and a roadmap to the organizations seeking to implement the ERP system.Keywords: ERP system, decision support system, tangible, intangible
Procedia PDF Downloads 33217438 An Ontology-Based Framework to Support Asset Integrity Modeling: Case Study of Offshore Riser Integrity
Authors: Mohammad Sheikhalishahi, Vahid Ebrahimipour, Amir Hossein Radman-Kian
Abstract:
This paper proposes an Ontology framework for knowledge modeling and representation of the equipment integrity process in a typical oil and gas production plant. Our aim is to construct a knowledge modeling that facilitates translation, interpretation, and conversion of human-readable integrity interpretation into computer-readable representation. The framework provides a function structure related to fault propagation using ISO 14224 and ISO 15926 OWL-Lite/ Resource Description Framework (RDF) to obtain a generic system-level model of asset integrity that can be utilized in the integrity engineering process during the equipment life cycle. It employs standard terminology developed by ISO 15926 and ISO 14224 to map textual descriptions of equipment failure and then convert it to a causality-driven logic by semantic interpretation and computer-based representation using Lite/RDF. The framework applied for an offshore gas riser. The result shows that the approach can cross-link the failure-related integrity words and domain-specific logic to obtain a representation structure of equipment integrity with causality inference based on semantic extraction of inspection report context.Keywords: asset integrity modeling, interoperability, OWL, RDF/XML
Procedia PDF Downloads 18717437 Synergy and Complementarity in Technology-Intensive Manufacturing Networks
Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang
Abstract:
This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.Keywords: city system, complementarity, synergy network, higher-order network
Procedia PDF Downloads 4317436 Fuzzy Set Qualitative Comparative Analysis in Business Models' Study
Authors: K. Debkowska
Abstract:
The aim of this article is presenting the possibilities of using Fuzzy Set Qualitative Comparative Analysis (fsQCA) in researches concerning business models of enterprises. FsQCA is a bridge between quantitative and qualitative researches. It's potential can be used in analysis and evaluation of business models. The article presents the results of a study conducted on the basis of enterprises belonging to different sectors: transport and logistics, industry, building construction, and trade. The enterprises have been researched taking into account the components of business models and the financial condition of companies. Business models are areas of complex and heterogeneous nature. The use of fsQCA has enabled to answer the following question: which components of a business model and in which configuration influence better financial condition of enterprises. The analysis has been performed separately for particular sectors. This enabled to compare the combinations of business models' components which actively influence the financial condition of enterprises in analyzed sectors. The following components of business models were analyzed for the purposes of the study: Key Partners, Key Activities, Key Resources, Value Proposition, Channels, Cost Structure, Revenue Streams, Customer Segment and Customer Relationships. These components of the study constituted the variables shaping the financial results of enterprises. The results of the study lead us to believe that fsQCA can help in analyzing and evaluating a business model, which is important in terms of making a business decision about the business model used or its change. In addition, results obtained by fsQCA can be applied by all stakeholders connected with the company.Keywords: business models, components of business models, data analysis, fsQCA
Procedia PDF Downloads 170