Search results for: low temperature ultra-high vacuum four scanning tunneling microscope
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9113

Search results for: low temperature ultra-high vacuum four scanning tunneling microscope

2723 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody

Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer

Abstract:

The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.

Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes

Procedia PDF Downloads 335
2722 Acoustic and Thermal Insulating Materials Based on Natural Fibres Used in Floor Construction

Authors: Jitka Hroudova, Jiri Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction

Procedia PDF Downloads 338
2721 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products

Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender

Abstract:

Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.

Keywords: biochar, co-pyrolysis, waste plastic, waste olive pomace

Procedia PDF Downloads 321
2720 Excel-VBA as Modelling Platform for Thermodynamic Optimisation of an R290/R600a Cascade Refrigeration System

Authors: M. M. El-Awad

Abstract:

The availability of computers and educational software nowadays helps engineering students acquire better understanding of engineering principles and their applications. With these facilities, students can perform sensitivity and optimisation analyses which were not possible in the past by using slide-rules and hand calculators. Standard textbooks in engineering thermodynamics also use software such as Engineering Equation Solver (EES) and Interactive Thermodynamics (IT) for solving calculation-intensive and design problems. Unfortunately, engineering students in most developing countries do not have access to such applications which are protected by intellectual-property rights. This paper shows how Microsoft ExcelTM and VBA (Visual Basic for Applications), which are normally distributed with personal computers and laptops, can be used as an alternative modelling platform for thermodynamic analyses and optimisation. The paper describes the VBA user-defined-functions developed for determining the refrigerants properties with Excel. For illustration, the combination is used to model and optimise the intermediate temperature for a propane/iso-butane cascade refrigeration system.

Keywords: thermodynamic optimisation, engineering education, excel, VBA, cascade refrigeration system

Procedia PDF Downloads 442
2719 Designed μ-Chlorido-Bridged Dimanganese (II) Complexes to Mimic the Activity of Galactose Oxidase Enzyme: Application in the Dehydrogenative Oxidation of Alcohol and Aldol Reaction

Authors: Apurva Singh, Naseem Ahmed

Abstract:

Dual functional manganese complex compelling with 2-hydrazineylpyridine moiety as ligand relevant to the activity of galactose oxidase enzyme is synthesized. Single crystal XRD and EPR studies showed both Manganese-centers are in +2 oxidation states with μ-Chlorido-bridged between them. The catalysts have maintained stability even at 300°C temperature, as demonstrated through TGA analysis. PXRD and XPS studies were used to further characterize the catalyst structure. The catalyst (Mn-C₁) is highly efficient in the selective dehydrogenative oxidation of alcohols in the presence of oxidant 30 % aq. H₂O₂ through a radical pathway. Likewise, the catalysts (Mn-C₁ and Mn-C₄) were efficiently used in the synthesis of β-hydroxy carbonyl compounds (aldol products) and chalcones up to 90% and 95% yield, respectively, at different temperatures via C-H bond activation. Both benzylic and aliphatic substrates are explored, having functional group tolerance.

Keywords: manganese-based 2-hydrazineylpyridine complex, β-hydroxy carbonyl product, free-radical reaction, dehydrogenative oxidation, Lewis acidity

Procedia PDF Downloads 17
2718 Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming

Authors: Mohammed Abdulridha Hamdan

Abstract:

To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems.

Keywords: phosphate, nitrate, anthropogenic, warming

Procedia PDF Downloads 112
2717 Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming

Authors: Mohammed Abdulridha Hamdan

Abstract:

To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies, which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems.

Keywords: phosphate, nitrate, Anthropogenic, warming

Procedia PDF Downloads 92
2716 Low NOx Combustion of Pulverized Petroleum Cokes

Authors: Sewon Kim, Minjun Kwon, Changyeop Lee

Abstract:

This study is aimed to study combustion characteristics of low NOx burner using petroleum cokes as fuel. The petroleum coke, which is produced through the oil refining process, is an attractive fuel in terms of its high heating value and low price. But petroleum coke is a challenging fuel because of its low volatile content, high sulfur and nitrogen content, which give rise to undesirable emission characteristics and low ignitability. Therefore, the research and development regarding the petroleum coke burner is needed for applying this industrial system. In this study, combustion and emission characteristics of petroleum cokes burner are experimentally investigated in an industrial steam boiler. The low NOx burner is designed to control fuel and air mixing to achieve staged combustion, which, in turn reduces both flame temperature and oxygen. Air distribution ratio of triple staged air are optimized experimentally. The result showed that NOx concentration is lowest when overfire air is used, and the burner function at a fuel rich condition. That is, the burner is operated at the equivalence ratio of 1.67 and overall equivalence ratio including overfire air is kept 0.87.

Keywords: petroleum cokes, low NOx, combustion, equivalence ratio

Procedia PDF Downloads 626
2715 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 215
2714 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 332
2713 Environmental Forensic Analysis of the Shoreline Microplastics Debris on the Limbe Coastline, Cameroon

Authors: Ndumbe Eric Esongami, Manga Veronica Ebot, Foba Josepha Tendo, Yengong Fabrice Lamfu, Tiku David Tambe

Abstract:

The prevalence and unpleasant nature of plastics pollution constantly observed on beach shore on stormy events has prompt researchers worldwide to thesis on sustainable economic and environmental designs on plastics, especially in Cameroon, a major touristic destination in the Central Africa Region. The inconsistent protocols develop by researchers has added to this burden, thus the morphological nature of microplastic remediation is a call for concerns. The prime aim of the study is to morphologically identify, quantify and forensically understands the distribution of each plastics polymer composition. Duplicates of 2×2 m (4m2) quadrants were sampled in each beach/month over 8 months period across five purposive beaches along the Limbe – Idenau coastline, Cameroon. Collected plastic samples were thoroughly washed and separation done using a 2 mm sieve. Only particles of size, < 2 mm, were considered and forward follow the microplastics laboratory analytical processes. Established step by step methodological procedures of particle filtration, organic matter digestion, density separation, particle extraction and polymer identification including microscope and were applied for the beach microplastics samples. Microplastics were observed in each sample/beach/month with an overall abundance of 241 particles/number weighs 89.15 g in total and with a mean abundance of 2 particles/m2 (0.69 g/m2) and 6 particles/month (2.0 g/m2). The accumulation of beach shoreline MPs rose dramatically towards decreasing size with microbeads and fiber only found in the < 1 mm size fraction. Approximately 75% of beach MPs contamination were found in LDB 2, LDB 1 and IDN beaches/average particles/number while the most dominant polymer type frequently observed also were PP, PE, and PS in all morphologically parameters analysed. Beach MPs accumulation significantly varied temporally and spatially at p = 0.05. ANOVA and Spearman’s rank correlation used shows linear relationships between the sizes categories considered in this study. In terms of polymer MPs analysis, the colour class recorded that white coloured MPs was dominant, 50 particles/number (22.25 g) with recorded abundance/number in PP (25), PE (15) and PS (5). The shape class also revealed that irregularly shaped MPs was dominant, 98 particles/number (30.5 g) with higher abundance/number in PP (39), PE (33), and PS (11). Similarly, MPs type class shows that fragmented MPs type was also dominant, 80 particles/number (25.25 g) with higher abundance/number in PP (30), PE (28) and PS (15). Equally, the sized class forward revealed that 1.5 – 1.99 mm sized ranged MPs had the highest abundance of 102 particles/number (51.77 g) with higher concentration observed in PP (47), PE (41), and PS (7) as well and finally, the weight class also show that 0.01 g weighs MPs was dominated by 98 particles/number (56.57 g) with varied numeric abundance seen in PP (49), PE (29) and PS (13). The forensic investigation of the pollution indicated that majority of the beach microplastic is sourced from the site/nearby area. The investigation could draw useful conclusions regarding the pathways of pollution. The fragmented microplastic, a significant component in the sample, was found to be sourced from recreational activities and partly from fishing boat installations and repairs activities carried out close to the shore.

Keywords: forensic analysis, beach MPs, particle/number, polymer composition, cameroon

Procedia PDF Downloads 89
2712 Investigation of Solar Concentrator Prototypes under Tunisian Conditions

Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani

Abstract:

Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.

Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation

Procedia PDF Downloads 257
2711 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations

Authors: S. Meziane, H. I. Faraoun, C. Esling

Abstract:

Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.

Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides

Procedia PDF Downloads 203
2710 Embedded Hw-Sw Reconfigurable Techniques For Wireless Sensor Network Applications

Authors: B. Kirubakaran, C. Rajasekaran

Abstract:

Reconfigurable techniques are used in many engineering and industrial applications for the efficient data transmissions through the wireless sensor networks. Nowadays most of the industrial applications are work for try to minimize the size and cost. During runtime the reconfigurable technique avoid the unwanted hang and delay in the system performance. In recent world Field Programmable Gate Array (FPGA) as one of the most efficient reconfigurable device and widely used for most of the hardware and software reconfiguration applications. In this paper, the work deals with whatever going to make changes in the hardware and software during runtime it’s should not affect the current running process that’s the main objective of the paper our changes be done in a parallel manner at the same time concentrating the cost and power transmission problems during data trans-receiving. Analog sensor (Temperature) as an input for the controller (PIC) through that control the FPGA digital sensors in generalized manner.

Keywords: field programmable gate array, peripheral interrupt controller, runtime reconfigurable techniques, wireless sensor networks

Procedia PDF Downloads 413
2709 Perceptions of Climate Change and Adaptation of Climate-Smart Technology by the Paddy Farmers: A Case Study of Kandy District in Sri Lanka

Authors: W. A. D. P. Wanigasundera, P. C. B. Alahakoon

Abstract:

Kandy district in Sri Lanka has small scale and rain-fed paddy farming, and highly vulnerable to climate change. In this study, the status of climate change was assessed using meteorological data and compared with the perceptions of paddy farming community. Factors affecting the adaptation to the climate smart farming were also assessed. Meteorological data for 33 years were collected and the changes over time compared with the perceptions of farmers. The temperature, rainfall and number of rainy days have increased in both locations. The onset of rains also has shifted. The perceptions of the majority of the farmers were in line with the actual changes. The knowledge and attitudes about the causes of climate change and adaptation were medium and related to level of adoption. Formulating effective communication strategies, and a collaborative approach involving state, private sector, civil society to make Sri Lankan agriculture ‘climate-smart’ is urgently needed.

Keywords: adaptation of climate-smart technology, climate change, perception, rain-fed paddy

Procedia PDF Downloads 338
2708 Getting to Know the Types of Asphalt, Its Manufacturing and Processing Methods and Its Application in Road Construction

Authors: Hamid Fallah

Abstract:

Asphalt is generally a mixture of stone materials with continuous granulation and a binder, which is usually bitumen. Asphalt is made in different shapes according to its use. The most familiar type of asphalt is hot asphalt or hot asphalt concrete. Stone materials usually make up more than 90% of the asphalt mixture. Therefore, stone materials have a significant impact on the quality of the resulting asphalt. According to the method of application and mixing, asphalt is divided into three categories: hot asphalt, protective asphalt, and cold asphalt. Cold mix asphalt is a mixture of stone materials and mixed bitumen or bitumen emulsion whose raw materials are mixed at ambient temperature. In some types of cold asphalt, the bitumen may be heated as necessary, but other materials are mixed with the bitumen without heating. Protective asphalts are used to make the roadbed impermeable, increase its abrasion and sliding resistance, and also temporarily improve the existing asphalt and concrete surfaces. This type of paving is very economical compared to hot asphalt due to the speed and ease of implementation and the limited need for asphalt machines and equipment. The present article, which is prepared in descriptive library form, introduces asphalt, its types, characteristics, and its application.

Keywords: asphalt, type of asphalt, asphalt concrete, sulfur concrete, bitumen in asphalt, sulfur, stone materials

Procedia PDF Downloads 75
2707 Effects of Thermal Radiation on Mixed Convection in a MHD Nanofluid Flow over a Stretching Sheet Using a Spectral Relaxation Method

Authors: Nageeb A. H. Haroun, Sabyasachi Mondal, Precious Sibanda

Abstract:

The effects of thermal radiation, Soret and Dufour parameters on mixed convection and nanofluid flow over a stretching sheet in the presence of a magnetic field are investigated. The flow is subject to temperature dependent viscosity and a chemical reaction parameter. It is assumed that the nanoparticle volume fraction at the wall may be actively controlled. The physical problem is modelled using systems of nonlinear differential equations which have been solved numerically using a spectral relaxation method. In addition to the discussion on heat and mass transfer processes, the velocity, nanoparticles volume fraction profiles as well as the skin friction coefficient are determined for different important physical parameters. A comparison of current findings with previously published results for some special cases of the problem shows an excellent agreement.

Keywords: non-isothermal wedge, thermal radiation, nanofluid, magnetic field, soret and dufour effects

Procedia PDF Downloads 241
2706 Transformer Design Optimization Using Artificial Intelligence Techniques

Authors: Zakir Husain

Abstract:

Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.

Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)

Procedia PDF Downloads 588
2705 The Anti-Allergic Activity of Prasaprohyai Preparation Extract after Accelerated Stability Testing

Authors: Sunita Makchuchit, Arunporn Itharat

Abstract:

Prasaprohyai, a Thai traditional medicine preparation listed in the Thai National List of Essential Medicines, is commonly used for treatment of fever and colds. Prasaprohyai preparation consists of 21 different plants, with Kaempferia galanga (50% w/w) as the main ingredient. The objective of this study was to investigate the anti-allergic activity of the crude extract from Prasaprohyai after accelerated stability test procedure. The method of extract used maceration in 95% ethanol and the crude extract was kept under accelerated condition at 40 ± 2 oC and 75 ± 5% relative humidity (RH) for six months. After six months of storage at 40 oC, the crude sample in various storage times (0, 15, 30, 45, 60, 90, 120, 150 and 180 days) were investigated for anti-allergic activity using IgE-sensitized RBL-2H3 cell lines. The results showed that the stability of crude ethanolic extract from Prasaprohyai under accelerated testing had no significant effect of anti-allergic activity when compared with day 0. The results showed that the ethanolic extract could be stored for two years at room temperature without loss of activity.

Keywords: accelerated stability, anti-allergy, prasaprohyai, RBL-2H3 cell lines

Procedia PDF Downloads 495
2704 Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films

Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal

Abstract:

The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated.

Keywords: ferroelectric polymer composite, remanemt polarization, back switching, crystallite size, lattice parameters and surface roughness

Procedia PDF Downloads 401
2703 Controlling Shape and Position of Silicon Micro-nanorolls Fabricated using Fine Bubbles during Anodization

Authors: Yodai Ashikubo, Toshiaki Suzuki, Satoshi Kouya, Mitsuya Motohashi

Abstract:

Functional microstructures such as wires, fins, needles, and rolls are currently being applied to variety of high-performance devices. Under these conditions, a roll structure (silicon micro-nanoroll) was formed on the surface of the silicon substrate via fine bubbles during anodization using an extremely diluted hydrofluoric acid (HF + H₂O). The as-formed roll had a microscale length and width of approximately 1 µm. The number of rolls was 3-10 times and the thickness of the film forming the rolls was about 10 nm. Thus, it is promising for applications as a distinct device material. These rolls functioned as capsules and/or pipelines. To date, number of rolls and roll length have been controlled by anodization conditions. In general, controlling the position and roll winding state is required for device applications. However, it has not been discussed. Grooves formed on silicon surface before anodization might be useful control the bubbles. In this study, we investigated the effect of the grooves on the position and shape of the roll. The surfaces of the silicon wafers were anodized. The starting material was p-type (100) single-crystalline silicon wafers. The resistivity of the wafer is 5-20 ∙ cm. Grooves were formed on the surface of the substrate before anodization using sandpaper and diamond pen. The average width and depth of the grooves were approximately 1 µm and 0.1 µm, respectively. The HF concentration {HF/ (HF + C₂H5OH + H₂O)} was 0.001 % by volume. The C2H5OH concentration {C₂H5OH/ (HF + C₂H5OH + H₂O)} was 70 %. A vertical single-tank cell and Pt cathode were used for anodization. The silicon roll was observed by field-emission scanning electron microscopy (FE-SEM; JSM-7100, JEOL). The atomic bonding state of the rolls was evaluated using X-ray photoelectron spectroscopy (XPS; ESCA-3400, Shimadzu). For straight groove, the rolls were formed along the groove. This indicates that the orientation of the rolls can be controlled by the grooves. For lattice-like groove, the rolls formed inside the lattice and along the long sides. In other words, the aspect ratio of the lattice is very important for the roll formation. In addition, many rolls were formed and winding states were not uniform when the lattice size is too large. On the other hand, no rolls were formed for small lattice. These results indicate that there is the optimal size of lattice for roll formation. In the future, we are planning on formation of rolls using groove formed by lithography technique instead of sandpaper and the pen. Furthermore, the rolls included nanoparticles will be formed for nanodevices.

Keywords: silicon roll, anodization, fine bubble, microstructure

Procedia PDF Downloads 35
2702 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber

Authors: Humayun R. H. Kabir

Abstract:

A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.

Keywords: dome, strengthening program, carbon fiber, load test

Procedia PDF Downloads 260
2701 Synthesis and Characterization of LiCoO2 Cathode Material by Sol-Gel Method

Authors: Nur Azilina Abdul Aziz, Tuti Katrina Abdullah, Ahmad Azmin Mohamad

Abstract:

Lithium-transition metals and some of their oxides, such as LiCoO2, LiMn2O2, LiFePO4, and LiNiO2 have been used as cathode materials in high performance lithium-ion rechargeable batteries. Among the cathode materials, LiCoO2 has potential to been widely used as a lithium-ion battery because of its layered crystalline structure, good capacity, high cell voltage, high specific energy density, high power rate, low self-discharge, and excellent cycle life. This cathode material has been widely used in commercial lithium-ion batteries due to its low irreversible capacity loss and good cycling performance. However, there are several problems that interfere with the production of material that has good electrochemical properties, including the crystallinity, the average particle size and particle size distribution. In recent years, synthesis of nanoparticles has been intensively investigated. Powders prepared by the traditional solid-state reaction have a large particle size and broad size distribution. On the other hand, solution method can reduce the particle size to nanometer range and control the particle size distribution. In this study, LiCoO2 was synthesized using the sol–gel preparation method, which Lithium acetate and Cobalt acetate were used as reactants. The stoichiometric amounts of the reactants were dissolved in deionized water. The solutions were stirred for 30 hours using magnetic stirrer, followed by heating at 80°C under vigorous stirring until a viscous gel was formed. The as-formed gel was calcined at 700°C for 7 h under a room atmosphere. The structural and morphological analysis of LiCoO2 was characterized using X-ray diffraction and Scanning electron microscopy. The diffraction pattern of material can be indexed based on the α-NaFeO2 structure. The clear splitting of the hexagonal doublet of (006)/(102) and (108)/(110) in this patterns indicates materials are formed in a well-ordered hexagonal structure. No impurity phase can be seen in this range probably due to the homogeneous mixing of the cations in the precursor. Furthermore, SEM micrograph of the LiCoO2 shows the particle size distribution is almost uniform while particle size is between 0.3-0.5 microns. In conclusion, LiCoO2 powder was successfully synthesized using the sol–gel method. LiCoO2 showed a hexagonal crystal structure. The sample has been prepared clearly indicate the pure phase of LiCoO2. Meanwhile, the morphology of the sample showed that the particle size and size distribution of particles is almost uniform.

Keywords: cathode material, LiCoO2, lithium-ion rechargeable batteries, Sol-Gel method

Procedia PDF Downloads 377
2700 A Fuzzy Logic Based Health Assesment Platform

Authors: J. Al-Dmour, A. Sagahyroon, A. Al-Ali, S. Abusnana

Abstract:

Radio Frequency Based Identification Systems have emerged as one of the possible valuable solutions that can be utilized in healthcare systems. Nowadays, RFID tags are available with built-in human vital signs sensors such as Body Temperature, Blood Pressure, Heart Rate, Blood Sugar level and Oxygen Saturation in Blood. This work proposes the design, implementation, and testing of an integrated mobile RFID-based health care system. The system consists of a wireless mobile vital signs data acquisition unit (RFID-DAQ) integrated with a fuzzy-logic–based software algorithm to monitor and assess patients conditions. The system is implemented and tested in ‘Rashid Center for Diabetes and Research’, Ajman, UAE. System testing results are compared with the Modified Early Warning System (MEWS) that is currently used in practice. We demonstrate that the proposed and implemented system exhibits an accuracy level that is comparable and sometimes better than the widely adopted MEWS system.

Keywords: healthcare, fuzzy logic, MEWS, RFID

Procedia PDF Downloads 353
2699 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System

Authors: Tu Shuyang, Zhang Xu, Zhou Xiang

Abstract:

The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.

Keywords: capacity, energy efficiency, GSHP, heat exchange

Procedia PDF Downloads 353
2698 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 83
2697 Clinical Presentation and Immune Response to Intramammary Infection of Holstein-Friesian Heifers with Isolates from Two Staphylococcus aureus Lineages

Authors: Dagmara A. Niedziela, Mark P. Murphy, Orla M. Keane, Finola C. Leonard

Abstract:

Staphylococcus aureus is the most frequent cause of clinical and subclinical bovine mastitis in Ireland. Mastitis caused by S. aureus is often chronic and tends to recur after antibiotic treatment. This may be due to several virulence factors, including attributes that enable the bacterium to internalize into bovine mammary epithelial cells, where it may evade antibiotic treatment, or evade the host immune response. Four bovine-adapted lineages (CC71, CC97, CC151 and ST136) were identified among a collection of Irish S. aureus mastitis isolates. Genotypic variation of mastitis-causing strains may contribute to different presentations of the disease, including differences in milk somatic cell count (SCC), the main method of mastitis detection. The objective of this study was to investigate the influence of bacterial strain and lineage on host immune response, by employing cell culture methods in vitro as well as an in vivo infection model. Twelve bovine adapted S. aureus strains were examined for internalization into bovine mammary epithelial cells (bMEC) and their ability to induce an immune response from bMEC (using qPCR and ELISA). In vitro studies found differences in a variety of virulence traits between the lineages. Strains from lineages CC97 and CC71 internalized more efficiently into bovine mammary epithelial cells (bMEC) than CC151 and ST136. CC97 strains also induced immune genes in bMEC more strongly than strains from the other 3 lineages. One strain each of CC151 and CC97 that differed in their ability to cause an immune response in bMEC were selected on the basis of the above in vitro experiments. Fourteen first-lactation Holstein-Friesian cows were purchased from 2 farms on the basis of low SCC (less than 50 000 cells/ml) and infection free status. Seven cows were infected with 1.73 x 102 c.f.u. of the CC97 strain (Group 1) and another seven with 5.83 x 102 c.f.u. of the CC151 strain (Group 2). The contralateral quarter of each cow was inoculated with PBS (vehicle). Clinical signs of infection (temperature, milk and udder appearance, milk yield) were monitored for 30 days. Blood and milk samples were taken to determine bacterial counts in milk, SCC, white blood cell populations and cytokines. Differences in disease presentation in vivo between groups were observed, with two animals from Group 2 developing clinical mastitis and requiring antibiotic treatment, while one animal from Group 1 did not develop an infection for the duration of the study. Fever (temperature > 39.5⁰C) was observed in 3 animals from Group 2 and in none from Group 1. Significant differences in SCC and bacterial load between groups were observed in the initial stages of infection (week 1). Data is also being collected on cytokines and chemokines secreted during the course of infection. The results of this study suggest that a strain from lineage CC151 may cause more severe clinical mastitis, while a strain from lineage CC97 may cause mild, subclinical mastitis. Diversity between strains of S. aureus may therefore influence the clinical presentation of mastitis, which in turn may influence disease detection and treatment needs.

Keywords: Bovine mastitis, host immune response, host-pathogen interactions, Staphylococcus aureus

Procedia PDF Downloads 160
2696 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: natural convection in enclosure, inclined enclosure, Nusselt number, entropy generation analyze

Procedia PDF Downloads 263
2695 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 60
2694 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber

Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay

Abstract:

Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.

Keywords: asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanizate

Procedia PDF Downloads 222