Search results for: active and passive renewable energy systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19284

Search results for: active and passive renewable energy systems

18654 Assessing Transition to Renewable Energy for Transportation in Indonesia through Drop-in Biofuel Utilization

Authors: Maslan Lamria, Ralph E. H. Sims, Tatang H. Soerawidjaja

Abstract:

In increasing its self-sufficiency on transportation fuel, Indonesia is currently developing commercial production and use of drop-in biofuel (DBF) from vegetable oil. To maximize the level of success, it is necessary to get insights on how the implementation would develop as well as any important factors. This study assessed the dynamics of transition from existing fossil fuel system to a renewable fuel system, which involves the transition from existing biodiesel to projected DBF. A systems dynamics approach was applied and a model developed to simulate the dynamics of liquid biofuel transition. The use of palm oil feedstock was taken as a case study to assess the projected DBF implementation by 2045. The set of model indicators include liquid fuel self-sufficiency, liquid biofuel share, foreign exchange savings and green-house gas emissions reduction. The model outputs showed that supports on DBF investment and use play an important role in the transition progress. Given assumptions which include application of a maximum level of supports over time, liquid fuel self-sufficiency would be still unfulfilled in which palm biofuel contribution is 0.2. Thus, other types of feedstock such as algae and oil feedstock from marginal lands need to be developed synergically. Regarding support on DBF use, this study recommended that removal of fossil subsidy would be necessary prior to applying a carbon tax policy effectively.

Keywords: biofuel, drop-in biofuel, energy transition, liquid fuel

Procedia PDF Downloads 145
18653 Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes.

Keywords: energy methods, masonry infilled frame, near-field earthquakes, seismic protection, supplemental damping devices

Procedia PDF Downloads 298
18652 Design and Development of an Autonomous Beach Cleaning Vehicle

Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk

Abstract:

In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.

Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics

Procedia PDF Downloads 27
18651 Control of Chaotic Behaviour in Parallel-Connected DC-DC Buck-Boost Converters

Authors: Ammar Nimer Natsheh

Abstract:

Chaos control is used to design a controller that is able to eliminate the chaotic behaviour of nonlinear dynamic systems that experience such phenomena. The paper describes the control of the bifurcation behaviour of a parallel-connected DC-DC buck-boost converter used to provide an interface between energy storage batteries and photovoltaic (PV) arrays as renewable energy sources. The paper presents a delayed feedback control scheme in a module converter comprises two identical buck-boost circuits and operates in the continuous-current conduction mode (CCM). MATLAB/SIMULINK simulation results show the effectiveness and robustness of the scheme.

Keywords: chaos, bifurcation, DC-DC Buck-Boost Converter, Delayed Feedback Control

Procedia PDF Downloads 438
18650 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate

Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre

Abstract:

Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.

Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort

Procedia PDF Downloads 148
18649 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique

Authors: S. Anuradha, V. Sandeep Kumar

Abstract:

The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.

Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension

Procedia PDF Downloads 447
18648 Conventional and Hybrid Network Energy Systems Optimization for Canadian Community

Authors: Mohamed Ghorab

Abstract:

Local generated and distributed system for thermal and electrical energy is sighted in the near future to reduce transmission losses instead of the centralized system. Distributed Energy Resources (DER) is designed at different sizes (small and medium) and it is incorporated in energy distribution between the hubs. The energy generated from each technology at each hub should meet the local energy demands. Economic and environmental enhancement can be achieved when there are interaction and energy exchange between the hubs. Network energy system and CO2 optimization between different six hubs presented Canadian community level are investigated in this study. Three different scenarios of technology systems are studied to meet both thermal and electrical demand loads for the six hubs. The conventional system is used as the first technology system and a reference case study. The conventional system includes boiler to provide the thermal energy, but the electrical energy is imported from the utility grid. The second technology system includes combined heat and power (CHP) system to meet the thermal demand loads and part of the electrical demand load. The third scenario has integration systems of CHP and Organic Rankine Cycle (ORC) where the thermal waste energy from the CHP system is used by ORC to generate electricity. General Algebraic Modeling System (GAMS) is used to model DER system optimization based on energy economics and CO2 emission analyses. The results are compared with the conventional energy system. The results show that scenarios 2 and 3 provide an annual total cost saving of 21.3% and 32.3 %, respectively compared to the conventional system (scenario 1). Additionally, Scenario 3 (CHP & ORC systems) provides 32.5% saving in CO2 emission compared to conventional system subsequent case 2 (CHP system) with a value of 9.3%.  

Keywords: distributed energy resources, network energy system, optimization, microgeneration system

Procedia PDF Downloads 190
18647 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review

Authors: G. W. Greubel, A. Kalam

Abstract:

This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.

Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant

Procedia PDF Downloads 58
18646 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator

Procedia PDF Downloads 198
18645 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, J. Franke

Abstract:

The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches.

Keywords: energy efficiency, energy efficiency value, energetic process efficiency, production

Procedia PDF Downloads 733
18644 Analyzing the Feasibility of Low-Cost Composite Wind Turbine Blades for Residential Energy Production

Authors: Aravindhan Nepolean, Chidamabaranathan Bibin, Rajesh K., Gopinath S., Ashok Kumar R., Arun Kumar S., Sadasivan N.

Abstract:

Wind turbine blades are an important parameter for surging renewable energy production. Optimizing blade profiles and developing new materials for wind turbine blades take a lot of time and effort. Even though many standards for wind turbine blades have been developed for large-scale applications, they are not more effective in small-scale applications. We used acrylonitrile-butadiene-styrene to make small-scale wind turbine blades in this study (ABS). We chose the material because it is inexpensive and easy to machine into the desired form. They also have outstanding chemical, stress, and creep resistance. The blade measures 332 mm in length and has a 664 mm rotor diameter. A modal study of blades is carried out, as well as a comparison with current e-glass fiber. They were able to balance the output with less vibration, according to the findings. Q blade software is used to simulate rotating output. The modal analysis testing and prototype validation of wind turbine blades were used for experimental validation.

Keywords: acrylonitrile-butadiene-styrene, e-glass fiber, modal, renewable energy, q-blade

Procedia PDF Downloads 161
18643 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: water mass flow rate, R-744, heat pump, solar evaporator, water heater

Procedia PDF Downloads 176
18642 Flexible Integration of Airbag Weakening Lines in Interior Components: Airbag Weakening with Jenoptik Laser Technology

Authors: Markus Remm, Sebastian Dienert

Abstract:

Vehicle interiors are not only changing in terms of design and functionality but also due to new driving situations in which, for example, autonomous operating modes are possible. Flexible seating positions are changing the requirements for passive safety system behavior and location in the interior of a vehicle. With fully autonomous driving, the driver can, for example, leave the position behind the steering wheel and take a seated position facing backward. Since autonomous and non-autonomous vehicles will share the same road network for the foreseeable future, accidents cannot be avoided, which makes the use of passive safety systems indispensable. With JENOPTIK-VOTAN® A technology, the trend towards flexible predetermined airbag weakening lines is enabled. With the help of laser beams, the predetermined weakening lines are introduced from the backside of the components so that they are absolutely invisible. This machining process is sensor-controlled and guarantees that a small residual wall thickness remains for the best quality and reliability for airbag weakening lines. Due to the wide processing range of the laser, the processing of almost all materials is possible. A CO₂ laser is used for many plastics, natural fiber materials, foams, foils and material composites. A femtosecond laser is used for natural materials and textiles that are very heat-sensitive. This laser type has extremely short laser pulses with very high energy densities. Supported by a high-precision and fast movement of the laser beam by a laser scanner system, the so-called cold ablation is enabled to predetermine weakening lines layer by layer until the desired residual wall thickness remains. In that way, for example, genuine leather can be processed in a material-friendly and process-reliable manner without design implications to the components A-Side. Passive safety in the vehicle is increased through the interaction of modern airbag technology and high-precision laser airbag weakening. The JENOPTIK-VOTAN® A product family has been representing this for more than 25 years and is pointing the way to the future with new and innovative technologies.

Keywords: design freedom, interior material processing, laser technology, passive safety

Procedia PDF Downloads 121
18641 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method

Authors: Berker Bayazit, Gulgun Kayakutlu

Abstract:

The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.

Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy

Procedia PDF Downloads 244
18640 Preparation and Characterization of Supported Metal Nanocrystal Using Simple Heating Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum inophyllum Oil)

Authors: Aida Safiera, Andika Dwi Rubyantoro, Muhammad Bagus Prakasa

Abstract:

Indonesia’s needs of diesel oil each year are increasing and getting urge. However, that problems are not supported by the amount of oil production that still low and also influenced by the fact of oil reserve is reduced. Because of that, the government prefers to import from other countries than fulfill the needs of diesel. To anticipate that problem, development of fuel based on renewable diesel is started. Renewable diesel is renewable alternative fuel that is hydrocarbon derivative from decarbonylation of non-edible oil. Indonesia is rich with natural resources, including nyamplung oil (Calophyllum inophyllum oil) and zeolite. Nyamplung oil (Calophyllum inophyllum oil) has many stearic acids which are useful on renewable diesel synthesis meanwhile zeolite is cheap. Zeolite is many used on high temperature reaction and cracking process on oil industry. Zeolite also has advantages which are a high crystallization, surface area and pores. In this research, the main focus that becomes our attention is on preparation and characterization of metal nanocrystal. Active site that used in this research is Nickel Molybdenum (NiMo). The advantage of nanocrystal with nano scale is having larger surface area. The synthesis of metal nanocrystal will be done with conventional preparation modification method that is called simple heating. Simple heating method is a metal nanocrystal synthesis method using continuous media which is polymer liquid. This method is a simple method and produces a small particles size in a short time. Influence of metal nanocrystal growth on this method is the heating profile. On the synthesis of nanocrystal, the manipulated variables are temperature and calcination time. Results to achieve from this research are diameter size on nano scale (< 100 nm) and uniform size without any agglomeration. Besides that, the conversion of synthesis of renewable diesel is high and has an equal specification with petroleum diesel. Catalyst activities are tested by FT-IR and GC-TCD on decarbonylation process with a pressure 15 bar and temperature 375 °C. The highest conversion from this reaction is 35% with selectivity around 43%.

Keywords: renewable diesel, simple heating, metal nanocrystal, NiMo, zeolite

Procedia PDF Downloads 230
18639 Bioethanol Production from Wild Sorghum (Sorghum arundinacieum) and Spear Grass (Heteropogon contortus)

Authors: Adeyinka Adesanya, Isaac Bamgboye

Abstract:

There is a growing need to develop the processes to produce renewable fuels and chemicals due to the economic, political, and environmental concerns associated with fossil fuels. Lignocellulosic biomass is an excellent renewable feedstock because it is both abundant and inexpensive. This project aims at producing bioethanol from lignocellulosic plants (Sorghum Arundinacieum and Heteropogon Contortus) by biochemical means, computing the energy audit of the process and determining the fuel properties of the produced ethanol. Acid pretreatment (0.5% H2SO4 solution) and enzymatic hydrolysis (using malted barley as enzyme source) were employed. The ethanol yield of wild sorghum was found to be 20% while that of spear grass was 15%. The fuel properties of the bioethanol from wild sorghum are 1.227 centipoise for viscosity, 1.10 g/cm3 for density, 0.90 for specific gravity, 78 °C for boiling point and the cloud point was found to be below -30 °C. That of spear grass was 1.206 centipoise for viscosity, 0.93 g/cm3 for density 1.08 specific gravity, 78 °C for boiling point and the cloud point was also found to be below -30 °C. The energy audit shows that about 64 % of the total energy was used up during pretreatment, while product recovery which was done manually demanded about 31 % of the total energy. Enzymatic hydrolysis, fermentation, and distillation total energy input were 1.95 %, 1.49 % and 1.04 % respectively, the alcoholometric strength of bioethanol from wild sorghum was found to be 47 % and the alcoholometric strength of bioethanol from spear grass was 72 %. Also, the energy efficiency of the bioethanol production for both grasses was 3.85 %.

Keywords: lignocellulosic biomass, wild sorghum, spear grass, biochemical conversion

Procedia PDF Downloads 236
18638 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 282
18637 Designing Ecologically and Economically Optimal Electric Vehicle Charging Stations

Authors: Y. Ghiassi-Farrokhfal

Abstract:

The number of electric vehicles (EVs) is increasing worldwide. Replacing gas fueled cars with EVs reduces carbon emission. However, the extensive energy consumption of EVs stresses the energy systems, requiring non-green sources of energy (such as gas turbines) to compensate for the new energy demand caused by EVs in the energy systems. To make EVs even a greener solution for the future energy systems, new EV charging stations are equipped with solar PV panels and batteries. This will help serve the energy demand of EVs through the green energy of solar panels. To ensure energy availability, solar panels are combined with batteries. The energy surplus at any point is stored in batteries and is used when there is not enough solar energy to serve the demand. While EV charging stations equipped with solar panels and batteries are green and ecologically optimal, they might not be financially viable solutions, due to battery prices. To make the system viable, we should size the battery economically and operate the system optimally. This is, in general, a challenging problem because of the stochastic nature of the EV arrivals at the charging station, the available solar energy, and the battery operating system. In this work, we provide a mathematical model for this problem and we compute the return on investment (ROI) of such a system, which is designed to be ecologically and financially optimal. We also quantify the minimum required investment in terms of battery and solar panels along with the operating strategy to ensure that a charging station has enough energy to serve its EV demand at any time.

Keywords: solar energy, battery storage, electric vehicle, charging stations

Procedia PDF Downloads 220
18636 Economic Development and New Challenges: Biomass Energy and Sustainability

Authors: Fabricia G. F. S. Rossato, Ieda G. Hidalgo, Andres Susseta, Felipe Casale, Leticia H. Nakamiti

Abstract:

This research was conducted to show the useful source of biomass energy provided from forest waste and the black liquor from the pulping process. This energy source could be able to assist and improve its area environment in a sustainable way. The research will demonstrate the challenges from producing the biomass energy and the implantation of the pulp industry in the city of Três Lagoas, MS. – Brazil. Planted forest’s potential, energy production in the pulp industries and its consequence of impacts on the local region environmental was also studied and examined. The present study is classified as descriptive purposes as it exposes the characteristics of a given population and the means such as bibliographical and documentary. All the data and information collected and demonstrate in this study was carefully analyzed and provided from reliable sources such as official government agencies.

Keywords: Brazil, pulp industry, renewable energy, Três Lagoas

Procedia PDF Downloads 327
18635 Buoyant Gas Dispersion in a Small Fuel Cell Enclosure: A Comparison Study Using Plain and Pressed Louvre Vent Passive Ventilation Schemes

Authors: T. Ghatauray, J. Ingram, P. Holborn

Abstract:

The transition from a ‘carbon rich’ fossil fuel dependent to a ‘sustainable’ and ‘renewable’ hydrogen based society will see the deployment of hydrogen fuel cells (HFC) in transport applications and in the generation of heat and power for buildings, as part of a decentralised power network. Many deployments will be low power HFCs for domestic combined heat and power (CHP) and commercial ‘transportable’ HFCs for environmental situations, such as lighting and telephone towers. For broad commercialisation of small fuel cells to be achieved there needs to be significant confidence in their safety in both domestic and environmental applications. Low power HFCs are housed in protective steel enclosures. Standard enclosures have plain rectangular ventilation openings intended for thermal management of electronics and not the dispersion of a buoyant gas. Degradation of the HFC or supply pipework in use could lead to a low-level leak and a build-up of hydrogen gas in the enclosure. Hydrogen’s wide flammable range (4-75%) is a significant safety concern, with ineffective enclosure ventilation having the potential to cause flammable mixtures to develop with the risk of explosion. Mechanical ventilation is effective at managing enclosure hydrogen concentrations, but drains HFC power and is vulnerable to failure. This is undesirable in low power and remote installations and reliable passive ventilation systems are preferred. Passive ventilation depends upon buoyancy driven flow, with the size, shape and position of ventilation openings critical for producing predictable flows and maintaining low buoyant gas concentrations. With environmentally sited enclosures, ventilation openings with pressed horizontal and angled louvres are preferred to protect the HFC and electronics inside. There is an economic cost to adding louvres, but also a safety concern. A question arises over whether the use of pressed louvre vents impairs enclosure passive ventilation performance, when compared to same opening area plain vents. Comparison small enclosure (0.144m³) tests of same opening area pressed louvre and plain vents were undertaken. A displacement ventilation arrangement was incorporated into the enclosure with opposing upper and lower ventilation openings. A range of vent areas were tested. Helium (used as a safe analogue for hydrogen) was released from a 4mm nozzle at the base of the enclosure to simulate a hydrogen leak at leak rates from 1 to 10 lpm. Helium sensors were used to record concentrations at eight heights in the enclosure. The enclosure was otherwise empty. These tests determined that the use of pressed and angled louvre ventilation openings on the enclosure impaired the passive ventilation flow and increased helium concentrations in the enclosure. High-level stratified buoyant gas layers were also found to be deeper than with plain vent openings and were within the flammable range. The presence of gas within the flammable range is of concern, particularly as the addition of the fuel cell and electronics in the enclosure would further reduce the available volume and increase concentrations. The opening area of louvre vents would need to be greater than equivalent plain vents to achieve comparable ventilation flows or alternative schemes would need to be considered.

Keywords: enclosure, fuel cell, helium, hydrogen safety, louvre vent, passive ventilation

Procedia PDF Downloads 273
18634 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 48
18633 The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design

Authors: Wu Xingchun, Chen Xi

Abstract:

Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture.

Keywords: ventilation system, chinese traditional residence, energy consumption, sustainable architecture

Procedia PDF Downloads 707
18632 Optimization of Passive Vibration Damping of Space Structures

Authors: Emad Askar, Eldesoky Elsoaly, Mohamed Kamel, Hisham Kamel

Abstract:

The objective of this article is to improve the passive vibration damping of solar array (SA) used in space structures, by the effective application of numerical optimization. A case study of a SA is used for demonstration. A finite element (FE) model was created and verified by experimental testing. Optimization was then conducted by implementing the FE model with the genetic algorithm, to find the optimal placement of aluminum circular patches, to suppress the first two bending mode shapes. The results were verified using experimental testing. Finally, a parametric study was conducted using the FE model where patch locations, material type, and shape were varied one at a time, and the results were compared with the optimal ones. The results clearly show that through the proper application of FE modeling and numerical optimization, passive vibration damping of space structures has been successfully achieved.

Keywords: damping optimization, genetic algorithm optimization, passive vibration damping, solar array vibration damping

Procedia PDF Downloads 450
18631 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems

Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto

Abstract:

The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.

Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In

Procedia PDF Downloads 437
18630 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 320
18629 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 82
18628 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production

Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan

Abstract:

Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.

Keywords: earth abundant, electrocatalytic, hydrogen, manganese

Procedia PDF Downloads 172
18627 Ab Initio Multiscale Catalytic Synthesis/Cracking Reaction Modelling of Ammonia as Liquid Hydrogen Carrier

Authors: Blaž Likozar, Andraž Pavlišič, Matic Pavlin, Taja Žibert, Aleksandra Zamljen, Sašo Gyergyek, Matej Huš

Abstract:

Ammonia is gaining recognition as a carbon-free fuel for energy-intensive applications, particularly transportation, industry, and power generation. Due to its physical properties, high energy density of 3 kWh kg-1, and high gravimetric hydrogen capacity of 17.6 wt%, ammonia is an efficient energy vector for green hydrogen, capable of mitigating hydrogen’s storage, distribution, and infrastructure deployment limitations. Chemicalstorage in the form of ammonia provides an efficient and affordable solution for energy storage, which is currently a critical step in overcoming the intermittency of abundant renewable energy sources with minimal or no environmental impact. Experiments were carried out to validate the modelling in a packed bed reactor, which proved to be agreeing.

Keywords: hydrogen, ammonia, catalysis, modelling, kinetics

Procedia PDF Downloads 69
18626 A Study on Energy-Saving Modular Housing Units Considering Environmental and Aesthetic Aspects

Authors: Jae Hee Chung, Tae Uk Kang, Byung Seo Kim

Abstract:

This study aims to propose design technologies for the energy-saving modular housing units considering environmental and aesthetic aspects. Modular houses are environmentally friendly based on 3R (Reduce, Reuse, Recycle) because they can dramatically reduce carbon dioxide and construction wastes generated during the construction, use, and disposal process by the pre-fabrication at the factory and the recyclability of the unit, compared to the existing construction methods. The existing modular housing, however, tends to focus on quantitative aspects of energy reduction, such as windows, insulation, and introduction of renewable energy, and there is not much research on energy-saving type units considering the environmental aspects such as daylighting and ventilation, and the design that goes beyond the standardized appearance. Therefore, this study conducts theoretical investigation and analytical case studies on the energy-saving methods through various architectural planning elements as well as materials like insulation considering the environmental and aesthetic aspects in the modular housing. Then, comparative analysis on the energy efficiency through the energy simulation is conducted. As a conclusion, the energy-saving modular housing units considering environmental and aesthetics aspects are proposed. It is expected that this study will contribute to the supply and activation of modular housing through deriving design technologies for the energy-saving modular housing units that consider not only quantitative aspects but also qualitative aspects.

Keywords: aesthetic aspects, energy-saving, environmental, modular housing

Procedia PDF Downloads 357
18625 Enhancing the Piezoelectric, Thermal, and Structural Properties of the PVDF-HFP/PZT/GO Composite for Improved Mechanical Energy Harvesting

Authors: Salesabil Labihi, Adil Eddiai, Mounir El Achaby, Mounir Meddad, Omar Cherkaoui, M’hammed Mazroui

Abstract:

Piezoelectric materials provide a promising renewable energy source by converting mechanical energy into electrical energy through pressure and vibration. This study focuses on improving the conversion performance of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by incorporating graphene oxide (GO) and lead zirconate titanate (PZT). The dispersion of PZT and GO within the PVDF-HFP matrix was found to be homogeneous, resulting in high piezoelectric performance with an increase in the β-phase content. The thermal stability of the PVDF-HFP polymer also improved with the addition of PZT/GO. However, as the percentage of PZT/GO increased, the young's modulus of the composite decreased significantly. The developed composite demonstrated promising performance as a potential candidate for energy harvesting applications.

Keywords: energy harvesting, mechanical conversion, piezoelectric composite, solvent casting method

Procedia PDF Downloads 82