Search results for: bench slope
122 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS
Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc
Abstract:
Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.Keywords: GIS, livestock, LULC, remote sensing, suitable lands
Procedia PDF Downloads 293121 Spatiotemporal Variability in Rainfall Trends over Sinai Peninsula Using Nonparametric Methods and Discrete Wavelet Transforms
Authors: Mosaad Khadr
Abstract:
Knowledge of the temporal and spatial variability of rainfall trends has been of great concern for efficient water resource planning, management. In this study annual, seasonal and monthly rainfall trends over the Sinai Peninsula were analyzed by using absolute homogeneity tests, nonparametric Mann–Kendall (MK) test and Sen’s slope estimator methods. The homogeneity of rainfall time-series was examined using four absolute homogeneity tests namely, the Pettitt test, standard normal homogeneity test, Buishand range test, and von Neumann ratio test. Further, the sequential change in the trend of annual and seasonal rainfalls is conducted using sequential MK (SQMK) method. Then the trend analysis based on discrete wavelet transform technique (DWT) in conjunction with SQMK method is performed. The spatial patterns of the detected rainfall trends were investigated using a geostatistical and deterministic spatial interpolation technique. The results achieved from the Mann–Kendall test to the data series (using the 5% significance level) highlighted that rainfall was generally decreasing in January, February, March, November, December, wet season, and annual rainfall. A significant decreasing trend in the winter and annual rainfall with significant levels were inferred based on the Mann-Kendall rank statistics and linear trend. Further, the discrete wavelet transform (DWT) analysis reveal that in general, intra- and inter-annual events (up to 4 years) are more influential in affecting the observed trends. The nature of the trend captured by both methods is similar for all of the cases. On the basis of spatial trend analysis, significant rainfall decreases were also noted in the investigated stations. Overall, significant downward trends in winter and annual rainfall over the Sinai Peninsula was observed during the study period.Keywords: trend analysis, rainfall, Mann–Kendall test, discrete wavelet transform, Sinai Peninsula
Procedia PDF Downloads 168120 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt
Authors: Shereif. H. Mahmoud
Abstract:
Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)
Procedia PDF Downloads 358119 A Strategy to Oil Production Placement Zones Based on Maximum Closeness
Authors: Waldir Roque, Gustavo Oliveira, Moises Santos, Tatiana Simoes
Abstract:
Increasing the oil recovery factor of an oil reservoir has been a concern of the oil industry. Usually, the production placement zones are defined after some analysis of geological and petrophysical parameters, being the rock porosity, permeability and oil saturation of fundamental importance. In this context, the determination of hydraulic flow units (HFUs) renders an important step in the process of reservoir characterization since it may provide specific regions in the reservoir with similar petrophysical and fluid flow properties and, in particular, techniques supporting the placement of production zones that favour the tracing of directional wells. A HFU is defined as a representative volume of a total reservoir rock in which petrophysical and fluid flow properties are internally consistent and predictably distinct of other reservoir rocks. Technically, a HFU is characterized as a rock region that exhibit flow zone indicator (FZI) points lying on a straight line of the unit slope. The goal of this paper is to provide a trustful indication for oil production placement zones for the best-fit HFUs. The FZI cloud of points can be obtained from the reservoir quality index (RQI), a function of effective porosity and permeability. Considering log and core data the HFUs are identified and using the discrete rock type (DRT) classification, a set of connected cell clusters can be found and by means a graph centrality metric, the maximum closeness (MaxC) cell is obtained for each cluster. Considering the MaxC cells as production zones, an extensive analysis, based on several oil recovery factor and oil cumulative production simulations were done for the SPE Model 2 and the UNISIM-I-D synthetic fields, where the later was build up from public data available from the actual Namorado Field, Campos Basin, in Brazil. The results have shown that the MaxC is actually technically feasible and very reliable as high performance production placement zones.Keywords: hydraulic flow unit, maximum closeness centrality, oil production simulation, production placement zone
Procedia PDF Downloads 328118 Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode
Authors: B. Hammouti, H. Oudda, A. Benabdellah, A. Benayada, A. Aouniti
Abstract:
Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level.Keywords: ferrocene, strehlow, concentrated acid, corrosion, Generalised pH, sensor carbon paste electrode
Procedia PDF Downloads 354117 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mojo Mengistu Gelasso
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 77116 Woody Carbon Stock Potentials and Factor Affecting Their Storage in Munessa Forest, Southern Ethiopia
Authors: Mengistu Gelasso Mojo
Abstract:
The tropical forest is considered the most important forest ecosystem for mitigating climate change by sequestering a high amount of carbon. The potential carbon stock of the forest can be influenced by many factors. Therefore, studying these factors is crucial for understanding the determinants that affect the potential for woody carbon storage in the forest. This study was conducted to evaluate the potential for woody carbon stock and how it varies based on plant community types, as well as along altitudinal, slope, and aspect gradients in the Munessa dry Afromontane forest. Vegetation data was collected using systematic sampling. Five line transects were established at 100 m intervals along the altitudinal gradient between two consecutive transect lines. On each transect, 10 quadrats (20 x 20 m), separated by 200 m, were established. The woody carbon was estimated using an appropriate allometric equation formulated for tropical forests. The data was analyzed using one-way ANOVA in R software. The results showed that the total woody carbon stock of the Munessa forest was 210.43 ton/ha. The analysis of variance revealed that woody carbon density varied significantly based on environmental factors, while community types had no significant effect. The highest mean carbon stock was found at middle altitudes (2367-2533 m.a.s.l), lower slopes (0-13%), and west-facing aspects. The Podocarpus falcatus-Croton macrostachyus community type also contributed a higher woody carbon stock, as larger tree size classes and older trees dominated it. Overall, the potential for woody carbon sequestration in this study was strongly associated with environmental variables. Additionally, the uneven distribution of species with larger diameter at breast height (DBH) in the study area might be linked to anthropogenic factors, as the current forest growth indicates characteristics of a secondary forest. Therefore, our study suggests that the development and implementation of a sustainable forest management plan is necessary to increase the carbon sequestration potential of this forest and mitigate climate change.Keywords: munessa forest, woody carbon stock, environmental factors, climate mitigation
Procedia PDF Downloads 82115 Determining Optimum Locations for Runoff Water Harvesting in W. Watir, South Sinai, Using RS, GIS, and WMS Techniques
Authors: H. H. Elewa, E. M. Ramadan, A. M. Nosair
Abstract:
Rainfall water harvesting is considered as an important tool for overcoming water scarcity in arid and semi-arid region. Wadi Watir in the southeastern part of Sinai Peninsula is considered as one of the main and active basins in the Gulf of Aqaba drainage system. It is characterized by steep hills mainly consist of impermeable rocks, whereas the streambeds are covered by a highly permeable mixture of gravel and sand. A comprehensive approach involving the integration of geographic information systems, remote sensing and watershed modeling was followed to identify the RWH capability in this area. Eight thematic layers, viz volume of annual flood, overland flow distance, maximum flow distance, rock or soil infiltration, drainage frequency density, basin area, basin slope and basin length were used as a multi-parametric decision support system for conducting weighted spatial probability models (WSPMs) to determine the potential areas for the RWH. The WSPMs maps classified the area into five RWH potentiality classes ranging from the very low to very high. Three performed WSPMs' scenarios for W. Watir reflected identical results among their maps for the high and very high RWH potentiality classes, which are the most suitable ones for conducting surface water harvesting techniques. There is also a reasonable match with respect to the potentiality of runoff harvesting areas with a probability of moderate, low and very low among the three scenarios. WSPM results have shown that the high and very high classes, which are the most suitable for the RWH are representing approximately 40.23% of the total area of the basin. Accordingly, several locations were decided for the establishment of water harvesting dams and cisterns to improve the water conditions and living environment in the study area.Keywords: Sinai, Wadi Watir, remote sensing, geographic information systems, watershed modeling, runoff water harvesting
Procedia PDF Downloads 356114 Implementation of Dozer Push Measurement under Payment Mechanism in Mining Operation
Authors: Anshar Ajatasatru
Abstract:
The decline of coal prices over past years have been significantly increasing the awareness of effective mining operation. A viable step must be undertaken in becoming more cost competitive while striving for best mining practice especially at Melak Coal Mine in East Kalimantan, Indonesia. This paper aims to show how effective dozer push measurement method can be implemented as it is controlled by contract rate on the unit basis of USD ($) per bcm. The method emerges from an idea of daily dozer push activity that continually shifts the overburden until final target design by mine planning. Volume calculation is then performed by calculating volume of each time overburden is removed within determined distance using cut and fill method from a high precision GNSS system which is applied into dozer as a guidance to ensure the optimum result of overburden removal. Accumulation of daily to weekly dozer push volume is found 95 bcm which is multiplied by average sell rate of $ 0,95, thus the amount monthly revenue is $ 90,25. Furthermore, the payment mechanism is then based on push distance and push grade. The push distance interval will determine the rates that vary from $ 0,9 - $ 2,69 per bcm and are influenced by certain push slope grade from -25% until +25%. The amount payable rates for dozer push operation shall be specifically following currency adjustment and is to be added to the monthly overburden volume claim, therefore, the sell rate of overburden volume per bcm may fluctuate depends on the real time exchange rate of Jakarta Interbank Spot Dollar Rate (JISDOR). The result indicates that dozer push measurement can be one of the surface mining alternative since it has enabled to refine method of work, operating cost and productivity improvement apart from exposing risk of low rented equipment performance. In addition, payment mechanism of contract rate by dozer push operation scheduling will ultimately deliver clients by almost 45% cost reduction in the form of low and consistent cost.Keywords: contract rate, cut-fill method, dozer push, overburden volume
Procedia PDF Downloads 315113 Calibration and Validation of ArcSWAT Model for Estimation of Surface Runoff and Sediment Yield from Dhangaon Watershed
Authors: M. P. Tripathi, Priti Tiwari
Abstract:
Soil and Water Assessment Tool (SWAT) is a distributed parameter continuous time model and was tested on daily and fortnightly basis for a small agricultural watershed (Dhangaon) of Chhattisgarh state in India. The SWAT model recently interfaced with ArcGIS and called as ArcSWAT. The watershed and sub-watershed boundaries, drainage networks, slope and texture maps were generated in the environment of ArcGIS of ArcSWAT. Supervised classification method was used for land use/cover classification from satellite imageries of the years 2009 and 2012. Manning's roughness coefficient 'n' for overland flow and channel flow and Fraction of Field Capacity (FFC) were calibrated for monsoon season of the years 2009 and 2010. The model was validated on a daily basis for the years 2011 and 2012 by using the observed daily rainfall and temperature data. Calibration and validation results revealed that the model was predicting the daily surface runoff and sediment yield satisfactorily. Sensitivity analysis showed that the annual sediment yield was inversely proportional to the overland and channel 'n' values whereas; annual runoff and sediment yields were directly proportional to the FFC. The model was also tested (calibrated and validated) for the fortnightly runoff and sediment yield for the year 2009-10 and 2011-12, respectively. Simulated values of fortnightly runoff and sediment yield for the calibration and validation years compared well with their observed counterparts. The calibration and validation results revealed that the ArcSWAT model could be used for identification of critical sub-watershed and for developing management scenarios for the Dhangaon watershed. Further, the model should be tested for simulating the surface runoff and sediment yield using generated rainfall and temperature before applying it for developing the management scenario for the critical or priority sub-watersheds.Keywords: watershed, hydrologic and water quality, ArcSWAT model, remote sensing, GIS, runoff and sediment yield
Procedia PDF Downloads 377112 Advanced Study on Hydrogen Evolution Reaction based on Nickel sulfide Catalyst
Authors: Kishor Kumar Sadasivuni, Mizaj Shabil Sha, Assim Alajali, Godlaveeti Sreenivasa Kumar, Aboubakr M. Abdullah, Bijandra Kumar, Mithra Geetha
Abstract:
A potential pathway for efficient hydrogen production from water splitting electrolysis involves catalysis or electrocatalysis, which plays a crucial role in energy conversion and storage. Hydrogen generated by electrocatalytic water splitting requires active, stable, and low-cost catalysts or electrocatalysts to be developed for practical applications. In this study, we evaluated combination of 2D materials of NiS nanoparticle catalysts for hydrogen evolution reactions. The photocatalytic H₂ production rate of this nanoparticle is high and exceeds that obtained on components alone. Nanoparticles serve as electron collectors and transporters, which explains this improvement. Moreover, a current density was recorded at reduced working potential by 0.393 mA. Calculations based on density functional theory indicate that the nanoparticle's hydrogen evolution reaction catalytic activity is caused by strong interaction between its components at the interface. The samples were analyzed by XPS and morphologically by FESEM for the best outcome, depending on their structural shapes. Use XPS and morphologically by FESEM for the best results. This nanocomposite demonstrated higher electro-catalytic activity, and a low tafel slope of 60 mV/dec. Additionally, despite 1000 cycles into a durability test, the electrocatalyst still displays excellent stability with minimal current loss. The produced catalyst has shown considerable potential for use in the evolution of hydrogen due to its robust synthesis. According to these findings, the combination of 2D materials of nickel sulfide sample functions as good electocatalyst for H₂ evolution. Additionally, the research being done in this fascinating field will surely push nickel sulfide-based technology closer to becoming an industrial reality and revolutionize existing energy issues in a sustainable and clean manner.Keywords: electrochemical hydrogenation, nickel sulfide, electrocatalysts, energy conversion, catalyst
Procedia PDF Downloads 123111 Urban Impervious and its Impact on Storm Water Drainage Systems
Authors: Ratul Das, Udit Narayan Das
Abstract:
Surface imperviousness in urban area brings significant changes in storm water drainage systems and some recent studies reveals that the impervious surfaces that passes the storm water runoff directly to drainage systems through storm water collection systems, called directly connected impervious area (DCIA) is an effective parameter rather than total impervious areas (TIA) for computation of surface runoff. In the present study, extension of DCIA and TIA were computed for a small sub-urban area of Agartala, the capital of state Tripura. Total impervious surfaces covering the study area were identified on the existing storm water drainage map from landuse map of the study area in association with field assessments. Also, DCIA assessed through field survey were compared to DCIA computed by empirical relationships provided by other investigators. For the assessment of DCIA in the study area two methods were adopted. First, partitioning the study area into four drainage sub-zones based on average basin slope and laying of existing storm water drainage systems. In the second method, the entire study area was divided into small grids. Each grid or parcel comprised of 20m× 20m area. Total impervious surfaces were delineated from landuse map in association with on-site assessments for efficient determination of DCIA within each sub-area and grid. There was a wide variation in percent connectivity of TIA across each sub-drainage zone and grid. In the present study, total impervious area comprises 36.23% of the study area, in which 21.85% of the total study area is connected to storm water collection systems. Total pervious area (TPA) and others comprise 53.20% and 10.56% of the total area, respectively. TIA recorded by field assessment (36.23%) was considerably higher than that calculated from the available land use map (22%). From the analysis of recoded data, it is observed that the average percentage of connectivity (% DCIA with respect to TIA) is 60.31 %. The analysis also reveals that the observed DCIA lies below the line of optimal impervious surface connectivity for a sub-urban area provided by other investigators and which indicate the probable reason of water logging conditions in many parts of the study area during monsoon period.Keywords: Drainage, imperviousness, runoff, storm water.
Procedia PDF Downloads 348110 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction
Authors: C. S. Subhashini, H. L. Premaratne
Abstract:
Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.Keywords: landslides, influencing factors, neural network model, hidden markov model
Procedia PDF Downloads 383109 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products
Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis
Abstract:
Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue
Procedia PDF Downloads 406108 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies
Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak
Abstract:
Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states
Procedia PDF Downloads 75107 The Stable Isotopic Composition of Pedogenic Carbonate in the Minusinsk Basin, South Siberia
Authors: Jessica Vasil'chuk, Elena Ivanova, Pavel Krechetov, Vladimir Litvinsky, Nadine Budantseva, Julia Chizhova, Yurij Vasil'chuk
Abstract:
Carbonate minerals’ isotopic composition is widely used as a proxy for environmental parameters of the past. Pedogenic carbonate coatings on lower surfaces of coarse rock fragments are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. The purpose of the research is to characterize the isotopic composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with isotopic composition of soil pore water, precipitation, vegetation and parent material. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized, therefore soil pore water was extracted by ethanol. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from −7.49 to −10.5‰ (vs V-PDB), and the smallest value −13.9‰ corresponds the coatings found between two buried soil horizons which 14C dates are 4.6 and 5.2 kyr BP. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates’ δ18O range is from −8.3 to −11.1‰ and near the Hankul Lake is from −9.0 to −10.2‰ all ranges are quite similar and may indicate coatings’ uniform formation conditions. δ13C values of carbonate coatings in Kazanovka vary from −2.5 to −6.7‰, the highest values correspond to the soils of Askiz and Syglygkug rivers former floodplains. For Sayanogorsk the range is from −4.9 to −6.8‰ and for Hankul from −2.3 to −5.7‰, where the highest value is for the modern salt crust. δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers of coatings, that can indicate differences connected with the diffusion of organic material. Carbonate parent material δ18O value in the region vary from −11.1 to −12.0‰ and δ13C values vary from −4.9 to −5.7‰. Soil pore water δ18O values that determine the oxygen isotope composition of carbonates vary due to the processes of transpiration and mixing in the studied sites in a wide range of −2.0 to −13.5‰ (vs V-SMOW). Precipitation waters show δ18O values from -6.6‰ in May and -19.0‰ in January (snow) due to the temperature difference. The main conclusions are as follows: pedogenic carbonates δ13C values (−7…−2,5‰) show no correlation with modern C3 vegetation δ13C values (−30…−26‰), expected values under such vegetation are (−19…−15‰) but are closer to C4 vegetation. Late Holocene climate for the Minusinsk Hollow according to obtained data on isotope composition of carbonates and soil pore water chemical composition was dryer and cooler than present, that does not contradict with paleocarpology data obtained for the region. The research was supported by Russian Science Foundation (grant №14-27-00083).Keywords: carbon, oxygen, pedogenic carbonates, South Siberia, stable isotopes
Procedia PDF Downloads 296106 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes
Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana
Abstract:
The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis
Procedia PDF Downloads 47105 Geospatial Analysis for Predicting Sinkhole Susceptibility in Greene County, Missouri
Authors: Shishay Kidanu, Abdullah Alhaj
Abstract:
Sinkholes in the karst terrain of Greene County, Missouri, pose significant geohazards, imposing challenges on construction and infrastructure development, with potential threats to lives and property. To address these issues, understanding the influencing factors and modeling sinkhole susceptibility is crucial for effective mitigation through strategic changes in land use planning and practices. This study utilizes geographic information system (GIS) software to collect and process diverse data, including topographic, geologic, hydrogeologic, and anthropogenic information. Nine key sinkhole influencing factors, ranging from slope characteristics to proximity to geological structures, were carefully analyzed. The Frequency Ratio method establishes relationships between attribute classes of these factors and sinkhole events, deriving class weights to indicate their relative importance. Weighted integration of these factors is accomplished using the Analytic Hierarchy Process (AHP) and the Weighted Linear Combination (WLC) method in a GIS environment, resulting in a comprehensive sinkhole susceptibility index (SSI) model for the study area. Employing Jenk's natural break classifier method, the SSI values are categorized into five distinct sinkhole susceptibility zones: very low, low, moderate, high, and very high. Validation of the model, conducted through the Area Under Curve (AUC) and Sinkhole Density Index (SDI) methods, demonstrates a robust correlation with sinkhole inventory data. The prediction rate curve yields an AUC value of 74%, indicating a 74% validation accuracy. The SDI result further supports the success of the sinkhole susceptibility model. This model offers reliable predictions for the future distribution of sinkholes, providing valuable insights for planners and engineers in the formulation of development plans and land-use strategies. Its application extends to enhancing preparedness and minimizing the impact of sinkhole-related geohazards on both infrastructure and the community.Keywords: sinkhole, GIS, analytical hierarchy process, frequency ratio, susceptibility, Missouri
Procedia PDF Downloads 73104 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 79103 Fully Instrumented Small-Scale Fire Resistance Benches for Aeronautical Composites Assessment
Authors: Fabienne Samyn, Pauline Tranchard, Sophie Duquesne, Emilie Goncalves, Bruno Estebe, Serge Boubigot
Abstract:
Stringent fire safety regulations are enforced in the aeronautical industry due to the consequences that potential fire event on an aircraft might imply. This is so much true that the fire issue is considered right from the design of the aircraft structure. Due to the incorporation of an increasing amount of polymer matrix composites in replacement of more conventional materials like metals, the nature of the fire risks is changing. The choice of materials used is consequently of prime importance as well as the evaluation of its resistance to fire. The fire testing is mostly done using the so-called certification tests according to standards such as the ISO2685:1998(E). The latter describes a protocol to evaluate the fire resistance of structures located in fire zone (ability to withstand fire for 5min). The test consists in exposing an at least 300x300mm² sample to an 1100°C propane flame with a calibrated heat flux of 116kW/m². This type of test is time-consuming, expensive and gives access to limited information in terms of fire behavior of the materials (pass or fail test). Consequently, it can barely be used for material development purposes. In this context, the laboratory UMET in collaboration with industrial partners has developed a horizontal and a vertical small-scale instrumented fire benches for the characterization of the fire behavior of composites. The benches using smaller samples (no more than 150x150mm²) enables to cut downs costs and hence to increase sampling throughput. However, the main added value of our benches is the instrumentation used to collect useful information to understand the behavior of the materials. Indeed, measurements of the sample backside temperature are performed using IR camera in both configurations. In addition, for the vertical set up, a complete characterization of the degradation process, can be achieved via mass loss measurements and quantification of the gasses released during the tests. These benches have been used to characterize and study the fire behavior of aeronautical carbon/epoxy composites. The horizontal set up has been used in particular to study the performances and durability of protective intumescent coating on 2mm thick 2D laminates. The efficiency of this approach has been validated, and the optimized coating thickness has been determined as well as the performances after aging. Reductions of the performances after aging were attributed to the migration of some of the coating additives. The vertical set up has enabled to investigate the degradation process of composites under fire. An isotropic and a unidirectional 4mm thick laminates have been characterized using the bench and post-fire analyses. The mass loss measurements and the gas phase analyses of both composites do not present significant differences unlike the temperature profiles in the thickness of the samples. The differences have been attributed to differences of thermal conductivity as well as delamination that is much more pronounced for the isotropic composite (observed on the IR-images). This has been confirmed by X-ray microtomography. The developed benches have proven to be valuable tools to develop fire safe composites.Keywords: aeronautical carbon/epoxy composite, durability, intumescent coating, small-scale ‘ISO 2685 like’ fire resistance test, X-ray microtomography
Procedia PDF Downloads 267102 Seamounts and Submarine Landslides: Study Case of Island Arcs Area in North of Sulawesi
Authors: Muhammad Arif Rahman, Gamma Abdul Jabbar, Enggar Handra Pangestu, Alfi Syahrin Qadri, Iryan Anugrah Putra, Rizqi Ramadhandi.
Abstract:
Indonesia lies above three major tectonic plates, Indo-Australia plate, Eurasia plate, and Pacific plate. Interactions between those plates resulted in high tectonic and volcanic activities that corelates into high risk of geological hazards in adjacent areas, one of the areas is in North of Sulawesi’s Islands. This case raises a problem in terms of infrastructure in order to mitigate existing infrastructure and various future infrastructures plan. One of the infrastructures that is essentials to enhance telecommunication aspect is submarine fiber optic cable, that has risk to geological hazard. This cable is essential that act as backbone in telecommunication. Damaged fiber optic cables can pose serious problem that make existing signal to be loss and have negative impact to people’s social and economic factor with also decreasing various governmental services performance. Submarine cables are facing challenges in terms of geological hazards, for instance are seamounts activity. Previous studies show that until 2023, five seamounts are identified in North of Sulawesi. Seamounts itself can damage and trigger many activities that can risks submarine cables, one of the examples is submarine landslide. Main focuses of this study are to identify new possible seamounts and submarine landslide path in area North of Sulawesi Islands to help minimize risks pose by those hazards, either to existing or future plan submarine cables. Using bathymetry data, this study conduct slope analysis and use distinctive morphological features to interpret possible seamounts. Then we mapped out valleys in between seamounts and determine where sediments might flow in case of landslide, and to finally, know how it affect submarine cables in the area.Keywords: bathymetry, geological hazard, mitigation, seamount, submarine cable, submarine landslide, volcanic activity
Procedia PDF Downloads 65101 Maximizing Giant Prawn Resource Utilization in Banjar Regency, Indonesia: A CPUE and MSY Analysis
Authors: Ahmadi, Iriansyah, Raihana Yahman
Abstract:
The giant freshwater prawn (Macrobrachium rosenbergii de Man, 1879) is a valuable species for fisheries and aquaculture, especially in Southeast Asia, including Indonesia due to their high market demand and potential for export. The growing demand for prawns is straining the sustainability of the Banjar Regency fishery. To ensure the long-term sustainability and economic viability of the prawn fishing in this region, it is imperative to implement evidence-based management practices. This requires comprehensive data on the Catch per Unit Effort (CPUE), Maximum Sustainable Yield (MSY) and the current rate of prawn resource exploitation. it analyzed five years of prawn catch data (2019-2023) obtained from South Kalimantan Marine and Fisheries Services. Fishing gears (e.g. hook & line and cast net) were first standardized with Fishing Power Index, and then calculated effort and MSY. The intercept (a) and the slope (b) values of regression curve were used to estimate the catch-maximum sustainable yield (CMSY) and optimal fishing effort (Fopt) levels within the framework of the Surplus Production Model. The estimated rates of resource utilization were then compared to the criteria of The National Commission of Marine Fish Stock Assessment. The findings showed that the CPUE value peaked in 2019 at 33.48 kg/trip, while the lowest value observed in 2022 at 5.12 kg/trip. The CMSY value was estimated to be 17,396 kg/year, corresponding to the Fopt level of 1,636 trips/year. The highest utilization rate was 56.90% recorded in 2020, while the lowest rate was observed in 2021 at 46.16%. The annual utilization rates were classified as “medium”, suggesting that increasing fishing effort by 45% could potentially maximize prawn catches at an optimum level. These findings provide a baseline for sustainable fisheries management in the region.Keywords: giant prawns, CPUE, fishing power index, sustainable potential, utilization rate
Procedia PDF Downloads 15100 Quantitative and Qualitative Analysis of Randomized Controlled Trials in Physiotherapy from India
Authors: K. Hariohm, V. Prakash, J. Saravana Kumar
Abstract:
Introduction and Rationale: Increased scope of Physiotherapy (PT) practice also has contributed to research in the field of PT. It is essential to determine the production and quality of the clinical trials from India since, it may reflect the scientific growth of the profession. These trends can be taken as a baseline to measure our performance and also can be used as a guideline for the future trials. Objective: To quantify and analyze qualitatively the RCT’s from India from the period 2000-2013’ May, and classify data for the information process. Methods: Studies were searched in the Medline database using the key terms “India”, “Indian”, “Physiotherapy”. Clinical trials only with PT authors were included. Trials out of scope of PT practice and on animals were excluded. Retrieved valid articles were analyzed for published year, type of participants, area of study, PEDro score, outcome measure domains of impairment, activity, participation; ‘a priori’ sample size calculation, region, and explanation of the intervention. Result: 45 valid articles were retrieved from the year 2000-2013’ May. The majority of articles were done on symptomatic participants (81%). The frequencies of conditions repeated more were low back pain (n-7) and diabetes (n-4). PEDro score with mode 5 and upper limit of 8 and lower limit 4 was found. 97.2% of studies measure the outcome at the impairment level, 34% in activity level, and 27.8% in participation level. 29.7% of studies did ‘a priori’ sample size calculation. Correlation of year trend and PEDro score found to be not significant (p>.05). Individual PEDro item analysis showed, randomization (100%), concealment (33%) baseline (76%), blinding-subject, therapist, assessor (9.1%, 0%, 10%), follow-up (89%) ITT (15%), statistics between groups (100%), measures of variance (88 %). Conclusion: The trend shows an upward slope in terms of RCTs published from India which is a good indicator. The qualitative analysis showed some gaps in the clinical trial design, which can be expected to be, fulfilled by the future researchers.Keywords: RCT, PEDro, physical therapy, rehabilitation
Procedia PDF Downloads 33999 Effect of Non-Regulated pH on the Dynamics of Dark Fermentative Biohydrogen Production with Suspended and Immobilized Cell Culture
Authors: Joelle Penniston, E. B. Gueguim-Kana
Abstract:
Biohydrogen has been identified as a promising alternative to the use of non-renewable fossil reserves, owing to its sustainability and non-polluting nature. pH is considered as a key parameter in fermentative biohydrogen production processes, due to its effect on the hydrogenase activity, metabolic activity as well as substrate hydrolysis. The present study assesses the influence of regulating pH on dark fermentative biohydrogen production. Four experimental hydrogen production schemes were evaluated. Two were implemented using suspended cells under regulated pH growth conditions (Sus_R) and suspended and non-regulated pH (Sus_N). The two others regimes consisted of alginate immobilized cells under pH regulated growth conditions (Imm_R) and immobilized and non-pH regulated conditions (Imm_N). All experiments were carried out at 37.5°C with glucose as sole source of carbon. Sus_R showed a lag time of 5 hours and a peak hydrogen fraction of 36% and a glucose degradation of 37%, compared to Sus_N which showed a peak hydrogen fraction of 44% and complete glucose degradation. Both suspended culture systems showed a higher peak biohydrogen fraction compared to the immobilized cell system. Imm_R experiments showed a lag phase of 8 hours, a peak biohydrogen fraction of 35%, while Imm_N showed a lag phase of 5 hours, a peak biohydrogen fraction of 22%. 100% glucose degradation was observed in both pH regulated and non-regulated processes. This study showed that biohydrogen production in batch mode with suspended cells in a non-regulated pH environment results in a partial degradation of substrate, with lower yield. This scheme has been the culture mode of choice for most reported studies in biohydrogen research. The relatively lower slope in pH trend of the non-regulated pH experiment with immobilized cells (Imm_N) compared to Sus_N revealed that that immobilized systems have a better buffering capacity compared to suspended systems, which allows for the extended production of biohydrogen even under non-regulated pH conditions. However, alginate immobilized cultures in flask systems showed some drawbacks associated to high rate of gas production that leads to increased buoyancy of the immobilization beads. This ultimately impedes the release of gas out of the flask.Keywords: biohydrogen, sustainability, suspended, immobilized
Procedia PDF Downloads 34098 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters
Authors: Tridipa Biswas, Kamal Pandey
Abstract:
A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters
Procedia PDF Downloads 30697 Approximate-Based Estimation of Single Event Upset Effect on Statistic Random-Access Memory-Based Field-Programmable Gate Arrays
Authors: Mahsa Mousavi, Hamid Reza Pourshaghaghi, Mohammad Tahghighi, Henk Corporaal
Abstract:
Recently, Statistic Random-Access Memory-based (SRAM-based) Field-Programmable Gate Arrays (FPGAs) are widely used in aeronautics and space systems where high dependability is demanded and considered as a mandatory requirement. Since design’s circuit is stored in configuration memory in SRAM-based FPGAs; they are very sensitive to Single Event Upsets (SEUs). In addition, the adverse effects of SEUs on the electronics used in space are much higher than in the Earth. Thus, developing fault tolerant techniques play crucial roles for the use of SRAM-based FPGAs in space. However, fault tolerance techniques introduce additional penalties in system parameters, e.g., area, power, performance and design time. In this paper, an accurate estimation of configuration memory vulnerability to SEUs is proposed for approximate-tolerant applications. This vulnerability estimation is highly required for compromising between the overhead introduced by fault tolerance techniques and system robustness. In this paper, we study applications in which the exact final output value is not necessarily always a concern meaning that some of the SEU-induced changes in output values are negligible. We therefore define and propose Approximate-based Configuration Memory Vulnerability Factor (ACMVF) estimation to avoid overestimating configuration memory vulnerability to SEUs. In this paper, we assess the vulnerability of configuration memory by injecting SEUs in configuration memory bits and comparing the output values of a given circuit in presence of SEUs with expected correct output. In spite of conventional vulnerability factor calculation methods, which accounts any deviations from the expected value as failures, in our proposed method a threshold margin is considered depending on user-case applications. Given the proposed threshold margin in our model, a failure occurs only when the difference between the erroneous output value and the expected output value is more than this margin. The ACMVF is subsequently calculated by acquiring the ratio of failures with respect to the total number of SEU injections. In our paper, a test-bench for emulating SEUs and calculating ACMVF is implemented on Zynq-7000 FPGA platform. This system makes use of the Single Event Mitigation (SEM) IP core to inject SEUs into configuration memory bits of the target design implemented in Zynq-7000 FPGA. Experimental results for 32-bit adder show that, when 1% to 10% deviation from correct output is considered, the counted failures number is reduced 41% to 59% compared with the failures number counted by conventional vulnerability factor calculation. It means that estimation accuracy of the configuration memory vulnerability to SEUs is improved up to 58% in the case that 10% deviation is acceptable in output results. Note that less than 10% deviation in addition result is reasonably tolerable for many applications in approximate computing domain such as Convolutional Neural Network (CNN).Keywords: fault tolerance, FPGA, single event upset, approximate computing
Procedia PDF Downloads 19896 On the Survival of Individuals with Type 2 Diabetes Mellitus in the United Kingdom: A Retrospective Case-Control Study
Authors: Njabulo Ncube, Elena Kulinskaya, Nicholas Steel, Dmitry Pshezhetskiy
Abstract:
Life expectancy in the United Kingdom (UK) has been near constant since 2010, particularly for the individuals of 65 years and older. This trend has been also noted in several other countries. This slowdown in the increase of life expectancy was concurrent with the increase in the number of deaths caused by non-communicable diseases. Of particular concern is the world-wide exponential increase in the number of diabetes related deaths. Previous studies have reported increased mortality hazards among diabetics compared to non-diabetics, and on the differing effects of antidiabetic drugs on mortality hazards. This study aimed to estimate the all-cause mortality hazards and related life expectancies among type 2 diabetes (T2DM) patients in the UK using the time-variant Gompertz-Cox model with frailty. The study also aimed to understand the major causes of the change in life expectancy growth in the last decade. A total of 221 182 (30.8% T2DM, 57.6% Males) individuals aged 50 years and above, born between 1930 and 1960, inclusive, and diagnosed between 2000 and 2016, were selected from The Health Improvement Network (THIN) database of the UK primary care data and followed up to 31 December 2016. About 13.4% of participants died during the follow-up period. The overall all-cause mortality hazard ratio of T2DM compared to non-diabetic controls was 1.467 (1.381-1.558) and 1.38 (1.307-1.457) when diagnosed between 50 to 59 years and 60 to 74 years, respectively. The estimated life expectancies among T2DM individuals without further comorbidities diagnosed at the age of 60 years were 2.43 (1930-1939 birth cohort), 2.53 (1940-1949 birth cohort) and 3.28 (1950-1960 birth cohort) years less than those of non-diabetic controls. However, the 1950-1960 birth cohort had a steeper hazard function compared to the 1940-1949 birth cohort for both T2DM and non-diabetic individuals. In conclusion, mortality hazards for people with T2DM continue to be higher than for non-diabetics. The steeper mortality hazard slope for the 1950-1960 birth cohort might indicate the sub-population contributing to a slowdown in the growth of the life expectancy.Keywords: T2DM, Gompetz-Cox model with frailty, all-cause mortality, life expectancy
Procedia PDF Downloads 11895 Hydro-Meteorological Vulnerability and Planning in Urban Area: The Case of Yaoundé City in Cameroon
Authors: Ouabo Emmanuel Romaric, Amougou Armathe
Abstract:
Background and aim: The study of impacts of floods and landslides at a small scale, specifically in the urban areas of developing countries is done to provide tools and actors for a better management of risks in such areas, which are now being affected by climate change. The main objective of this study is to assess the hydrometeorological vulnerabilities associated with flooding and urban landslides to propose adaptation measures. Methods: Climatic data analyses were done by calculation of indices of climate change within 50 years (1960-2012). Analyses of field data to determine causes, the level of risk and its consequences on the area of study was carried out using SPSS 18 software. The cartographic analysis and GIS were used to refine the work in space. Then, spatial and terrain analyses were carried out to determine the morphology of field in relation with floods and landslide, and the diffusion on the field. Results: The interannual changes in precipitation has highlighted the surplus years (21), the deficit years (24) and normal years (7). Barakat method bring out evolution of precipitation by jerks and jumps. Floods and landslides are correlated to high precipitation during surplus and normal years. Data field analyses show that populations are conscious (78%) of the risks with 74% of them exposed, but their capacities of adaptation is very low (51%). Floods are the main risk. The soils are classed as feralitic (80%), hydromorphic (15%) and raw mineral (5%). Slope variation (5% to 15%) of small hills and deep valley with anarchic construction favor flood and landslide during heavy precipitation. Mismanagement of waste produce blocks free circulation of river and accentuate floods. Conclusion: Vulnerability of population to hydrometeorological risks in Yaoundé VI is the combination of variation of parameters like precipitation, temperature due to climate change, and the bad planning of construction in urban areas. Because of lack of channels for water to circulate due to saturation of soils, the increase of heavy precipitation and mismanagement of waste, the result are floods and landslides which causes many damages on goods and people.Keywords: climate change, floods, hydrometeorological, vulnerability
Procedia PDF Downloads 46594 Effect of Forests and Forest Cover Change on Rainfall in the Central Rift Valley of Ethiopia
Authors: Alemayehu Muluneh, Saskia Keesstra, Leo Stroosnijder, Woldeamlak Bewket, Ashenafi Burka
Abstract:
There are some scientific evidences and a belief by many that forests attract rain and deforestation contributes to a decline of rainfall. However, there is still a lack of concrete scientific evidence on the role of forests in rainfall amount. In this paper, we investigate the forest-rainfall relationships in the environmentally hot spot area of the Central Rift Valley (CRV) of Ethiopia. Specifically, we evaluate long term (1970-2009) rainfall variability and its relationship with historical forest cover and the relationship between existing forest cover and topographical variables and rainfall distribution. The study used 16 long term and 15 short term rainfall stations. The Mann-Kendall test, bi variate and multiple regression models were used. The results show forest and wood land cover continuously declined over the 40 years period (1970-2009), but annual rainfall in the rift valley floor increased by 6.42 mm/year. But, on the escarpment and highlands, annual rainfall decreased by 2.48 mm/year. The increase in annual rainfall in the rift valley floor is partly attributable to the increase in evaporation as a result of increasing temperatures from the 4 existing lakes in the rift valley floor. Though, annual rainfall is decreasing on the escarpment and highlands, there was no significant correlation between this rainfall decrease and forest and wood land decline and also rainfall variability in the region was not explained by forest cover. Hence, the decrease in annual rainfall on the escarpment and highlands is likely related to the global warming of the atmosphere and the surface waters of the Indian Ocean. Spatial variability of number of rainy days from systematically observed two-year’s rainfall data (2012-2013) was significantly (R2=-0.63) explained by forest cover (distance from forest). But, forest cover was not a significant variable (R2=-0.40) in explaining annual rainfall amount. Generally, past deforestation and existing forest cover showed very little effect on long term and short term rainfall distribution, but a significant effect on number of rainy days in the CRV of Ethiopia.Keywords: elevation, forest cover, rainfall, slope
Procedia PDF Downloads 54593 Effects of Nutrient Source and Drying Methods on Physical and Phytochemical Criteria of Pot Marigold (Calendula offiCinalis L.) Flowers
Authors: Leila Tabrizi, Farnaz Dezhaboun
Abstract:
In order to study the effect of plant nutrient source and different drying methods on physical and phytochemical characteristics of pot marigold (Calendula officinalis L., Asteraceae) flowers, a factorial experiment was conducted based on completely randomized design with three replications in Research Laboratory of University of Tehran in 2010. Different nutrient sources (vermicompost, municipal waste compost, cattle manure, mushroom compost and control) which were applied in a field experiment for flower production and different drying methods including microwave (300, 600 and 900 W), oven (60, 70 and 80oC) and natural-shade drying in room temperature, were tested. Criteria such as drying kinetic, antioxidant activity, total flavonoid content, total phenolic compounds and total carotenoid of flowers were evaluated. Results indicated that organic inputs as nutrient source for flowers had no significant effects on quality criteria of pot marigold except of total flavonoid content, while drying methods significantly affected phytochemical criteria. Application of microwave 300, 600 and 900 W resulted in the highest amount of total flavonoid content, total phenolic compounds and antioxidant activity, respectively, while oven drying caused the lowest amount of phytochemical criteria. Also, interaction effect of nutrient source and drying method significantly affected antioxidant activity in which the highest amount of antioxidant activity was obtained in combination of vermicompost and microwave 900 W. In addition, application of vermicompost combined with oven drying at 60oC caused the lowest amount of antioxidant activity. Based on results of drying trend, microwave drying showed a faster drying rate than those oven and natural-shade drying in which by increasing microwave power and oven temperature, time of flower drying decreased whereas slope of moisture content reduction curve showed accelerated trend.Keywords: drying kinetic, medicinal plant, organic fertilizer, phytochemical criteria
Procedia PDF Downloads 334