Search results for: dissatisfaction with body image
6004 The Relation between Body Mass Index and Menstrual Cycle Disorders in Medical Students of University Pelita Harapan, Indonesia
Authors: Gabriella Tjondro, Julita Dortua Laurentina Nainggolan
Abstract:
Introduction: There are several things affecting menstrual cycle, namely, nutritional status, diet, financial status of one’s household and exercises. The most commonly used parameter to calculate the fat in a human body is body mass index. Therefore, it is necessary to do research to prevent complications caused by menstrual disorder in the future. Design Study: This research is an observational analytical study with the cross-sectional-case control approach. Participants (n = 124; median age = 19.5 years ± SD 3.5) were classified into 2 groups: normal, NM (n = 62; BMI = 18-23 kg/m2) and obese, OB (n = 62; BMI = > 25 kg/m2). BMI was calculated from the equation; BMI = weight, kg/height, m2. Results: There were 79.10% from obese group who experienced menstrual cycle disorders (n=53, 79.10%; p value 0.00; OR 5.25) and 20.90% from normal BMI group with menstrual cycle disorders. There were several factors in this research that also influence the menstrual cycle disorders such as stress (44.78%; p value 0.00; OR 1.85), sleep disorders (25.37%; p value 0.00; OR 1.01), physical activities (25.37%; p value 0.00; OR 1.24) and diet (10.45%; p value 0.00; OR 1.07). Conclusion: There is a significant relation between body mass index (obese) and menstrual cycle disorders. However, BMI is not the only factor that affects the menstrual cycle disorders. There are several factors that also can affect menstrual cycle disorders, in this study we use stress, sleep disorders, physical activities and diet, in which none of them are dominant.Keywords: menstrual disorders, menstrual cycle, obesity, body mass index, stress, sleep disorders, physical activities, diet
Procedia PDF Downloads 1486003 An Empirical Study of the Moderation Effects of Commitment, Trust, and Relationship Value in the Relation of Goods and Services Related to Business to Business Brand Images on Customer Loyalty
Authors: Jorge Luis Morales Romero, Enrique Murillo Othón
Abstract:
Business to business (B2B) relationships generally go beyond a purely profit-based result, with firms seeking to maintain a relationship for many years because a breakup or getting a new supplier can be very costly. Therefore, identifying the factors which determine a successful relationship in the long term is of great interest to companies. That is why their reputation and the brand image that customers have of them are among the main factors that can achieve a successful relationship; Because of the positive effect which is driven by the client’s loyalty. Additionally, the perception that a customer may have about a brand is different when it is related to goods or to services. Thereby, they create in their minds their own brand image of it based on the past experiences they have had; Thus, a positive relationship is established between goods-related brand image, service-related brand image, and customer loyalty. The present investigation examines the boundary conditions of said relationship by testing the moderating effects of trust, commitment, and relationship value in a B2B environment. All the variables were tested independently as moderators for service-related brand image/loyalty and for goods-related brand image/loyalty, as they are assumed to be separate variables. Survey data was collected through interviews with customers that have both a product-buying relationship and a service relationship with a global B2B brand of healthcare equipment operating in the Mexican healthcare market. Interviewed respondents were either the user or the purchasing manager and/or the responsible for the equipment maintenance for the customer organization. Hence, they were appropriate informants regarding the B2B relationship with this healthcare brand. The moderation models were estimated using the PROCESS macro for the Statistical Package for the Social Sciences Software (SPSS). Results show statistical evidence that both Relationship Value and Trust are significant moderators for the service-related brand image/loyalty relation but not significant for the goods-related brand/loyalty relation. On the other hand, Commitment results in a significant moderator for the goods-related brand/loyalty relation but is not significant for the service-related brand image/loyalty relation.Keywords: commitment, trust, relationship value, loyalty, B2B, moderator
Procedia PDF Downloads 936002 Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients
Authors: Pratik Gandhi, Kavitha Chandra, Charles Thompson
Abstract:
A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated.Keywords: acoustic room impulse response, frequency dependent reflection coefficients, Green's function, image model
Procedia PDF Downloads 2326001 Infographics to Identify, Diagnose, and Review Medically Important Microbes and Microbial Diseases: A Tool to Ignite Minds of Undergraduate Medical Students
Authors: Mohan Bilikallahalli Sannathimmappa, Vinod Nambiar, Rajeev Aravindakshan
Abstract:
Background: Image-based teaching-learning module is innovative student-centered andragogy. The objective of our study was to explore medical students’ perception of effectiveness of image-based learning strategy in promoting their lifelong learning skills and evaluate its impact on improving students’ exam grades. Methods: A prospective single-cohort study was conducted on undergraduate medical students of the academic year 2021-22. The image-based teaching-learning module was assessed through pretest, posttest, and exam grades. Students’ feedback was collected through a predesigned questionnaire on a 3-point Likert Scale. The reliability of the questionnaire was assessed using Cronbach’s alpha coefficient test. In-Course Exam-4 results were compared with In-Course Exams 1, 2, and 3. Correlation coefficients were worked out wherever relevant to find the impact of the exercise on grades. Data were collected, entered into Microsoft Excel, and statistically analyzed using SPSS version 22. Results: In total, 127 students were included in the study. The posttest scores of the students were significantly high (24.75±) as compared to pretest scores (8.25±). Students’ opinion towards the effectiveness of image-based learning in promoting their lifelong learning skills was overwhelmingly positive (Cronbach’s alpha for all items was 0.756). More than 80% of the students indicated image-based learning was interesting, encouraged peer discussion, and helped them to identify, explore, and revise key information and knowledge improvement. Nearly 70% expressed image-based learning enhanced their critical thinking and problem-solving skills. Nine out of ten students recommended image-based learning module for future topics. Conclusion: Overall, Image-based learning was found to be effective in achieving undergraduate medical students learning outcomes. The results of the study are in favor of the implementation of Image-based learning in Microbiology courses. However, multicentric studies are required to authenticate our study findings.Keywords: active learning, knowledge, medical education, microbes, problem solving
Procedia PDF Downloads 726000 From Private Bodies to a Shareable Body Politic. A Theological Solution to a Foundational Political Problem.
Authors: Patrick Downey
Abstract:
The political problem besetting all nations, tribes, and families, as illuminated by Plato in the fifth book of his Republic, is the problem of our own private body with its own particular pleasures and pains. This problem we might label the “irrational love of one’s own.” The reasonable philosopher loves reality just because it is, but we love things only if we can convince ourselves that they are “ours” or an imaginative extension of “ours.” The resulting problem, that can only be medicated, but not cured, is that the “body private,” whether our own, our family, tribe, or nation, always lies underneath any level of “body politic” and threatens the bloodshed and disintegration of civil war. This is also the political problem the Bible deals with throughout, beginning with Adam and Eve’s fall from rationally shareable bodies (“the two were one flesh”) into unshareable bodies whose now shameful “privacy” must be hid behind a bloody rather than bloodless veil. The blood is the sign of always threatening civil war, whether murder between brothers, feuds within tribes, or later, war between nations. The scarlet thread of blood tying the entire Bible together, Old and New Testament, reminds us that however far our loves are pushed out beyond our private body to family, tribe or nation, they remain irrational because unshareable. Only by loving the creator God who first loved us, can we rationally love anything of our own, but it must be loved as gift rather than as a possession. Such a love renders all bodies and nations truly shareable, and achieving this shareability is the paradoxical plot of the Bible, wherein the Word becomes flesh in a particular body amidst a particular people and nation. Yet even with His own nation and His own Son, this Lord is not “partial” and demands justice towards widows, orphans, and sojourners, because the irrational love of only our own can become rational solely through the resurrection of this particular body, king of this particular nation and these particular people. His body, along with all other bodies, can thus now retain their particular wounds and history, while yet remaining shareable. Likewise, all nations will share in the nation of Israel, in the same way all distinct languages will share an understanding through the inner rational word that we see illustrated in Pentecost. Without the resurrection, however, this shareability of bodies and nations remains merely a useful fiction, as Plato saw, and the equally fictitious “rationality” of some sort of deductive universalism will not go away. Reading Scripture in terms of Plato’s “irrational love of one’s own” therefore raises questions for both a Protestant and Catholic understanding of nations, questions that neither can answer adequately without this philosophical and exegetical attention.Keywords: body private, nations, shareability, body politic
Procedia PDF Downloads 895999 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms
Authors: Tian Xia, Yuan Yan Tang
Abstract:
In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian
Procedia PDF Downloads 4685998 Computer-Aided Exudate Diagnosis for the Screening of Diabetic Retinopathy
Authors: Shu-Min Tsao, Chung-Ming Lo, Shao-Chun Chen
Abstract:
Most diabetes patients tend to suffer from its complication of retina diseases. Therefore, early detection and early treatment are important. In clinical examinations, using color fundus image was the most convenient and available examination method. According to the exudates appeared in the retinal image, the status of retina can be confirmed. However, the routine screening of diabetic retinopathy by color fundus images would bring time-consuming tasks to physicians. This study thus proposed a computer-aided exudate diagnosis for the screening of diabetic retinopathy. After removing vessels and optic disc in the retinal image, six quantitative features including region number, region area, and gray-scale values etc… were extracted from the remaining regions for classification. As results, all six features were evaluated to be statistically significant (p-value < 0.001). The accuracy of classifying the retinal images into normal and diabetic retinopathy achieved 82%. Based on this system, the clinical workload could be reduced. The examination procedure may also be improved to be more efficient.Keywords: computer-aided diagnosis, diabetic retinopathy, exudate, image processing
Procedia PDF Downloads 2685997 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2805996 Graduates Perceptions Towards the Image of Suan Sunandha Rajabhat University on the Graduation Rehearsal Day
Authors: Suangsuda Subjaroen, Chutikarn Sriviboon, Rosjana Chandhasa
Abstract:
This research aims to examine the graduates' overall satisfaction and influential factors that affect the image of Suan Sunandha Rajabhat University, according to the graduates' viewpoints on the graduation rehearsal day. In accordance with the graduates' perceptions, the study is related to the levels of graduates' satisfaction, their perceived quality, perceived value, and the image of Suan Sunandha Rajabhat University. The sample group in this study involved 1,129 graduates of Suan Sunandha Rajabhat University who attended on 2019 graduation rehearsal day. A questionnaire was used as an instrument in order to collect data. By the use of computing software, the statistics used for data analysis were various, ranging from frequencies, percentage, mean, and standard deviation, One-Way ANOVA, and Multiple Regression Analysis. The majority of participants were graduates with a bachelor's degree, followed by masters graduates and PhD graduates, respectively. Among the participants, most of them graduated from the Faculty of Management Sciences, followed by the Faculty of Humanities and Social Sciences and Faculty of Education, respectively. Overall, the graduates were satisfied with the graduation rehearsal day, and each aspect was rated at a satisfactory level. Formality, steps, and procedures were the aspects that graduates were most satisfied with, followed by graduation rehearsal personnel and staff, venue, and facilities. Referring to graduates' perceptions, the perceived quality was rated at a very good level, the perceived value was at a good level, whereas the image of Suan Sunandha Rajabhat University was perceived at a good level, respectively. There were differences in satisfaction levels among graduates with a bachelor's degree, graduates with a master's degree and a doctoral degree with statistical significance at the level of 0.05. There was a statistical significance at the level of 0.05 in perceived quality and perceived value affecting the image of Suan Sunandha Rajabhat University. The image of Suan Sunandha Rajabhat University influenced graduates' satisfaction level with statistical significance at the level of 0.01.Keywords: university image, perceived quality, perceived value, intention to study higher education, intention to recommend the university to others
Procedia PDF Downloads 1135995 Temperature Contour Detection of Salt Ice Using Color Thermal Image Segmentation Method
Authors: Azam Fazelpour, Saeed Reza Dehghani, Vlastimil Masek, Yuri S. Muzychka
Abstract:
The study uses a novel image analysis based on thermal imaging to detect temperature contours created on salt ice surface during transient phenomena. Thermal cameras detect objects by using their emissivities and IR radiance. The ice surface temperature is not uniform during transient processes. The temperature starts to increase from the boundary of ice towards the center of that. Thermal cameras are able to report temperature changes on the ice surface at every individual moment. Various contours, which show different temperature areas, appear on the ice surface picture captured by a thermal camera. Identifying the exact boundary of these contours is valuable to facilitate ice surface temperature analysis. Image processing techniques are used to extract each contour area precisely. In this study, several pictures are recorded while the temperature is increasing throughout the ice surface. Some pictures are selected to be processed by a specific time interval. An image segmentation method is applied to images to determine the contour areas. Color thermal images are used to exploit the main information. Red, green and blue elements of color images are investigated to find the best contour boundaries. The algorithms of image enhancement and noise removal are applied to images to obtain a high contrast and clear image. A novel edge detection algorithm based on differences in the color of the pixels is established to determine contour boundaries. In this method, the edges of the contours are obtained according to properties of red, blue and green image elements. The color image elements are assessed considering their information. Useful elements proceed to process and useless elements are removed from the process to reduce the consuming time. Neighbor pixels with close intensities are assigned in one contour and differences in intensities determine boundaries. The results are then verified by conducting experimental tests. An experimental setup is performed using ice samples and a thermal camera. To observe the created ice contour by the thermal camera, the samples, which are initially at -20° C, are contacted with a warmer surface. Pictures are captured for 20 seconds. The method is applied to five images ,which are captured at the time intervals of 5 seconds. The study shows the green image element carries no useful information; therefore, the boundary detection method is applied on red and blue image elements. In this case study, the results indicate that proposed algorithm shows the boundaries more effective than other edges detection methods such as Sobel and Canny. Comparison between the contour detection in this method and temperature analysis, which states real boundaries, shows a good agreement. This color image edge detection method is applicable to other similar cases according to their image properties.Keywords: color image processing, edge detection, ice contour boundary, salt ice, thermal image
Procedia PDF Downloads 3145994 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image
Authors: Sangeeta Yadav, Mantosh Biswas
Abstract:
In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.Keywords: cluster, ncolor method, K-mean method, interactive selection process
Procedia PDF Downloads 2975993 Shaping the Image of Museum Events in the Digital Media Era: A Quantitative Analysis of the Cat-Themed ‘Night at the Museum’ Event
Authors: Shuyu Zhao
Abstract:
This study uses the cat-themed "Night at the Museum" event of the Shanghai Museum as a case to examine how museum events are portrayed across various digital news platforms. Grounded in communication and cultural creativity theories and employing a three-tier framing approach, this research provides an in-depth analysis of media strategies in cross-platform museum image building. Through a quantitative content analysis, it is investigated that how digital media employ specific narrative strategies to shape the public perception of museum events. The findings reveal a prevalent use of leadership framing, highlighting the museum's unique role in cultural dissemination. By combining elements of museum culture with a pet-friendly theme, the "catty Night at the Museum" event serves as a distinctive example in exploring museum image construction within digital media. This study sheds light on how museum events, as unique cultural arenas, are positioned in the public mind, offering a fresh perspective for the promotion and image-building of museum activities.Keywords: cultural communication, digital media, museum, framing theory
Procedia PDF Downloads 185992 Automatic Moment-Based Texture Segmentation
Authors: Tudor Barbu
Abstract:
An automatic moment-based texture segmentation approach is proposed in this paper. First, we describe the related work in this computer vision domain. Our texture feature extraction, the first part of the texture recognition process, produces a set of moment-based feature vectors. For each image pixel, a texture feature vector is computed as a sequence of area moments. Second, an automatic pixel classification approach is proposed. The feature vectors are clustered using some unsupervised classification algorithm, the optimal number of clusters being determined using a measure based on validation indexes. From the resulted pixel classes one determines easily the desired texture regions of the image.Keywords: image segmentation, moment-based, texture analysis, automatic classification, validation indexes
Procedia PDF Downloads 4165991 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 1555990 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"
Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad
Abstract:
In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation
Procedia PDF Downloads 3825989 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique
Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit
Abstract:
In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes
Procedia PDF Downloads 2505988 Image Denoising Using Spatial Adaptive Mask Filter for Medical Images
Authors: R. Sumalatha, M. V. Subramanyam
Abstract:
In medical image processing the quality of the image is degraded in the presence of noise. Especially in ultra sound imaging and Magnetic resonance imaging the data was corrupted by signal dependent noise known as salt and pepper noise. Removal of noise from the medical images is a critical issue for researchers. In this paper, a new type of technique Adaptive Spatial Mask Filter (ASMF) has been proposed. The proposed filter is used to increase the quality of MRI and ultra sound images. Experimental results show that the proposed filter outperforms the implementation of mean, median, adaptive median filters in terms of MSE and PSNR.Keywords: salt and pepper noise, ASMF, PSNR, MSE
Procedia PDF Downloads 4355987 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses
Authors: William Huang
Abstract:
Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization
Procedia PDF Downloads 1525986 Two Years Retrospective Study of Body Fluid Cultures Obtained from Patients in the Intensive Care Unit of General Hospital of Ioannina
Authors: N. Varsamis, M. Gerasimou, P. Christodoulou, S. Mantzoukis, G. Kolliopoulou, N. Zotos
Abstract:
Purpose: Body fluids (pleural, peritoneal, synovial, pericardial, cerebrospinal) are an important element in the detection of microorganisms. For this reason, it is important to examine them in the Intensive Care Unit (ICU) patients. Material and Method: Body fluids are transported through sterile containers and enriched as soon as possible with Tryptic Soy Broth (TSB). After one day of incubation, the broth is poured into selective media: Blood, Mac Conkey No. 2, Chocolate, Mueller Hinton, Chapman and Saboureaud agar. The above selective media are incubated directly for 2 days. After this period, if any number of microbial colonies are detected, gram staining is performed. After that, the isolated organisms are identified by biochemical techniques in the automated Microscan system (Siemens) and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by Kirby Bauer-based plate test. Results: In 2017 the Laboratory of Microbiology received 60 samples of body fluids from the ICU. More specifically the Microbiology Department received 6 peritoneal fluid specimens, 18 pleural fluid specimens and 36 cerebrospinal fluid specimens. 36 positive cultures were tested. S. epidermidis was identified in 18 specimens, S. haemolyticus in 6, and E. faecium in 12. Conclusions: The results show low detection of microorganisms in body fluid cultures.Keywords: body fluids, culture, intensive care unit, microorganisms
Procedia PDF Downloads 2025985 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Authors: Mahbub C. Mishu, Venktesh N. Dubey, Tamas Hickish, Jonathan Cole
Abstract:
Pressure ulcer is a common problem for today's healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body,blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.Keywords: pressure ulcer, viscoelastic material, mathematical model, experimental validation
Procedia PDF Downloads 3115984 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1385983 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection
Procedia PDF Downloads 4575982 Bone Mineral Density and Trabecular Bone Score in Ukrainian Men with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk
Abstract:
Osteoporosis and obesity are widespread diseases in people over 50 years associated with changes in structure and body composition. Нigher body mass index (BMI) values are associated with greater bone mineral density (BMD). However, trabecular bone score (TBS) indirectly explores bone quality, independently of BMD. The aim of our study was to evaluate the relationship between the BMD and TBS parameters in Ukrainian men suffering from obesity. We examined 396 men aged 40-89 years. Depending on their BMI all the subjects were divided into two groups: Group I – patients with obesity whose BMI was ≥ 30 kg/m2 (n=129) and Group II – patients without obesity and BMI of < 30 kg/m2 (n=267). The BMD of total body, lumbar spine L1-L4, femoral neck and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on DXA machine (product of Med-Imaps, Pessac, France). In general, obese men had a significantly higher BMD of lumbar spine L1-L4, femoral neck, total body and ultradistal forearm (p < 0.001) in comparison with men without obesity. The TBS of L1-L4 was significantly lower in obese men compared to non-obese ones (p < 0.001). BMD of lumbar spine L1-L4, femoral neck and total body significantly differ in men aged 40-49, 50-59, 60-69, and 80-89 years (p < 0.05). At the same time, in men aged 70-79 years, BMD of lumbar spine L1-L4 (p=0.46), femoral neck (p=0.18), total body (p=0.21), ultra-distal forearm (p=0.13), and TBS (p=0.07) did not significantly differ. A significant positive correlation between the fat mass and the BMD at different sites was observed. However, the correlation between the fat mass and TBS of L1-L4 was also significant, though negative.Keywords: bone mineral density, trabecular bone score, obesity, men
Procedia PDF Downloads 4635981 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle
Authors: Saud Hassan
Abstract:
This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method
Procedia PDF Downloads 7815980 Contrast Enhancement of Color Images with Color Morphing Approach
Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi
Abstract:
Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.Keywords: contrast enhacement, normalized RGB, adaptive histogram equalization, cumulative variance.
Procedia PDF Downloads 3765979 Deep-Learning to Generation of Weights for Image Captioning Using Part-of-Speech Approach
Authors: Tiago do Carmo Nogueira, Cássio Dener Noronha Vinhal, Gélson da Cruz Júnior, Matheus Rudolfo Diedrich Ullmann
Abstract:
Generating automatic image descriptions through natural language is a challenging task. Image captioning is a task that consistently describes an image by combining computer vision and natural language processing techniques. To accomplish this task, cutting-edge models use encoder-decoder structures. Thus, Convolutional Neural Networks (CNN) are used to extract the characteristics of the images, and Recurrent Neural Networks (RNN) generate the descriptive sentences of the images. However, cutting-edge approaches still suffer from problems of generating incorrect captions and accumulating errors in the decoders. To solve this problem, we propose a model based on the encoder-decoder structure, introducing a module that generates the weights according to the importance of the word to form the sentence, using the part-of-speech (PoS). Thus, the results demonstrate that our model surpasses state-of-the-art models.Keywords: gated recurrent units, caption generation, convolutional neural network, part-of-speech
Procedia PDF Downloads 1025978 A Neural Approach for Color-Textured Images Segmentation
Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui
Abstract:
In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.Keywords: segmentation, color-texture, neural networks, fractal, watershed
Procedia PDF Downloads 3465977 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Zineb Nougrara
Abstract:
In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: satellite image, road network, nodes, image analysis and processing
Procedia PDF Downloads 2745976 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method
Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir
Abstract:
The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection
Procedia PDF Downloads 1135975 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 101