Search results for: energy consumption in hospitals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10769

Search results for: energy consumption in hospitals

10139 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system

Procedia PDF Downloads 334
10138 Implementation of Efficiency and Energy Conservation Concept in Office Building as an Effort to Achieve Green Office Building Case Studies Office Building in Jakarta

Authors: Jarwa Prasetya Sih Handoko

Abstract:

The issue of energy crisis for big cities in Indonesia are issues raised in line with the development of the city is rapidly increasing. Various attempts were made by the government in overcoming problems of energy needs in Indonesia. In addition to the efforts of the government required the efforts made by the public to solve this problem. The concept of green building in the design of the building with efforts to use energy efficiently can be one of the efforts that can be applied to solve this problem. Jakarta is capital and the one of the major cities in Indonesia with high economic growth. This leads to increased demand for office space for the people. So that the construction of office buildings in big cities like Jakarta very numerous. Office building is one of the buildings that require large energy consumption. As a building that could potentially require huge amounts of energy, the design should consider the use of energy to help provide solutions to problems of energy crisis in Indonesia. The concept of energy efficient is one of the concepts addressed in an effort to use energy in buildings to save energy needs of the building operations. Therefore, it is necessary to have a study that explores the application of the concept of energy efficiency and conservation in office buildings in Jakarta. In this study using two (2) buildings case study that Sequis Center Building and Sampoerna Strategic Square. Both are office buildings in Jakarta have earned the Green Building Certificate of Green Building Council Indonesia (GBCI). The study used literature review methods to address issues raised earlier. Whether it's related to a literature review on the study of office buildings and green building. With this paper is expected to be obtained on the application of the concept of energy efficiency and conservation in office buildings that have earned recognition as a green building by GBCI. The result could be a reference to the architect in designing the next office buildings, especially related to the concept of energy use in buildings. From this study, it can be concluded that the concept of energy efficiency and conservation in the design of office buildings can be applied to its orientation, the openings, the use shade in buildings, vegetation and building material selection and efficient use of water. So that it can reduce energy requirements needed to meet the needs of the building user activity. So the concept of energy efficiency and conservation in office buildings can be one of the efforts to realize the Green Office Building. Recommendations from this study is that the design of office buildings should be able to apply the concept of energy utilization in the design office. This is to meet the energy needs of the office buildings in an effort to realize the Green Building.

Keywords: energy crisis, energy efficiency, energy conservation, green building, office building

Procedia PDF Downloads 284
10137 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 361
10136 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years

Authors: M. M. Wagh, V. V. Kulkarni

Abstract:

The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.

Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques

Procedia PDF Downloads 323
10135 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials

Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre

Abstract:

More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.

Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage

Procedia PDF Downloads 114
10134 Power of Doubling: Population Growth and Resource Consumption

Authors: Sarika Bahadure

Abstract:

Sustainability starts with conserving resources for future generations. Since human’s existence on this earth, he has been consuming natural resources. The resource consumption pace in the past was very slow, but industrialization in 18th century brought a change in the human lifestyle. New inventions and discoveries upgraded the human workforce to machines. The mass manufacture of goods provided easy access to products. In the last few decades, the globalization and change in technologies brought consumer oriented market. The consumption of resources has increased at a very high scale. This overconsumption pattern brought economic boom and provided multiple opportunities, but it also put stress on the natural resources. This paper tries to put forth the facts and figures of the population growth and consumption of resources with examples. This is explained with the help of the mathematical expression of doubling known as exponential growth. It compares the carrying capacity of the earth and resource consumption of humans’ i.e. ecological footprint and bio-capacity. Further, it presents the need to conserve natural resources and re-examine sustainable resource use approach for sustainability.

Keywords: consumption, exponential growth, population, resources, sustainability

Procedia PDF Downloads 216
10133 Effect of Atrial Flutter on Alcoholic Cardiomyopathy

Authors: Ibrahim Ahmed, Richard Amoateng, Akhil Jain, Mohamed Ahmed

Abstract:

Alcoholic cardiomyopathy (ACM) is a type of acquired cardiomyopathy caused by chronic alcohol consumption. Frequently ACM is associated with arrhythmias such as atrial flutter. Our aim was to characterize the patient demographics and investigate the effect of atrial flutter (AF) on ACM. This was a retrospective cohort study using the Nationwide Inpatient Sample database to identify admissions in adults with principal and secondary diagnoses of alcoholic cardiomyopathy and atrial flutter from 2019. Multivariate linear and logistic regression models were adjusted for age, gender, race, household income, insurance status, Elixhauser comorbidity score, hospital location, bed size, and teaching status. The primary outcome was all-cause mortality, and secondary outcomes were the length of stay (LOS) and total charge in USD. There was a total of 21,855 admissions with alcoholic cardiomyopathy, of which 1,635 had atrial flutter (AF-ACM). Compared to Non-AF-ACM cohort, AF-ACM cohort had fewer females (4.89% vs 14.54%, p<0.001), were older (58.66 vs 56.13 years, p<0.001), fewer Native Americans (0.61% vs2.67%, p<0.01), had fewer smaller (19.27% vs 22.45%, p<0.01) & medium-sized hospitals (23.24% vs28.98%, p<0.01), but more large-sized hospitals (57.49% vs 48.57%, p<0.01), more Medicare (40.37% vs 34.08%, p<0.05) and fewer Medicaid insured (23.55% vs 33.70%, p=<0.001), fewer hypertension (10.7% vs 15.01%, p<0.05), and more obesity (24.77% vs 16.35%, p<0.001). Compared to Non-AF-ACM cohort, there was no difference in AF-ACM cohort mortality rate (6.13% vs 4.20%, p=0.0998), unadjusted mortality OR 1.49 (95% CI 0.92-2.40, p=0.102), adjusted mortality OR 1.36 (95% CI 0.83-2.24, p=0.221), but there was a difference in LOS 1.23 days (95% CI 0.34-2.13, p<0.01), total charge $28,860.30 (95% CI 11,883.96-45,836.60, p<0.01). In patients admitted with ACM, the presence of AF was not associated with a higher all-cause mortality rate or odds of all-cause mortality; however, it was associated with 1.23 days increase in LOS and a $28,860.30 increase in total hospitalization charge. Native Americans, older age and obesity were risk factors for the presence of AF in ACM.

Keywords: alcoholic cardiomyopathy, atrial flutter, cardiomyopathy, arrhythmia

Procedia PDF Downloads 96
10132 Determinants of Intensity of Greenhouse Gas Emission in Lithuanian Agriculture

Authors: D. Makuteniene

Abstract:

Agriculture, as one of the human activities, emits a significant amount of greenhouse gas emission and undoubtedly has an impact on climate change. The main gaseous products of agricultural greenhouse gases are carbon dioxide, methane, and nitroxadoxide. The sources and emission of these gases depend on land use, soil, crops, manure, livestock, and energy consumption. One of the indicators showing the agricultural impact on climate change is an intensity of GHG emission and its dynamics. This study analyzed the determinants of an intensity of greenhouse gas emission in Lithuanian agriculture using data decomposition. The research revealed that, although greenhouse gas emission increased during the research period, however, agricultural net value added grew more rapidly, which contributed to a reduction of intensity of greenhouse gas emission in Lithuania between 2000 and 2015. It was identified that during the research period intensity of greenhouse gas emission was mostly increased by the change of the use of nitrogen in agriculture, as compared to the change of the area of agricultural land, and by the change of the number of full-time employees, as compared to the change of net value added. Conversely, the change of energy consumption in agriculture, as compared to the change of the use of nitrogen in agriculture, had a bigger impact in decreasing intensity of greenhouse gas emission.

Keywords: agriculture, determinants of intensity, greenhouse gas emission, intensity

Procedia PDF Downloads 163
10131 Affordability and Expenditure Patterns towards Sustainable Consumption in Malaysia

Authors: Affordability, Expenditure Patterns towards Sustainable Consumption in Malaysia

Abstract:

Safe drinking water is needed for survival. Households have to pay the water bill monthly. However, lower income households are sometimes unable to afford the cost. This study examines water access and affordability among households in Malaysia and the determinants of water affordability using cross-sectional data and multiple regression. The paper expects that the bill for basic water consumption is inversely related to average income. This means that policy makers need to redesign the water tariff to improve the quality of life of lower income households.

Keywords: affordability, sustainable consumption, income, water tariff

Procedia PDF Downloads 224
10130 Suitable Models and Methods for the Steady-State Analysis of Multi-Energy Networks

Authors: Juan José Mesas, Luis Sainz

Abstract:

The motivation for the development of this paper lies in the need for energy networks to reduce losses, improve performance, optimize their operation and try to benefit from the interconnection capacity with other networks enabled for other energy carriers. These interconnections generate interdependencies between some energy networks and others, which requires suitable models and methods for their analysis. Traditionally, the modeling and study of energy networks have been carried out independently for each energy carrier. Thus, there are well-established models and methods for the steady-state analysis of electrical networks, gas networks, and thermal networks separately. What is intended is to extend and combine them adequately to be able to face in an integrated way the steady-state analysis of networks with multiple energy carriers. Firstly, the added value of multi-energy networks, their operation, and the basic principles that characterize them are explained. In addition, two current aspects of great relevance are exposed: the storage technologies and the coupling elements used to interconnect one energy network with another. Secondly, the characteristic equations of the different energy networks necessary to carry out the steady-state analysis are detailed. The electrical network, the natural gas network, and the thermal network of heat and cold are considered in this paper. After the presentation of the equations, a particular case of the steady-state analysis of a specific multi-energy network is studied. This network is represented graphically, the interconnections between the different energy carriers are described, their technical data are exposed and the equations that have previously been presented theoretically are formulated and developed. Finally, the two iterative numerical resolution methods considered in this paper are presented, as well as the resolution procedure and the results obtained. The pros and cons of the application of both methods are explained. It is verified that the results obtained for the electrical network (voltages in modulus and angle), the natural gas network (pressures), and the thermal network (mass flows and temperatures) are correct since they comply with the distribution, operation, consumption and technical characteristics of the multi-energy network under study.

Keywords: coupling elements, energy carriers, multi-energy networks, steady-state analysis

Procedia PDF Downloads 61
10129 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings

Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay

Abstract:

The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.

Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy

Procedia PDF Downloads 107
10128 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.

Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint

Procedia PDF Downloads 585
10127 Experimental Investigation of Visual Comfort Requirement in Garment Factories and Identify the Cost Saving Opportunities

Authors: M. A. Wijewardane, S. A. N. C. Sudasinghe, H. K. G. Punchihewa, W. K. D. L. Wickramasinghe, S. A. Philip, M. R. S. U. Kumara

Abstract:

Visual comfort is one of the major parameters that can be taken to measure the human comfort in any environment. If the provided illuminance level in a working environment does not meet the workers visual comfort, it will lead to eye-strain, fatigue, headache, stress, accidents and finally, poor productivity. However, improvements in lighting do not necessarily mean that the workplace requires more light. Unnecessarily higher illuminance levels will also cause poor visual comfort and health risks. In addition, more power consumption on lighting will also result in higher energy costs. So, during this study, visual comfort and the illuminance requirement for the workers in textile/apparel industry were studied to perform different tasks (i.e. cutting, sewing and knitting) at their workplace. Experimental studies were designed to identify the optimum illuminance requirement depending upon the varied fabric colour and type and finally, energy saving potentials due to controlled illuminance level depending on the workforce requirement were analysed. Visual performance of workers during the sewing operation was studied using the ‘landolt ring experiment’. It was revealed that around 36.3% of the workers would like to work if the illuminance level varies from 601 lux to 850 lux illuminance level and 45.9% of the workers are not happy to work if the illuminance level reduces less than 600 lux and greater than 850 lux. Moreover, more than 65% of the workers who do not satisfy with the existing illuminance levels of the production floors suggested that they have headache, eye diseases, or both diseases due to poor visual comfort. In addition, findings of the energy analysis revealed that the energy-saving potential of 5%, 10%, 24%, 8% and 16% can be anticipated for fabric colours, red, blue, yellow, black and white respectively, when the 800 lux is the prevailing illuminance level for sewing operation.

Keywords: Landolt Ring experiment, lighting energy consumption, illuminance, textile and apparel industry, visual comfort

Procedia PDF Downloads 192
10126 Medical and Surgical Nursing Care

Authors: Nassim Salmi

Abstract:

This study aimed to identify the administrative, social, cultural, economic and psychological challenges facing the nursing s ector in the Tebessa Algeria. It also seeks to identify whether there are differences between the opinions of managers in public and private hospitals about these challenges. To achieve the objectives of the study, the descriptive analytical method was adopted. The study also used the questionnaire as a tool for collecting the necessary data and information, which was applied to a sample of directors of public and private hospitals in the Tebessa, which amounted to (114) individuals. The study reached a set of results, including: that there are no statistically significant differences between the opinions of managers in public and private hospitals about the administrative, social, cultural, economic and psychological challenges facing the nursing sector in the Tebessa . The results also showed agreement between the views of managers in private public hospitals that the most important administrative challenges are the lack of training programs that affect the efficiency and performance of nursing work, and that the most important social and cultural challenges are the hospital’s failure to provide suitable nurseries for Saudi female nurses, and that the most important economic challenges are the lack of Availability of medical equipment and devices, and the most important psychological challenge is the tense relationship between the administration and the hospital's nursing staff. The study recommended focusing on the importance of rehabilitation and training together, activating the role of training in the ministry and making it compulsory and a condition of renewal for practicing and continuing the nursing profession, and providing the social and economic needs of the nursing staff.

Keywords: postoperative care, gynecology, nursing documentation, database

Procedia PDF Downloads 71
10125 Assessment of On-Site Solar and Wind Energy at a Manufacturing Facility in Ireland

Authors: A. Sgobba, C. Meskell

Abstract:

The feasibility of on-site electricity production from solar and wind and the resulting load management for a specific manufacturing plant in Ireland are assessed. The industry sector accounts directly and indirectly for a high percentage of electricity consumption and global greenhouse gas emissions; therefore, it will play a key role in emission reduction and control. Manufacturing plants, in particular, are often located in non-residential areas since they require open spaces for production machinery, parking facilities for the employees, appropriate routes for supply and delivery, special connections to the national grid and other environmental impacts. Since they have larger spaces compared to commercial sites in urban areas, they represent an appropriate case study for evaluating the technical and economic viability of energy system integration with low power density technologies, such as solar and wind, for on-site electricity generation. The available open space surrounding the analysed manufacturing plant can be efficiently used to produce a discrete quantity of energy, instantaneously and locally consumed. Therefore, transmission and distribution losses can be reduced. The usage of storage is not required due to the high and almost constant electricity consumption profile. The energy load of the plant is identified through the analysis of gas and electricity consumption, both internally monitored and reported on the bills. These data are not often recorded and available to third parties since manufacturing companies usually keep track only of the overall energy expenditures. The solar potential is modelled for a period of 21 years based on global horizontal irradiation data; the hourly direct and diffuse radiation and the energy produced by the system at the optimum pitch angle are calculated. The model is validated using PVWatts and SAM tools. Wind speed data are available for the same period within one-hour step at a height of 10m. Since the hub of a typical wind turbine reaches a higher altitude, complementary data for a different location at 50m have been compared, and a model for the estimate of wind speed at the required height in the right location is defined. Weibull Statistical Distribution is used to evaluate the wind energy potential of the site. The results show that solar and wind energy are, as expected, generally decoupled. Based on the real case study, the percentage of load covered every hour by on-site generation (Level of Autonomy LA) and the resulting electricity bought from the grid (Expected Energy Not Supplied EENS) are calculated. The economic viability of the project is assessed through Net Present Value, and the influence the main technical and economic parameters have on NPV is presented. Since the results show that the analysed renewable sources can not provide enough electricity, the integration with a cogeneration technology is studied. Finally, the benefit to energy system integration of wind, solar and a cogeneration technology is evaluated and discussed.

Keywords: demand, energy system integration, load, manufacturing, national grid, renewable energy sources

Procedia PDF Downloads 119
10124 Energy Justice and Economic Growth

Authors: Marinko Skare, Malgorzata Porada Rochon

Abstract:

This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets.

Keywords: energy justice, economic growth, panel data, energy transition

Procedia PDF Downloads 95
10123 Multi-Objective Optimization of a Solar-Powered Triple-Effect Absorption Chiller for Air-Conditioning Applications

Authors: Ali Shirazi, Robert A. Taylor, Stephen D. White, Graham L. Morrison

Abstract:

In this paper, a detailed simulation model of a solar-powered triple-effect LiBr–H2O absorption chiller is developed to supply both cooling and heating demand of a large-scale building, aiming to reduce the fossil fuel consumption and greenhouse gas emissions in building sector. TRNSYS 17 is used to simulate the performance of the system over a typical year. A combined energetic-economic-environmental analysis is conducted to determine the system annual primary energy consumption and the total cost, which are considered as two conflicting objectives. A multi-objective optimization of the system is performed using a genetic algorithm to minimize these objectives simultaneously. The optimization results show that the final optimal design of the proposed plant has a solar fraction of 72% and leads to an annual primary energy saving of 0.69 GWh and annual CO2 emissions reduction of ~166 tonnes, as compared to a conventional HVAC system. The economics of this design, however, is not appealing without public funding, which is often the case for many renewable energy systems. The results show that a good funding policy is required in order for these technologies to achieve satisfactory payback periods within the lifetime of the plant.

Keywords: economic, environmental, multi-objective optimization, solar air-conditioning, triple-effect absorption chiller

Procedia PDF Downloads 221
10122 Design and Study of a Hybrid Micro-CSP/Biomass Boiler System for Water and Space Heating in Traditional Hammam

Authors: Said Lamghari, Abdelkader Outzourhit, Hassan Hamdi, Mohamed Krarouch, Fatima Ait Nouh, Mickael Benhaim, Mehdi Khaldoun

Abstract:

Traditional Hammams are big consumers of water and wood-energy. Any approach to reduce this consumption will contribute to the preservation of these two resources that are more and more stressed in Morocco. In the InnoTherm/InnoBiomass 2014 project HYBRIDBATH, funded by the Research Institute for Solar Energy and New Energy (IRESEN), we will use a hybrid system consisting of a micro-CSP system and a biomass boiler for water and space heating of a Hammam. This will overcome the problem of intermittency of solar energy, and will ensure continuous supply of hot water and heat. We propose to use local agricultural residues (olive pomace, shells of walnuts, almonds, Argan ...). Underfloor heating using either copper or PEX tubing will perform the space heating. This work focuses on the description of the system and the activities carried out so far: The installation of the system, the principle operation of the system and some preliminary test results.

Keywords: biomass boiler, hot water, hybrid systems, micro-CSP, parabolic sensor, solar energy, solar fraction, traditional hammam, underfloor heating

Procedia PDF Downloads 287
10121 Exergetic and Sustainability Evaluation of a Building Heating System in Izmir, Turkey

Authors: Nurdan Yildirim, Arif Hepbasli

Abstract:

Heating, cooling and lighting appliances in buildings account for more than one third of the world’s primary energy demand. Therefore, main components of the building heating systems play an essential role in terms of energy consumption. In this context, efficient energy and exergy utilization in HVAC-R systems has been very essential, especially in developing energy policies towards increasing efficiencies. The main objective of the present study is to assess the performance of a family house with a volume of 326.7 m3 and a net floor area of 121 m2, located in the city of Izmir, Turkey in terms of energetic, exergetic and sustainability aspects. The indoor and exterior air temperatures are taken as 20°C and 1°C, respectively. In the analysis and assessment, various metrics (indices or indicators) such as exergetic efficiency, exergy flexibility ratio and sustainability index are utilized. Two heating options (Case 1: condensing boiler and Case 2: air heat pump) are considered for comparison purposes. The total heat loss rate of the family house is determined to be 3770.72 W. The overall energy efficiencies of the studied cases are calculated to be 49.4% for Case 1 and 54.7% for Case 2. The overall exergy efficiencies, the flexibility factor and the sustainability index of Cases 1 and 2 are computed to be around 3.3%, 0.17 and 1.034, respectively.

Keywords: buildings, exergy, low exergy, sustainability, efficiency, heating, renewable energy

Procedia PDF Downloads 322
10120 Evaluation of Thermal Comfort and Energy Consumption in Classroom

Authors: I. Kadek Candra Parmana Wiguna, Wiwik Budiawan, Heru Prastawa

Abstract:

Semarang has become not only a metropolitan city but also a centre of government that has experienced significant changes in urban land use. Temperature increases in urban areas result from the expansion of development. The average temperature in Semarang reached 27.10°C to 29.60°C in 2022. The state of thermal sensation is very dependent on the mode of operation; Industrial Engineering building is mostly equipped with an air conditioner (AC). This study aims to analyze the thermal comfort level and energy consumption of air conditioners in classroom of industrial engineering. Participants in this study amounted to 31 students with data collection for 4 weeks. Results of the physical environment are Ta in: 25.52°C, Ta out: 32.71 °C, Rh in: 61.14%, Rh out: 59.43%, and Av in: 0.037 m/s. The results of clothing insulation are 41% of the respondents belonged to the categories 0.31 - 0.5 clo (summer domming) and 0.51 - 0.70 clo (spring clothing). Regarding the predicted mean vote (PMV), the average value is 0.63, and only 14.85% result of the predicted percentage dissatisfied (PPD). The neutral temperature with measurement Griffith’s constant 0.5/°C was 27.16°C, but the statistical test results show that the comfort temperature to use TSV ≤ 0 which is 28.55°C. The highest average power (watt) measurement results during week 3, which is 1613.65 watts. It is concluded in this study that the thermal comfort conditions in the classroom are adequate and acceptable to more than 90% of respondents.

Keywords: thermal comfort, PMV/PPD, air conditioner, TSV

Procedia PDF Downloads 3
10119 Frequency of Problem Drinking and Depression in Males with a History of Alcohol Consumption Admitted to a Tertiary Care Setting in Southern Sri Lanka

Authors: N. H. D. P. Fonseka, I. H. Rajapakse, A. S. Dissanayake

Abstract:

Background: Problem drinking, namely alcohol dependence (AD) and alcohol abuse (AA) are associated with major medical, social and economic adverse consequences. Problem drinking behavior is noted among those admitted to hospitals due to alcohol-related medical/surgical complaints as well as those with unrelated complaints. Literature shows an association between alcohol consumption and depression. Aims of this study were to determine the frequency of problem drinking and depression among males with a history of alcohol consumption tertiary care setting in Southern Sri Lanka. Method: Two-hundred male patients who consumed alcohol, receiving care in medical and surgical wards in Teaching Hospital Galle, were assessed. A validated J12 questionnaire of the Mini International Neuropsychiatric Interview was administered to determine frequency AA and AD. A validated PHQ 9 questionnaire to determine the prevalence and severity of depression. Results: Sixty-three participants (31%) had problem drinking. Of them, 61% had AD, and 39% had AA. Depression was noted in 39 (19%) subjects. In those who reported alcohol consumption not amounting to problem drinking, depression was noted in 23 (16%) participants. Mild depression was seen in 17, moderate in five and moderately severe in one. Among those who had problem drinking, 16 (25%) had depression. Mild depression was seen in four, moderate in seven, moderately severe in three and severe in two. Conclusions: A high proportion alcohol users had problem drinking. Adverse consequences associated with problem drinking places a major strain on the health system especially in a low resource setting where healthcare spending is limited and alcohol cessation support services are not well organised. Thus alcohol consumption and problem drinking behaviour need to be inquired into all medical consultations. Community prevalence of depression in Sri Lanka is approximately 10%. Depression among those consuming alcohol was two times higher compared to the general population. The rates of depression among those with problem drinking were especially high being 2.5 times more common than in the general population. A substantial proportion of these patients with depression had moderately severe or severe depression. When depression coexists with problem drinking, it may increase the tendency to consume alcohol as well as act as a barrier to the success of alcohol cessation interventions. Thus screening all patients who consume alcohol for depression, especially those who are problem drinkers becomes an important step in their clinical evaluation. In addition, in view of the high prevalence of problem drinking and coexistent depression, the need to organize a structured alcohol cessation support service in Sri Lanka as well as the need for increasing access to psychological evaluation and treatment of those with problem drinking are highlighted.

Keywords: alcohol abuse, alcohol, depression, problem drinking

Procedia PDF Downloads 146
10118 Research on Natural Lighting Design of Atriums Based on Energy-Saving Aim

Authors: Fan Yu

Abstract:

An atrium is a place for natural climate exchanging of indoor and outdoor space of buildings, which plays an active role in the overall energy conservation, climate control and environmental purification of buildings. Its greatest contribution is serving as a natural light collector and distributor to solve the problem of natural lighting in large and deep spaces. However, in real situations, the atrium space often results in energy consumption due to improper design in considering its big size and large amount use of glass. Based on the purpose of energy conservation of buildings, this paper emphasizes the significance of natural lighting of atriums. Through literature research, case analysis and other methods, four factors, namely: the light transmittance through the top of the atrium, the geometric proportion of the atrium space, the size and position of windows and the material of the surface of walls in the atrium, were studied, and the influence of different architectural compositions on the natural light distribution of the atrium is discussed. Relying on the analysis of relevant cases, it is proposed that when designing the natural lighting of the atrium, the height and width of the atrium should be paid attention to, the atrium walls are required being rough surfaces and the atrium top-level windows need to be minimized in order to introduce more natural light into the buildings and achieve the purpose of energy conservation.

Keywords: energy conservation, atrium, natural lighting, architectural design

Procedia PDF Downloads 169
10117 The Feasibility of Using Green Architecture in the Desert Areas and Its Effectiveness

Authors: Abdulah Hamads Alatiah

Abstract:

The green architecture represents the essence of the sustainability process and the fundamental rule in the desert areas' reconstruction seeking to maintain the environmental balance. This study is based on the analytical descriptive approach, to extract the objectives of green architecture in the desert areas, and reveal the most important principles that contribute to highlight its economic, social, and environmental importance, in addition to standing on the most important technical standards that can be relied upon to deal with its environmental problems. The green architecture aims: making use of the alternative energy, reducing the conventional energy consumption, addressing its negative effects, adapting to the climate, innovation in design, providing the individuals' welfare and rationalizing the use of the available resources to maintain its environmental sustainability.

Keywords: green architecture, the warm-dry climate, natural lighting, environmental quality, renewable energy, weather changes

Procedia PDF Downloads 308
10116 Identification of Crimean-Congo Hemorrhagic Fever Virus in Patients Referred to Ahvaz and Gilan Hospitals in Iran by real-time PCR Technique

Authors: Najmeh Jafari, Sona Rostampour Yasouri

Abstract:

Crimean-Congo hemorrhagic fever (CCHF) is an acute hemorrhagic disease. This disease is one of the common diseases between humans and animals, transmitted through tick bites or contact with the blood and secretions or carcasses of infected animals and humans. CCHF is more common in people who work with livestock, such as ranchers, butchers, farmers, slaughterhouse workers, healthcare workers, etc. Its hospital prevalence is also very high. Considering that CCHF can be transmitted through the consumption of food such as beef and sheep meat, this study aims to quickly identify and diagnose the Crimean-Congo fever virus in suspected patients through real-time PCR technique. In the summer of 1402, 20 blood samples were collected separately from Ahvaz and Gilan hospitals. An extraction kit was used to extract the virus RNA. Primers and probes were designed based on the S genomic region, the conserved region in CCHFV. Then, a real-time PCR technique was performed with specific primers and probes. It should be noted that the mentioned technique was repeated several times. The number of 4 samples from the examined samples was determined positive by real-time PCR. This technique has high sensitivity and specificity and the possibility of rapid detection of CCHFV. Therefore, the above method is a good candidate for quick disease diagnosis. By diagnosing the disease, the treatment process can be done faster, and the best prevention methods can be used to control the disease and prevent the death of patients.

Keywords: ahvaz, crimean-congo hemorrhagic fever, gilan, real time PCR

Procedia PDF Downloads 59
10115 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: air handling unit, air pollution, aspiration efficiency, energy efficiency, particulate matter, ventilation

Procedia PDF Downloads 106
10114 Atmospheric CO2 Capture via Temperature/Vacuum Swing Adsorption in SIFSIX-3-Ni

Authors: Eleni Tsalaporta, Sebastien Vaesen, James M. D. MacElroy, Wolfgang Schmitt

Abstract:

Carbon dioxide capture has attracted the attention of many governments, industries and scientists over the last few decades, due to the rapid increase in atmospheric CO2 composition, with several studies being conducted in this area over the last few years. In many of these studies, CO2 capture in complex Pressure Swing Adsorption (PSA) cycles has been associated with high energy consumption despite the promising capture performance of such processes. The purpose of this study is the economic capture of atmospheric carbon dioxide for its transformation into a clean type of energy. A single column Temperature /Vacuum Swing Adsorption (TSA/VSA) process is proposed as an alternative option to multi column Pressure Swing Adsorption (PSA) processes. The proposed adsorbent is SIFSIX-3-Ni, a newly developed MOF (Metal Organic Framework), with extended CO2 selectivity and capacity. There are three stages involved in this paper: (i) SIFSIX-3-Ni is synthesized and pelletized and its physical and chemical properties are examined before and after the pelletization process, (ii) experiments are designed and undertaken for the estimation of the diffusion and adsorption parameters and limitations for CO2 undergoing capture from the air; and (iii) the CO2 adsorption capacity and dynamical characteristics of SIFSIX-3-Ni are investigated both experimentally and mathematically by employing a single column TSA/VSA, for the capture of atmospheric CO2. This work is further supported by a technical-economical study for the estimation of the investment cost and the energy consumption of the single column TSA/VSA process. The simulations are performed using gProms.

Keywords: carbon dioxide capture, temperature/vacuum swing adsorption, metal organic frameworks, SIFSIX-3-Ni

Procedia PDF Downloads 243
10113 Implementation of Ecological and Energy-Efficient Building Concepts

Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler

Abstract:

A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.

Keywords: energy-efficiency, green architecture, renewable resources, sustainable building

Procedia PDF Downloads 136
10112 Energy Box Programme in the Netherlands

Authors: B. E. Weber, N. Vrielink, M. G. Rietbergen

Abstract:

This paper explores the long-term effects of the Energy Box trajectory on households in the private rental sector, specifically households experiencing energy poverty. The concept of energy poverty has been getting increasing attention among policymakers over the past few years. In the Netherlands, as far as we know, there are no national policies on alleviating energy poverty, which negatively impacts energy-poor households. The Energy Box can help households experiencing energy poverty by stimulating them to improve the energy efficiency of their home by changing their energy-saving behavior. Important long-term effects are that respondents indicate that they live in a more environmentally friendly way and that they save money on their energy bills. Households feel engaged with the concept of energy-saving and can see the benefits of changing their energy-saving behavior. Respondents perceived the Energy Box as a means to live more environmentally friendly, instead of it solely being a means to save money on energy bills. The findings show that most respondents signed up for the Energy Box are interested in energy-saving as a lifestyle choice instead of a financial choice, which would likely be the case for households experiencing energy poverty.

Keywords: energy-saving behavior, energy poverty, poverty, private rental sector

Procedia PDF Downloads 91
10111 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Authors: N. Türkmenoğlu Bayraktar, E. Kishalı

Abstract:

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Keywords: building envelope, IRT, refurbishment, non-destructive test

Procedia PDF Downloads 368
10110 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process

Authors: Aldona Kluczek

Abstract:

Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.

Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process

Procedia PDF Downloads 191