Search results for: minimum steel ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7871

Search results for: minimum steel ratio

1361 Cosmic Muon Tomography at the Wylfa Reactor Site Using an Anti-Neutrino Detector

Authors: Ronald Collins, Jonathon Coleman, Joel Dasari, George Holt, Carl Metelko, Matthew Murdoch, Alexander Morgan, Yan-Jie Schnellbach, Robert Mills, Gareth Edwards, Alexander Roberts

Abstract:

At the Wylfa Magnox Power Plant between 2014–2016, the VIDARR prototype anti-neutrino detector was deployed. It is comprised of extruded plastic scintillating bars measuring 4 cm × 1 cm × 152 cm and utilised wavelength shifting fibres (WLS) and multi-pixel photon counters (MPPCs) to detect and quantify radiation. During deployment, it took cosmic muon data in accidental coincidence with the anti-neutrino measurements with the power plant site buildings obscuring the muon sky. Cosmic muons have a significantly higher probability of being attenuated and/or absorbed by denser objects, and so one-sided cosmic muon tomography was utilised to image the reactor site buildings. In order to achieve clear building outlines, a control data set was taken at the University of Liverpool from 2016 – 2018, which had minimal occlusion of the cosmic muon flux by dense objects. By taking the ratio of these two data sets and using GEANT4 simulations, it is possible to perform a one-sided cosmic muon tomography analysis. This analysis can be used to discern specific buildings, building heights, and features at the Wylfa reactor site, including the reactor core/reactor core shielding using ∼ 3 hours worth of cosmic-ray detector live time. This result demonstrates the feasibility of using cosmic muon analysis to determine a segmented detector’s location with respect to surrounding buildings, assisted by aerial photography or satellite imagery.

Keywords: anti-neutrino, GEANT4, muon, tomography, occlusion

Procedia PDF Downloads 184
1360 Two-Stage Hospital Efficiency Analysis Including Qualitative Evidence: A Greek Case

Authors: Panos Xenos, Milton Nektarios, John Yfantopoulos

Abstract:

Background: Policy makers, professional organizations and payers have introduced a variety of initiatives and reforms for the health systems worldwide, aimed at improving hospital efficiency. Their efforts are concentrated in two main categories: to constrain increasing healthcare costs and to enhance quality of services provided. Research Objectives: This study examines the efficiency of 112 Greek public hospitals for the year 2009, evaluates the importance of bootstrapping techniques and investigates the effect of contextual factors on hospital efficiency. Furthermore, the effect of qualitative evidence, on hospital efficiency is explored using data from 28 large hospitals. Methods: We applied Data Envelopment Analysis, augmented by bootstrapping techniques, to estimate efficiency scores. In order to measure the effect of environmental factors on hospital efficiency we used Tobit regression analysis. The significance of our models is evaluated using statistical tests to compare distributions. Results: The Kolmogorov-Smirnov test between the original and the bootstrap-corrected efficiency indicates that their distributions are significantly different (p-value<0.01). The environmental factors, that seem to influence efficiency, are Occupancy Rating and the ratio between Outpatient Visits and Inpatient Days. Results indicate that the inclusion of the quality variable in DEA modelling generates statistically significant variations in efficiency scores (p-value<0.05). Conclusions: The inclusion of quality variables and the use of bootstrap resampling in efficiency analysis impose a statistically significant effect on the distribution of efficiency scores. As a policy conclusion we highlight the importance of these methods on hospital efficiency analysis and, by implication, on healthcare resource allocation.

Keywords: hospitals, efficiency, quality, data envelopment analysis, Greek public hospital sector

Procedia PDF Downloads 309
1359 Acne Vulgaris Association with Smoking and Body Mass Index in Jordanian Young Adults

Authors: Almutazballlah Bassam Qablan, Jihan M. Muhaidat, bana Abu Rajab

Abstract:

Background: Acne vulgaris is considered one of the most common skin conditions encountered by dermatologists. It is a chronic inflammation affecting the pilosebaceous unit. Although acne vulgaris is not fatal, it leads to permanent scarring and disfigurement, and even without scarring, it has a huge effect on patients, causing negative health outcomes. Acne vulgaris patients experience psychological, and emotional ramifications as those with chronic health problems; they feel depressed, angry, anxious, and confused. Although acne is a popular disease, many thoughts and myths are still discussed about its origins and triggering factors. These myths can make you feel guilt as if you were somehow responsible for your acne. In this case control study, we want to define the relationship between two modifiable risk factors ;BMI and smoking, with acne vulgaris. Methods: A case-control study was conducted at King Abdullah University Hospital in Ramtha, Jordan in 2019/2020. A total number of 325 participants between 14 and 33 years of age were interviewed by the authors; including 163 acne vulgaris cases and 162 controls without acne vulgaris. Anthropometric measures and smoking for Acne patients and control participants were the independent variables used to assess acne. Univariate and multivariate analysis were used to compare the characteristics of people who reported acne with those with no acne. The collected data analyzed by using the Statistical Package for Social Sciences (SPSS). Results: Cigarette smoking was highly associated with controls; odds ratio 0.4 (95% CI: 0.2–0.9) , P-value = 0.018. BMI and waterpipe smoking were statistically insignificant with acne in the multivariate analysis. Conclusion: We found that cigarette smoking was protective against Acne. There was a statistically insignificant relation between BMI, waterpipe smoking and the development of Acne Vulgaris.

Keywords: acne, adolescents, BMI, smoking, case-control, risk factors

Procedia PDF Downloads 93
1358 CSR Health Programs: A Supplementary Tool of a Government’s Role in a Developing Nation

Authors: Kristine Demilou Santiago

Abstract:

In a context of a developing nation, how important is the role of Corporate Social Responsibility health programs? Is there a possibility that this will render a large impact in a society where health benefits are insufficient? The Philippine government has been in an unceasing battle to provide its citizens competitive health benefits through launching various health programs. As the efforts are being claimed by the government, the numbers just show that all the health benefits being offered such as PhilHealth health cards, medical missions and other subsidized government health benefits are not effective and sufficient at the minimum level. This is a major characteristic of a developing nation which the Philippine government is focusing on addressing as it becomes a national concern under the effects of poverty. Industrial companies, through Corporate Social Responsibility, are playing an important role in the aspiration to resolve this problem on health programs as supposed to be basic services to citizens of the Philippine government. The rise of commitment by these industrial companies to render health programs to communities as part of their corporate citizenship has covered a large portion of the basic health services that the Filipino citizens are supposed to be receiving. This is the most salient subject that a developing nation should focus on determining the important contribution of industrial companies present in their country as part of the citizens’ access to basic health services. The use of survey forms containing quantitative and qualitative questions which aim to give numerical figures and support answers as to the role of CSR Health programs in helping the communities receive the basic health services they need was the methodological procedure followed in this research. A sample population in a community where the largest industrial company in a province of the Philippines was taken through simple random sampling. The assumption is that this sample population which represents the whole of the community has the highest opportunities to access both the government health services and the CSR health program services of the industrial company located in their community. Results of the research have shown a significant level of participation by industrial companies through their CSR health programs in the attainment of basic health services that should be rendered by the Philippine government to its citizens as part of the state’s health benefits. In a context of a developing nation such as the Philippines, the role of Corporate Social Responsibility is beyond the expectation of initiating to resolve environmental and social issues. It is moving deeper in the concept of the corporate industries being a pillar of the government in catering the support needed by the individuals in the community for its development. As such, the concept of the presence of an industrial company in a community is said to be a parallel progress: by which when an industrial company expands because it is becoming more profitable, so is the community gaining the same step of progress in terms of socioeconomic development.

Keywords: basic health services, CSR health program, health services in a developing nation, Philippines health benefits

Procedia PDF Downloads 207
1357 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 495
1356 Hydrological Challenges and Solutions in the Nashik Region: A Multi Tracer and Geochemistry Approach to Groundwater Management

Authors: Gokul Prasad, Pennan Chinnasamy

Abstract:

The degradation of groundwater resources, attributed to factors such as excessive abstraction and contamination, has emerged as a global concern. This study delves into the stable isotopes of water) in a hard-rock aquifer situated in the Upper Godavari watershed, an agriculturally rich region in India underlain by Basalt. The higher groundwater draft (> 90%) poses significant risks; comprehending groundwater sources, flow patterns, and their environmental impacts is pivotal for researchers and water managers. The region has faced five droughts in the past 20 years; four are categorized as medium. The recharge rates are variable and show a very minimum contribution to groundwater. The rainfall pattern shows vast variability, with the region receiving seasonal monsoon rainfall for just four months and the rest of the year experiencing minimal rainfall. This research closely monitored monsoon precipitation inputs and examined spatial and temporal fluctuations in δ18O and δ2H in both groundwater and precipitation. By discerning individual recharge events during monsoons, it became possible to identify periods when evaporation led to groundwater quality deterioration, characterized by elevated salinity and stable isotope values in the return flow. The locally derived meteoric water line (LMWL) (δ2H = 6.72 * δ18O + 1.53, r² = 0.6) provided valuable insights into the groundwater system. The leftward shift of the Nashik LMWL in relation to the GMWL and LMWL indicated groundwater evaporation (-33 ‰), supported by spatial variations in electrical conductivity (EC) data. Groundwater in the eastern and northern watershed areas exhibited higher salinity > 3000uS/cm, expanding > 40% of the area compared to the western and southern regions due to geological disparities (alluvium vs basalt). The findings emphasize meteoric precipitation as the primary groundwater source in the watershed. However, spatial variations in isotope values and chemical constituents indicate other contributing factors, including evaporation, groundwater source type, and natural or anthropogenic (specifically agricultural and industrial) contaminants. Therefore, the study recommends focused hydro geochemistry and isotope analysis in areas with strong agricultural and industrial influence for the development of holistic groundwater management plans for protecting the groundwater aquifers' quantity and quality.

Keywords: groundwater quality, stable isotopes, salinity, groundwater management, hard-rock aquifer

Procedia PDF Downloads 46
1355 Sustainability in Space: Material Efficiency in Space Missions

Authors: Hamda M. Al-Ali

Abstract:

From addressing fundamental questions about the history of the solar system to exploring other planets for any signs of life have always been the core of human space exploration. This triggered humans to explore whether other planets such as Mars could support human life on them. Therefore, many planned space missions to other planets have been designed and conducted to examine the feasibility of human survival on them. However, space missions are expensive and consume a large number of various resources to be successful. To overcome these problems, material efficiency shall be maximized through the use of reusable launch vehicles (RLV) rather than disposable and expendable ones. Material efficiency is defined as a way to achieve service requirements using fewer materials to reduce CO2 emissions from industrial processes. Materials such as aluminum-lithium alloys, steel, Kevlar, and reinforced carbon-carbon composites used in the manufacturing of spacecrafts could be reused in closed-loop cycles directly or by adding a protective coat. Material efficiency is a fundamental principle of a circular economy. The circular economy aims to cutback waste and reduce pollution through maximizing material efficiency so that businesses can succeed and endure. Five strategies have been proposed to improve material efficiency in the space industry, which includes waste minimization, introduce Key Performance Indicators (KPIs) to measure material efficiency, and introduce policies and legislations to improve material efficiency in the space sector. Another strategy to boost material efficiency is through maximizing resource and energy efficiency through material reusability. Furthermore, the environmental effects associated with the rapid growth in the number of space missions include black carbon emissions that lead to climate change. The levels of emissions must be tracked and tackled to ensure the safe utilization of space in the future. The aim of this research paper is to examine and suggest effective methods used to improve material efficiency in space missions so that space and Earth become more environmentally and economically sustainable. The objectives used to fulfill this aim are to identify the materials used in space missions that are suitable to be reused in closed-loop cycles considering material efficiency indicators and circular economy concepts. An explanation of how spacecraft materials could be re-used as well as propose strategies to maximize material efficiency in order to make RLVs possible so that access to space becomes affordable and reliable is provided. Also, the economic viability of the RLVs is examined to show the extent to which the use of RLVs has on the reduction of space mission costs. The environmental and economic implications of the increase in the number of space missions as a result of the use of RLVs are also discussed. These research questions are studied through detailed critical analysis of the literature, such as published reports, books, scientific articles, and journals. A combination of keywords such as material efficiency, circular economy, RLVs, and spacecraft materials were used to search for appropriate literature.

Keywords: access to space, circular economy, material efficiency, reusable launch vehicles, spacecraft materials

Procedia PDF Downloads 111
1354 The Impact of Financial Risk on Banks’ Financial Performance: A Comparative Study of Islamic Banks and Conventional Banks in Pakistan

Authors: Mohammad Yousaf Safi Mohibullah Afghan

Abstract:

The study made on Islamic and conventional banks scrutinizes the risks interconnected with credit and liquidity on the productivity performance of Islamic and conventional banks that operate in Pakistan. Among the banks, only 4 Islamic and 18 conventional banks have been selected to enrich the result of our study on Islamic banks performance in connection to conventional banks. The selection of the banks to the panel is based on collecting quarterly unbalanced data ranges from the first quarter of 2007 to the last quarter of 2017. The data are collected from the Bank’s web sites and State Bank of Pakistan. The data collection is carried out based on Delta-method test. The mentioned test is used to find out the empirical results. In the study, while collecting data on the banks, the return on assets and return on equity have been major factors that are used assignificant proxies in determining the profitability of the banks. Moreover, another major proxy is used in measuring credit and liquidity risks, the loan loss provision to total loan and the ratio of liquid assets to total liability. Meanwhile, with consideration to the previous literature, some other variables such as bank size, bank capital, bank branches, and bank employees have been used to tentatively control the impact of those factors whose direct and indirect effects on profitability is understood. In conclusion, the study emphasizes that credit risk affects return on asset and return on equity positively, and there is no significant difference in term of credit risk between Islamic and conventional banks. Similarly, the liquidity risk has a significant impact on the bank’s profitability, though the marginal effect of liquidity risk is higher for Islamic banks than conventional banks.

Keywords: islamic & conventional banks, performance return on equity, return on assets, pakistan banking sectors, profitibility

Procedia PDF Downloads 161
1353 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: seismic behaviour, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra

Procedia PDF Downloads 230
1352 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate

Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur

Abstract:

Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.

Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration

Procedia PDF Downloads 133
1351 Role of Human Wharton’s Jelly Mesenchymal Stem Cells Conditioned Media in Alleviating Kidney Injury via Inhibition of Renin-Angiotensin System in Diabetic Nephropathy

Authors: Pardis Abolghasemi, Benyamin Hatamsaz

Abstract:

Background: Diabetic nephropathy is a serious health problem described by specific kidney structure and functional disturbance. Renoprotective effects of the stem cells secretase have been shown in many kidney diseases. The aim is to evaluate the capability of human Wharton’s jelly mesenchymal stem cells conditioned media (hWJMSCs-CM) to alleviate DN in streptozotocin (STZ)-induced diabetes. Methods: Diabetic nephropathy was induced by injection of STZ (60 mg/kg, IP) in twenty rats. Conditioned media was extracted from hWJMSCs at third passages. At week 8, diabetic rats were divided into two groups: treated (hWJMSCs-CM, 500 μl/rat for three weeks, IP) and not treated (DN). In the 11th week, three groups (control, DN and DN+hWJMSCs-CM) were kept in metabolic cages and urine was collected for 24h. Blood pressure (BP) and heart rate (HR) were continuously recorded. The serum samples were maintained for measuring BUN, Cr and angiotensin-converting enzyme (ACE) activity. The left kidney was kept at -80°C for ACE activity assessment. The right kidney and pancreas were used for histopathologic evaluation. Result: Diabetic nephropathy was detected by microalbuminuria and increased albumin/creatinine ratio, as well as the pancreas and renal structural disturbance. Glomerular filtration rate, BP and HR increased in the DN group. The ACE activity was elevated in the serum and kidneys of the DN group. Administration of hWJMSCs-CM modulated the renal functional and structural disturbance and decreased the ACE activity. Conclusion: Conditioned media was extracted from hWJMSCs may have a Renoprotective effect in diabetic nephropathy. This may happen through regulation of ACE activity and renin-angiotensin system inhibition.

Keywords: diabetic nephropathy, mesenchymal stem cells, immunomodulation, anti-inflammation

Procedia PDF Downloads 201
1350 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 173
1349 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 190
1348 Portuguese Teachers in Bilingual Schools in Brazil: Professional Identities and Intercultural Conflicts

Authors: Antonieta Heyden Megale

Abstract:

With the advent of globalization, the social, cultural and linguistic situation of the whole world has changed. In this scenario, the teaching of English, in Brazil, has become a booming business and the belief that this language is essential to a successful life is played by the media that sees it as a commodity and spares no effort to sell it. In this context, it has become evident the growth of bilingual and international schools that have English and Portuguese as languages of instruction. According to federal legislation, all schools in the country must follow the Curriculum guidelines proposed by the Ministry of Education of Brazil. It is then mandatory that, in addition to the specific foreign curriculum an international school subscribes to, it must also teach all subjects of the official minimum curriculum and these subjects have to be taught in Portuguese. It is important to emphasize that, in these schools, English is the most prestigious language. Therefore, firstly, Brazilian teachers who teach Portuguese in such contexts find themselves in a situation in which they teach in a low-status language. Secondly, because such teachers’ actions are guided by a different cultural matrix, which differs considerably from Anglo-Saxon values and beliefs, they often experience intercultural conflict in their workplace. Taking it consideration, this research, focusing on the trajectories of a specific group of Brazilian teachers of Portuguese in international and bilingual schools located in the city of São Paulo, intends to analyze how they discursively represent their own professional identities and practices. More specifically the objectives of this research are to understand, from the perspective of the investigated teachers, how they (i) rebuilt narratively their professional careers and explain the factors that led them to an international or to an immersion bilingual school; (ii) position themselves with respect to their linguistic repertoire; (iii) interpret the intercultural practices they are involved with in school and (v) position themselves by foregrounding categories to determine their membership in the group of Portuguese teachers. We have worked with these teachers’ autobiographical narratives. The autobiographical approach assumes that the stories told by teachers are systems of meaning involved in the production of identities and subjectivities in the context of power relations. The teachers' narratives were elicited by the following trigger: "I would like you to tell me how you became a teacher in a bilingual/international school and what your impressions are about your work and about the context in which it is inserted". These narratives were produced orally, recorded, and transcribed for analysis. The teachers were also invited to draw their "linguistic portraits". The theoretical concepts of positioning and the indexical cues were taken into consideration in data analysis. The narratives produced by the teachers point to intercultural conflicts related to their expectations and representations of others, which are never neutral or objective truths but discursive constructions.

Keywords: bilingual schools, identity, interculturality, narrative

Procedia PDF Downloads 336
1347 Predictors of Post-marketing Regulatory Actions Concerning Hepatotoxicity

Authors: Salwa M. Almomen, Mona A. Almaghrabi, Saja M. Alhabardi, Adel A. Alrwisan

Abstract:

Background: Hepatotoxicity is a major reason for medication withdrawal from the markets. Unfortunately, serious adverse hepatic effects can occur after marketing with limited indicators during clinical development. Therefore, finding possible predictors for hepatotoxicity might guide the monitoring program of various stakeholders. Methods: We examined the clinical review documents for drugs approved in the US from 2011 to 2016 to evaluate their hepatic safety profile. Predictors: we assessed whether these medications meet Hy’s Law with hepatotoxicity grade ≥ 3, labeled hepatic adverse effects at approval, or accelerated approval status. Outcome: post-marketing regulatory action related to hepatotoxicity, including product withdrawal or updates to warning, precaution, or adverse effects sections. Statistical analysis: drugs were included in the analysis from the time of approval until the end of 2019 or the first post-marketing regulatory action related to hepatotoxicity, whichever occurred first. The hazard ratio (HR) was estimated using Cox-regression analysis. Results: We included 192 medications in the study. We classified 48 drugs as having grade ≥ 3 hepatotoxicities, 43 had accelerated approval status, and 74 had labeled information about hepatotoxicity prior to marketing. The adjusted HRs for post-marketing regulatory action for products with grade ≥ 3 hepatotoxicity was 0.61 (95% confidence interval [CI], 0.17-2.23), 0.92 (95%CI, 0.29-2.93) for a drug approved via accelerated approval program, and was 0.91 (95%CI, 0.33-2.56) for drugs with labeled hepatotoxicity information at approval time. Conclusion: This study does not provide conclusive evidence on the association between post-marketing regulatory action and grade ≥ 3 hepatotoxicity, accelerated approval status, or availability of labeled information at approval due to sampling size and channeling bias.

Keywords: accelerated approvals, hepatic adverse effects, drug-induced liver injury, hepatotoxicity predictors, post-marketing withdrawal

Procedia PDF Downloads 151
1346 Exploring the Bifunctional Organocatalysts for Asymmetric Synthesis of 3-Substituted-3-Aminooxindoles

Authors: Jasneet Kaur, Swapandeep Singh Chimni

Abstract:

The unfavorable use of metal-based catalysts that are often extortionate and toxic can be overcome by using small organic molecules known as organocatalysts. A variety of small organic molecules, including Brønsted/Lewis bases and acids, based on sulfonic acids, phosphoric acids, amines, phosphines or carbenes, Cinchona alkaloids, have been used as organocatalysts. One of the key reasons for using organocatalysis is their ability to be effectively removed from the final product in comparison to the metallic counterparts, which are exceedingly difficult to remove. The present investigation seeks to explore the catalytic nature of Cinchona alkaloids as an organocatalyst for enantioselective synthesis of 3-substituted-3-aminooxindole, which is known to exhibit a variety of biological activities and pharmacological activities. In this context, an organocatalytic asymmetric route for the synthesis of 3-aminooxindoles via reaction of isatin imine with α-acetoxy-β-ketoesters has been developed. The bifunctional Cinchona derived thiourea catalyzed the reaction of α-acetoxy-β-ketoesters derivatives with isatin imine to afford 3-substituted-aminooxindole derivatives in up to 93% yield, 95% enantiomeric excess and >20:1 diastereomeric ratio. The reaction was performed at room temperature for two hours using 10 mol% of catalyst, in the presence of 4Å molecular sieves in tetrahydrofuran as a solvent at ambient temperature. After the completion of the reaction, the pure product could be easily separated by using column chromatography using hexane and ethyl acetate as solvents. In conclusion, the catalytic potential of Cinchona derived chiral thiourea-tertiary amine catalyst was explored for an organocatalytic enantioselective Mannich reaction of β-ketoester derivatives with various isatin imine derivatives under mild conditions.

Keywords: asymmetric synthesis, aminooxindoles, enantioselective, isatin imine

Procedia PDF Downloads 112
1345 The Importance of Imaging and Functional Tests for Early Detection of Occupational Diseases in Kosovo's Miners

Authors: Krenare Shabani, Kreshnike Dedushi Hoti, Serbeze Kabashi, Jeton Shatri, Arben Rroji, Mrikë Bunjaku, Leotrim Berisha, Jona Kosova, Edmond Puca, Bleriana Shabani

Abstract:

Introduction: Workers in Kosovo's mining industry are subjected to hazardous working conditions and airborne particles, such as silica dust, which can cause silicosis and other severe respiratory illnesses. The purpose of this research is to assess the health impacts of such exposures, as well as the importance of imaging and functional testing in detecting pathological changes early on. Methodology: The study is prospective and cross-sectional and was carried out during the year 2024. 626 people (446 miners and 180 non-miners) were enrolled in the study. Subjects underwent spirometry and chest radiography. Data were analysed with SPSS24. Results: The average age of the participants is 48 years. Demographics and Smoking: Smoking was common among young miners. Radiological Changes: Radiographic abnormalities in the lungs were seen in 23.1% of miners and 10.6% of non-miners, including small irregular opacities and emphysematous changes. Lung Function: The FEV1/FVC ratio decreased with increased exposure time, indicating a decline in pulmonary function.Impact of Exposure Duration: Longer exposure duration was associated with a higher number of miners experiencing coughs and requiring medical consultations such as CT scans and biopsies. Conclusions: Medical imaging and functional testing are critical for early diagnosis of lung abnormalities in miners.Findings demonstrate a strong correlation between extended exposure to mine dust and the development of respiratory disorders, emphasising the importance of preventative measures and routine health monitoring.

Keywords: silicosis, miners, imaging, spirometry

Procedia PDF Downloads 27
1344 Sizing Residential Solar Power Systems Based on Site-Specific Energy Statistics

Authors: Maria Arechavaleta, Mark Halpin

Abstract:

In the United States, costs of solar energy systems have declined to the point that they are viable options for most consumers. However, there are no consistent procedures for specifying sufficient systems. The factors that must be considered are energy consumption, potential solar energy production, and cost. The traditional method of specifying solar energy systems is based on assumed daily levels of available solar energy and average amounts of daily energy consumption. The mismatches between energy production and consumption are usually mitigated using battery energy storage systems, and energy use is curtailed when necessary. The main consumer decision question that drives the total system cost is how much unserved (or curtailed) energy is acceptable? Of course additional solar conversion equipment can be installed to provide greater peak energy production and extra energy storage capability can be added to mitigate longer lasting low solar energy production periods. Each option increases total cost and provides a benefit which is difficult to quantify accurately. An approach to quantify the cost-benefit of adding additional resources, either production or storage or both, based on the statistical concepts of loss-of-energy probability and expected unserved energy, is presented in this paper. Relatively simple calculations, based on site-specific energy availability and consumption data, can be used to show the value of each additional increment of production or storage. With this incremental benefit-cost information, consumers can select the best overall performance combination for their application at a cost they are comfortable paying. The approach is based on a statistical analysis of energy consumption and production characteristics over time. The characteristics are in the forms of curves with each point on the curve representing an energy consumption or production value over a period of time; a one-minute period is used for the work in this paper. These curves are measured at the consumer location under the conditions that exist at the site and the duration of the measurements is a minimum of one week. While greater accuracy could be obtained with longer recording periods, the examples in this paper are based on a single week for demonstration purposes. The weekly consumption and production curves are overlaid on each other and the mismatches are used to size the battery energy storage system. Loss-of-energy probability and expected unserved energy indices are calculated in addition to the total system cost. These indices allow the consumer to recognize and quantify the benefit (probably a reduction in energy consumption curtailment) available for a given increase in cost. Consumers can then make informed decisions that are accurate for their location and conditions and which are consistent with their available funds.

Keywords: battery energy storage systems, loss of load probability, residential renewable energy, solar energy systems

Procedia PDF Downloads 233
1343 Effects of Seed Culture and Attached Growth System on the Performance of Anammox Hybrid Reactor (AHR) Treating Nitrogenous Wastewater

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

The start-up of anammox (anaerobic ammonium oxidation) process in hybrid reactor delineated four distinct phases i.e. cell lysis, lag phase, activity elevation and stationary phase. Cell lysis phase was marked by death and decay of heterotrophic denitrifiers resulting in breakdown of organic nitrogen into ammonium. Lag phase showed initiation of anammox activity with turnover of heterotrophic denitrifiers, which is evident from appearance of NO3-N in the effluent. In activity elevation phase, anammox became the dominant reaction, which can be attributed to consequent reduction of NH4-N into N2 with increased NO3-N in the effluent. Proper selection of mixed seed culture at influent NO2-/NH4+ ratio (1:1) and hydraulic retention time (HRT) of 1 day led to early startup of anammox within 70 days. Pseudo steady state removal efficiencies of NH4+ and NO2- were found as 94.3% and 96.4% respectively, at nitrogen loading rate (NLR) of 0.35 kg N/m3d at an HRT of 1 day. Analysis of the data indicated that attached growth system contributes an additional 11% increase in the ammonium removal and results in an average of 29% reduction in sludge washout rate. Mass balance study of nitrogen indicated that 74.1% of total input nitrogen is converted into N2 gas followed by 11.2% being utilized in biomass development. Scanning electron microscope (SEM) observation of the granular sludge clearly showed the presence of cocci and rod shaped microorganisms intermingled on the external surface of the granules. The average size of anammox granules (1.2-1.5 mm) with an average settling velocity of 45.6 m/h indicated a high degree of granulation resulting into formation of well compacted granules in the anammox process.

Keywords: anammox, hybrid reactor, startup, granulation, nitrogen removal, mixed seed culture

Procedia PDF Downloads 183
1342 ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application

Authors: Pachari Chuenta, Suwat Nanan

Abstract:

ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation.

Keywords: azo dye, chemical precipitation, photocatalytic, ZnO

Procedia PDF Downloads 143
1341 Effect of Different Level of Pomegranate Molasses on Performance, Egg Quality Trait, Serological and Hematological Parameters in Older Laying Hens

Authors: Ismail Bayram, Aamir Iqbal, E. Eren Gultepe, Cangir Uyarlar, Umit Ozcınar, I. Sadi Cetingul

Abstract:

The current study was planned with the objective to explore the potential of pomegranate molasses (PM) on performance, egg quality and blood parameters in older laying hens. A total of 240 Babcock white laying hens (52 weeks old) were divided into 5 groups (n=48) with 8 subgroups having 6 hens in each. Pomegranate molasses was added in the drinking water to experimental groups with 0 %, 0.1%, 0.25 %, 0.5%, and 1%, respectively during one month. In our results, egg weight values were remained the same in all pomegranate molasses supplemented groups except 1% group over control. However, feed consumption, egg production, feed conversion ratio (FCR), egg mass, egg yolk cholesterol, body weights, and water consumption remained unaffected (P > 0.05). During mid-study (15 Days) analyses, egg quality parameters such as Haugh unit, eggshell thickness, albumin index, yolk index, and egg yolk color were remained non-significant (P > 0.05) while after final (30 Days) egg analyses, only egg yolk color had positively (P < 0.05) increased in 0.5% group. Moreover, Haugh unit, eggshell thickness, and albumin index were not significantly (P > 0.05) affected by the supplementation of pomegranate molasses. Regarding serological parameters, pomegranate molasses did not show any positive effect on cholesterol, total protein, LDL, HDL, GGT, AST, ALT, and glucose level. Similarly, pomegranate molasses also showed non-significant (P > 0.05) results on different blood parameters such as HCT, RBC, MCV, MCH, MCHC, PLT, RDWC, MPV except hemoglobin level. Only hemoglobin level was increased in all experimental groups over control showing that pomegranate molasses can be used as an enhancer in animals with low hemoglobin level.

Keywords: pomegranate molasses, laying hen, egg yield, blood parameters

Procedia PDF Downloads 168
1340 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 95
1339 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333

Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja

Abstract:

Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.

Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris

Procedia PDF Downloads 290
1338 Influence of Recycled Concrete Aggregate Content on the Rebar/Concrete Bond Properties through Pull-Out Tests and Acoustic Emission Measurements

Authors: L. Chiriatti, H. Hafid, H. R. Mercado-Mendoza, K. L. Apedo, C. Fond, F. Feugeas

Abstract:

Substituting natural aggregate with recycled aggregate coming from concrete demolition represents a promising alternative to face the issues of both the depletion of natural resources and the congestion of waste storage facilities. However, the crushing process of concrete demolition waste, currently in use to produce recycled concrete aggregate, does not allow the complete separation of natural aggregate from a variable amount of adhered mortar. Given the physicochemical characteristics of the latter, the introduction of recycled concrete aggregate into a concrete mix modifies, to a certain extent, both fresh and hardened concrete properties. As a consequence, the behavior of recycled reinforced concrete members could likely be influenced by the specificities of recycled concrete aggregates. Beyond the mechanical properties of concrete, and as a result of the composite character of reinforced concrete, the bond characteristics at the rebar/concrete interface have to be taken into account in an attempt to describe accurately the mechanical response of recycled reinforced concrete members. Hence, a comparative experimental campaign, including 16 pull-out tests, was carried out. Four concrete mixes with different recycled concrete aggregate content were tested. The main mechanical properties (compressive strength, tensile strength, Young’s modulus) of each concrete mix were measured through standard procedures. A single 14-mm-diameter ribbed rebar, representative of the diameters commonly used in the domain of civil engineering, was embedded into a 200-mm-side concrete cube. The resulting concrete cover is intended to ensure a pull-out type failure (i.e. exceedance of the rebar/concrete interface shear strength). A pull-out test carried out on the 100% recycled concrete specimen was enriched with exploratory acoustic emission measurements. Acoustic event location was performed by means of eight piezoelectric transducers distributed over the whole surface of the specimen. The resulting map was compared to existing data related to natural aggregate concrete. Damage distribution around the reinforcement and main features of the characteristic bond stress/free-end slip curve appeared to be similar to previous results obtained through comparable studies carried out on natural aggregate concrete. This seems to show that the usual bond mechanism sequence (‘chemical adhesion’, mechanical interlocking and friction) remains unchanged despite the addition of recycled concrete aggregate. However, the results also suggest that bond efficiency seems somewhat improved through the use of recycled concrete aggregate. This observation appears to be counter-intuitive with regard to the diminution of the main concrete mechanical properties with the recycled concrete aggregate content. As a consequence, the impact of recycled concrete aggregate content on bond characteristics seemingly represents an important factor which should be taken into account and likely to be further explored in order to determine flexural parameters such as deflection or crack distribution.

Keywords: acoustic emission monitoring, high-bond steel rebar, pull-out test, recycled aggregate concrete

Procedia PDF Downloads 170
1337 Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis

Authors: D. Kuvshinov, A. Siswanto, W. Zimmerman

Abstract:

A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil can also be used as a food stock due to its significant nutrition content. The limitations for utilizing the oil as a food stock are mainly due to a toxicity of PE. Nowadays a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reaction with PE it attacks the carbon double bond of PE. This modification of PE molecular structure results into nontoxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is a simultaneous application of new microscale plasma unit for ozone production and patented gas oscillation technology. In combination with a reactor design the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on diffusion coefficient which can be controlled by contact time and interface area. The low velocity of rising microbubbles and high surface to volume ratio allow fast mass transfer to be achieved during the process. Direct injection of ozone is the most efficient process for a highly reactive and short lived chemical. Data on the plasma unit behavior are presented and influence of the gas oscillation technology to the microbubbles production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown.

Keywords: microbubble, ozonolysis, synthetic phorbol ester, chemical engineering

Procedia PDF Downloads 214
1336 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test

Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari

Abstract:

Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.

Keywords: noor sand, liquefaction, undrained test, steady state

Procedia PDF Downloads 427
1335 Selective Adsorption of Anionic Textile Dyes with Sustainable Composite Materials Based on Physically Activated Carbon and Basic Polyelectrolytes

Authors: Mari Carmen Reyes Angeles, Dalia Michel Reyes Villeda, Ana María Herrera González

Abstract:

This work reports the design and synthesis of two composite materials based on physically activated carbon and basic polyelectrolytes useful in the adsorption of textile dyes present in aqueous solutions and wastewater. The synthesis of basic polyelectrolytes poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) was made by means of free radical polymerization. The carbon made from prickly pear peel (CarTunaF) was thermally activated in the presence of combustion gases. Composite materials CarTunaF2VP and CarTunaF4VP were obtained from CarTunaF and polybasic polyelectrolytes P2VP and P4VP with a ratio of 67:33 wt. The structure of each polyelectrolyte, P2VP, and P4VP, was elucidated by means of the FTIR and 1H NMR spectrophotometric techniques. Their thermal stability was evaluated using TGA. The characterization of CarTunaF and composite materials CarTunaF2VP and CarTunaF4VP was made by means of FTIR, TGA, SEM, and N2 adsorption. The adsorptive capacities of the polyelectrolytes and the composite materials were evaluated by adsorption of direct dyes present in aqueous solutions. The polyelectrolytes removed between 90 and 100% of the dyes, and the composite materials removed between 68 and 93% of the dyes. Using the four adsorbents P2VP, P4VP, CarTuna2VP, and CarTuna4VP, it was observed that the dyes studied, Direct Blue 80, Direct Turquoise 86, and Direct Orange 26, were adsorbed in the range between 46.1 and 188.7mg∙g-1 by means of electrostatic interactions between the anionic groups in the dyes with the cationic groups in the adsorbents. By using adsorbent materials in the treatment of wastewater from the textile industry, an improvement in the quality of the water was observed by decreasing its pH, COD, conductivity, and color considerably

Keywords: adsorption, anionic dyes, composite, polyelectrolytes

Procedia PDF Downloads 96
1334 Effect of Sodium Hydroxide Treatment on the Mechanical Properties of Crushed and Uncrushed Luffa cylindrica Fibre Reinforced rLDPE Composites

Authors: Paschal A. Ubi, Salawu Abdul Rahman Asipita

Abstract:

The use of suitable engineering materials which poses less harm to ,an and the environment is sort for in recent times, thus giving rise to polymer composites filled with natural organic reinforcement which are biodegradable. Treatment of natural fibres is essential in improving matrix to filler adhesion, hence improving its mechanical properties. In this study, investigations were carried out to determine the effect of sodium hydroxide treatment on the tensile, flexural, impact and hardness properties of crushed and uncrushed luffa cylindrica fibre reinforced recycled low density polyethylene composites. The LC (Luffa Cylindrica) fibres were treated with 0%, 2%, 4%, 6%, 8%, and 10% wt. NaOH concentrations for a period of 24 hours under room temperature conditions. The compounding of the waste LDPE was done using a two roll mill at a temperature of 150 oC and cured in a hydraulic press at a temperature of 150oC for 3 minutes at 3 metric tonnes. A formulation of 20/80g (reinforcement to matrix ratio in grams) was maintained for all fabricated samples. Analysis of the results showed that the uncrushed luffa fibre samples gave better mechanical properties compared with the crushed luffa fibre samples. The uncrushed luffa fibre composites had optimum tensile and flexural strengths of 7.65MPa and 17.08Mpa respectively corresponding to a young modulus and flexural modulus of 21.08MPa and 232.22MPa for the 8% and 4%wt. NaOH concentration respectively. Results obtained in the research showed that NaOH treatment with the 8% NaOH concentration improves the mechanical properties of the LC fibre reinforced composites when compared with other NaOH treatment concentration values.

Keywords: LC fibres, NaOH concentration, LC/rLDPE composite, tensile strength, flexural strength

Procedia PDF Downloads 280
1333 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 344
1332 The Dynamics of a Droplet Spreading on a Steel Surface

Authors: Evgeniya Orlova, Dmitriy Feoktistov, Geniy Kuznetsov

Abstract:

Spreading of a droplet over a solid substrate is a key phenomenon observed in the following engineering applications: thin film coating, oil extraction, inkjet printing, and spray cooling of heated surfaces. Droplet cooling systems are known to be more effective than film or rivulet cooling systems. It is caused by the greater evaporation surface area of droplets compared with the film of the same mass and wetting surface. And the greater surface area of droplets is connected with the curvature of the interface. Location of the droplets on the cooling surface influences on the heat transfer conditions. The close distance between the droplets provides intensive heat removal, but there is a possibility of their coalescence in the liquid film. The long distance leads to overheating of the local areas of the cooling surface and the occurrence of thermal stresses. To control the location of droplets is possible by changing the roughness, structure and chemical composition of the surface. Thus, control of spreading can be implemented. The most important characteristic of spreading of droplets on solid surfaces is a dynamic contact angle, which is a function of the contact line speed or capillary number. However, there is currently no universal equation, which would describe the relationship between these parameters. This paper presents the results of the experimental studies of water droplet spreading on metal substrates with different surface roughness. The effect of the droplet growth rate and the surface roughness on spreading characteristics was studied at low capillary numbers. The shadow method using high speed video cameras recording up to 10,000 frames per seconds was implemented. A droplet profile was analyzed by Axisymmetric Drop Shape Analyses techniques. According to change of the dynamic contact angle and the contact line speed three sequential spreading stages were observed: rapid increase in the dynamic contact angle; monotonous decrease in the contact angle and the contact line speed; and form of the equilibrium contact angle at constant contact line. At low droplet growth rate, the dynamic contact angle of the droplet spreading on the surfaces with the maximum roughness is found to increase throughout the spreading time. It is due to the fact that the friction force on such surfaces is significantly greater than the inertia force; and the contact line is pinned on microasperities of a relief. At high droplet growth rate the contact angle decreases during the second stage even on the surfaces with the maximum roughness, as in this case, the liquid does not fill the microcavities, and the droplet moves over the “air cushion”, i.e. the interface is a liquid/gas/solid system. Also at such growth rates pulsation of liquid flow was detected; and the droplet oscillates during the spreading. Thus, obtained results allow to conclude that it is possible to control spreading by using the surface roughness and the growth rate of droplets on surfaces as varied factors. Also, the research findings may be used for analyzing heat transfer in rivulet and drop cooling systems of high energy equipment.

Keywords: contact line speed, droplet growth rate, dynamic contact angle, shadow system, spreading

Procedia PDF Downloads 328